Collared pika
Ochotona collaris

Class: Mammalia
Order: Lagomorpha

Conservation Status
NatureServe: G5
USFWS: G5
ADF&G: S5

G Rank: G5
S Rank: S5
Conservation category: V. Orange

V = unknown status and either high biological vulnerability or high action need

Action: 4
Status: 0
Biological: -23

Population Trend (-10 to 10)
Unknown.

Distribution Trend (-10 to 10)
Unknown.

Status Total: 0

Biological - variables measure aspects of a taxon’s distribution, abundance and life history. Higher biological scores suggest greater vulnerability to extirpation. Biological scores range from -50 (least vulnerable) to 50 (most vulnerable).

Score
Population Size (-10 to 10) 0
The population of collared pikas in Canada is estimated to be >10,000 individuals (COSEWIC 2011), but population size in Alaska is unknown.

Range Size (-10 to 10) -10
Found at high elevations in the mountains of southcentral and interior Alaska, including the Alaska Range, Wrangell, Chugach, and Talkeetna Mountains, north to the Yukon River and east to Canada (MacDonald and Cook 2009). Its distribution in southwest, southcoastal, and southeast Alaska is uncertain (MacDonald and Cook 2009; H. Lanier, pers. comm.). It has not been reported on the Kenai Peninsula, despite extensive search effort (MacDonald and Cook 2009). Estimated range size in Alaska is >400,000 sq. km. (Table 1 in COSEWIC 2011).

Population Concentration (-10 to 10) -10
Does not aggregate.

Reproductive Potential

Age of First Reproduction (-5 to 5) -5
Reproduces at 1 year (Franken and Hik 2004a).

Number of Young (-5 to 5) 2
In southwest Yukon, females had a single litter per year (Franken and Hik 2004a). Litter size ranges from one to six (MacDonald and Jones 1987; Franken and Hik 2004a), though on average only one to two young are successfully raised (Franken and Hik 2004a). In keeping with the scope of this question, we rank it as 0.5 * B + 0.5 * C.

Ecological Specialization

Dietary (-5 to 5)

Herbivorous. Feeds on graminoids, club mosses, deciduous shrubs, and alpine forbs (Rausch 1961; MacDonald and Jones 1987; Morrison et al. 2004; Morrison and Hik 2008). While collared pikas do exhibit preferences for certain plant groups or species, they have a flexible diet and selected food items vary in response to changes in availability, predation risk, or competition (Morrison et al. 2004; Hudson et al. 2008; Morrison and Hik 2008).

Habitat (-5 to 5)

Require a combination of alpine meadows for foraging and talus slopes for hiding from predators (Broadbooks 1965; Franken and Hik 2004b; COSEWIC 2011; Dial et al. 2014). Areas with persistent snow cover likely limit foraging opportunities and are unlikely to be inhabited (Franken and Hik 2004a; Franken and Hik 2004b). Suitable habitat is patchily distributed across the landscape (COSEWIC 2011; Dial et al. 2014) and is threatened by climate change and shrub expansion (COSEWIC 2011).

Biological Total: -23

Action

- variables measure current state of knowledge or extent of conservation efforts directed toward a given taxon. Higher action scores denote greater information needs due to lack of knowledge or conservation action. Action scores range from -40 (lower needs) to 40 (greater needs).

Management Plans and Regulations (-10 to 10)

Subsistence and sport hunting is allowed with no bag limits and no closed season (ADFG 2018c). However, the hide or meat must be salvaged for human use (ADFG 2018c).

Score

Knowledge of Distribution and Habitat (-10 to 10)

Distribution and habitat associations are known from localized surveys (e.g. Broadbooks 1965; Holmes 1991; Cook and MacDonald 2003; 2005; Dial et al. 2014). Information on habitat associations can also be gleaned from studies in southwestern Yukon (e.g. Franken and Hik 2004b; Horn 2013; reviewed in COSEWIC 2011) and from statewide habitat models (e.g. Lanier and Olson 2013; Knowles et al. 2016). Because collared pikas have a patchy distribution even within suitable talus habitat, our knowledge of its distribution within areas of known occurrences is incomplete (H. Lanier, pers. comm.). Its distribution in southwest, southcoastal, and southeast Alaska is also unclear (Cook and MacDonald 2005; MacDonald and Cook 2009). Recent absences compared to historical records can be difficult to confirm given the potential for population cycling and dynamics of extinction and colonization (COSEWIC 2011; H. Lanier, pers. comm.).

Score

Knowledge of Population Trends (-10 to 10)

Not currently monitored.

