Ruby-crowned Kinglet (calendula)

Regulus calendula calendula

Note: This assessment refers to this subspecies only.

Review Status: Peer-reviewed Version Date: 09 May 2019

Conservation Status

<table>
<thead>
<tr>
<th>NatureServe:</th>
<th>Agency:</th>
<th>IUCN:</th>
<th>Audubon AK:</th>
</tr>
</thead>
<tbody>
<tr>
<td>G Rank:</td>
<td>ADF&G:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Rank:</td>
<td>USFWS:</td>
<td></td>
<td>BLM:</td>
</tr>
</tbody>
</table>

Final Rank

Conservation category: V. Orange

unknown status and either high biological vulnerability or high action need

<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>-20 to 20</td>
<td>0</td>
</tr>
<tr>
<td>Biological</td>
<td>-50 to 50</td>
<td>-32</td>
</tr>
<tr>
<td>Action</td>
<td>-40 to 40</td>
<td>16</td>
</tr>
</tbody>
</table>

Higher numerical scores denote greater concern

Status - variables measure the trend in a taxon’s population status or distribution. Higher status scores denote taxa with known declining trends. Status scores range from -20 (increasing) to 20 (decreasing).

Population Trend in Alaska (-10 to 10)

Distribution Trend in Alaska (-10 to 10)

Unknown.

Biological - variables measure aspects of a taxon’s distribution, abundance and life history. Higher biological scores suggest greater vulnerability to extirpation. Biological scores range from -50 (least vulnerable) to 50 (most vulnerable).

Population Size in Alaska (-10 to 10)

Unknown, but >25,000. Two subspecies occur in the state, R. c. calendula and R. c. grinnelli. R. c. calendula is the most widespread of the two. PIF (2019) estimates the statewide population at 9.7 million (95% CI: 7 to 13 million). Within the range of R. c. calendula, Handel et al. (2009) estimated that there were 215,000 individuals breeding in the Yukon-Charley Rivers National Preserve.
Alaska Species Ranking System - Ruby-crowned Kinglet (calendula)

Range Size in Alaska (-10 to 10)
Breeds in central and western from Cook Inlet north to the Brooks Range (Swanson et al. 2008). Replaced by R. c. grinnelli in southcoastal and southeast Alaska (Gibson and Withrow 2015). Range limit in northern and western Alaska likely follows the distribution of the treeline (Kessel and Gibson 1978). Most of the population overwinters further south, though it has been infrequently observed in the winter in southern Alaska (Kessel and Gibson 1978). Breeding range >400,000 sq. km.

Population Concentration in Alaska (-10 to 10)
Does not concentrate (Swanson et al. 2008).

Reproductive Potential in Alaska

Age of First Reproduction (-5 to 5)
Breeds within its first summer (Swanson et al. 2008).

Number of Young (-5 to 5)
Unknown for Alaska, and limited information available elsewhere. Average clutch size for R. c. calendula is 7.64 +/- 0.99 eggs (n=25) and ranges from 5-9 eggs/clutch (Swanson et al. 2008). Lays a single clutch per year (Swanson et al. 2008).

Ecological Specialization in Alaska

Dietary (-5 to 5)
Largely insectivorous. Few data available for Alaska. Consumes mainly invertebrates such as spiders, beetles, ants, wasps, and caterpillars; fruits and seeds are also consumed, but only in small amounts (Gabrielson and Lincoln 1959; Swanson et al. 2008).

Habitat (-5 to 5)

Knowledge of Distribution and Habitat in Alaska (-10 to 10)
Detected during multi-species surveys e.g. on the Kenai Peninsula (Lance and Howell 2000; Van Hemert et al. 2006), in northern (Tibbits et al. 2006), western (Petersen et al. 1991; Saracco et al. 2007; Amundson et al. 2018), and central Alaska (Spindler and Kessel 1980; Cotter and Andres 2000a; Handel and Sauer 2017). Habitat associations have been documented (see Habitat section). However, additional surveys and specimens are needed to determine range delineation. Ranges likely overlap in southcentral near Cook Inlet.

Knowledge of Population Trends in Alaska (-10 to 10)
Monitored only in parts of its range by BBS and off-road surveys (Handel and Sauer 2017). Data from these two survey types suggest different population trends (Handel and Sauer 2017).

Biological Total: -32

Action - variables measure current state of knowledge or extent of conservation efforts directed toward a given taxon.
Higher action scores denote greater information needs due of lack of knowledge or conservation action. Action scores range from -40 (lower needs) to 40 (greater needs).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Action Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Plans and Regulations in Alaska (-10 to 10)</td>
<td>2</td>
</tr>
<tr>
<td>Protected under the Migratory Bird Treaty Act (MBTA 1918).</td>
<td></td>
</tr>
<tr>
<td>Knowledge of Distribution and Habitat in Alaska (-10 to 10)</td>
<td>2</td>
</tr>
<tr>
<td>Detected during multi-species surveys e.g. on the Kenai Peninsula (Lance and Howell 2000; Van Hemert et al. 2006), in northern (Tibbits et al. 2006), western (Petersen et al. 1991; Saracco et al. 2007; Amundson et al. 2018), and central Alaska (Spindler and Kessel 1980; Cotter and Andres 2000a; Handel and Sauer 2017). Habitat associations have been documented (see Habitat section). However, additional surveys and specimens are needed to determine range delineation. Ranges likely overlap in southcentral near Cook Inlet.</td>
<td></td>
</tr>
<tr>
<td>Knowledge of Population Trends in Alaska (-10 to 10)</td>
<td>2</td>
</tr>
<tr>
<td>Monitored only in parts of its range by BBS and off-road surveys (Handel and Sauer 2017). Data from these two survey types suggest different population trends (Handel and Sauer 2017).</td>
<td></td>
</tr>
</tbody>
</table>
Knowledge of Factors Limiting Populations in Alaska (-10 to 10)

Little is known about the ecology of this species and the factors that limit its population dynamics in Alaska or elsewhere. Willson and Gende (2000) reported high rates of nesting success in southeast Alaska, and significant differences between egg and fledgling survival rates, but their study did not allow them to identify factors that may influence reproductive success. Lower densities in forest stands infested by spruce bark beetles were observed on the Kenai Peninsula (Lance and Howell 2000) and the Copper River Delta (Matsuoka et al. 2001). Other disturbances leading to the loss of mature, coniferous forests, including wildfires, logging, and urbanization, may similarly affect densities of ruby-crowned kinglets on breeding and wintering grounds (Kissling and Garton 2008; Swanson et al. 2008; Kalinowski and Johnson 2010; MacGregor-Fors et al. 2010). Additional research is needed on the effects of weather and climate change, which may affect migration phenology (Mizel et al. 2017) and increase suitable breeding habitat at the northern edge of its range (Marcot et al. 2015). The kinglet’s distribution in Denali National Park has remained relatively stable from 1995 to 2013, despite shrub habitats expanding into higher latitudes (Mizel et al. 2016). On wintering grounds, severe winter weather have been linked to lower abundances at local and continental scales (Lepthien and Bock 1976; Laurenzi et al. 1982).

Action Total: 16

Supplemental Information - variables do not receive numerical scores. Instead, they are used to sort taxa to answer specific biological or management questions.

- Harvest: None or Prohibited
- Seasonal Occurrence: Breeding
- Taxonomic Significance: Monotypic species
- % Global Range in Alaska: >10%
- % Global Population in Alaska: <25%
- Peripheral: No

References