Score

Knowledge of Factors Limiting Populations (-10 to 10)

Little is known about the population dynamics of collared pikas in Alaska. Studies in southwestern Yukon suggest that low overwinter survival was an important contributor to population dynamics and was correlated to the Pacific Decadal Oscillation, a broad-scale climate pattern which influences winter temperature and precipitation (Franken 2002; Morrison and Hik 2007). A low snowpack or freezing rain events may increase overwinter mortality from cold exposure (Morrison and Hik 2007; COSEWIC 2011; but see Horn 2013). Meanwhile, the timing of snowmelt influences the length of the growing season and the phenology and quality of of alpine plants (Wipf et al. 2009; Wipf and Rixen 2010), with potential effects for food resources and pika's ability to meet their energetic requirements (Morrison and Hik 2007; Morrison et al. 2009). Similarly, warm, dry summers may promote juvenile survival (Horn 2013). Climate may also have lagged effects and may influence sexes and life stages differently (Horn 2013). Additional research is needed to elucidate the role of intra- and interspecific competition, dispersal and population connectivity (Zgurski and Hik 2012; Lanier et al 2015b), predation (Rausch 1961; Holmes 1991; Morrison et al. 2004), and disease (Cook et al. 2017). Moreover, although this species has been extensively studied in southwestern Yukon, it is unknown whether these findings...
apply to populations in Alaska. Indeed, studies in southwestern Yukon suggest that the importance of
demographic parameters (e.g. fecundity versus adult survival) varies across subpopulations (Morrison and Hik
2007), suggesting that factors limiting population dynamics may be variable across time and space. We
encourage interested readers to consult the COSEWIC Assessment and Status Report on the Collared Pika
(COSEWIC 2011) for an in-depth review of pika ecology and research needs.

Collared pikas are thought to be vulnerable to the effects of a warming climate because of their specialized
habitat and physiological requirements (Morrison and Hik 2007; COSEWIC 2011). Modeling of previous glacial
periods suggest that the distribution of collared pika has decreased in response to warming after the Last Glacial
Maximum (COSEWIC 2011; Hope et al. 2015), but expectations of future distributional change are equivocal
(COSEWIC 2011; Hope et al. 2015; Leach et al. 2015 and references therein). Low dispersal ability and low
遗传 and phenotypic variation may further limit their ability to adapt to climate change (COSEWIC 2011;
Lanier and Olson 2013; Lanier et al. 2015a; 2015b). Additional research is needed to understand how current and
predicted climates affect the population and distribution of pika.

Supplemental Information - variables do not receive numerical scores. Instead, they are used to sort taxa to answer specific
biological or managerial questions.

Harvest:	Not substantial
Seasonal Occurrence:	Year-round
Taxonomic Significance:	Monotypic species
% Global Range in Alaska:	>10%
% Global Population in Alaska:	Unknown
Peripheral:	No

References

Alaska Department of Fish and Game (ADFG). 2018c. 2018-2019 Alaska hunting regulations. Alaska Department of Fish
and Game. Juneau, AK, USA.

Cook, J. A., K. A. Galbreath, K. C. Bell, M. L. Campbell, S. Carrière, J. P. Colella, ... , E. P. Hoberg. 2017. The
Beringian Coevolution Project: Holistic collections of mammals and associated parasites reveal novel perspectives on
evolutionary and envir

COSEWIC. 2011. COSEWIC assessment and status report on the collared pika Ochotona collaris in Canada. Committee
on the Status of Endangered Wildlife in Canada, Ottawa, ON, CAN. Available online: https://www.registrelep-
sareregistry.gc.ca/

(Ochotona collaris) in Snowhawk Valley, Joint Base Elmendorf-Richardson, Alaska, 2014. Alaska Pacific University,
Anchorage, AK, USA.

Franken, R. J. 2002. Demography and metapopulation dynamics of collared pikas (Ochotona collaris) in the southwest
Yukon. MSc thesis, University of Alberta, Edmonton, AB, CAN. DOI: 10.7939/R3QB9VHSQ
Alaska Species Ranking System - Collared pika

Franken, R. J. and D. S. Hik. 2004a. Interannual variation in timing of parturition and growth of collared pikas (Ochotona collaris) in the southwest Yukon. Integrative and Comparative Biology 44(2):186-193. DOI: 10.1093/icb/44.2.186

Horn, H. L. 2013. The role of habitat quality and climate in the dynamics of occupancy and survival of a population of collared pikas (Ochotona collaris) in the Ruby Range, Yukon Territory. MSc thesis, University of Alberta, Edmonton, AB, CAN. DOI: 10.793

