Song Sparrow, Bischoff

Melospiza melodia insignis

Note: This assessment refers to this subspecies only. A species level report, which refers to all associated subspecies, is also available.

Review Status: Peer-reviewed Version Date: 28 March 2019

Conservation Status

NatureServe: ADF&G: Species of Greatest Conservation Need IUCN: Audubon AK: Yellow
G Rank: G5T4 S Rank: USFWS: BLM:

Final Rank

<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>-20 to 20</td>
<td>0</td>
</tr>
<tr>
<td>Biological</td>
<td>-50 to 50</td>
<td>-20</td>
</tr>
<tr>
<td>Action</td>
<td>-40 to 40</td>
<td>16</td>
</tr>
</tbody>
</table>

Higher numerical scores denote greater concern

Status - variables measure the trend in a taxon’s population status or distribution. Higher status scores denote taxa with known declining trends. Status scores range from -20 (increasing) to 20 (decreasing).

Population Trend in Alaska (-10 to 10)
Unknown. Status Total: 0

Distribution Trend in Alaska (-10 to 10)
Unknown. Status Total: 0

Biological - variables measure aspects of a taxon’s distribution, abundance and life history. Higher biological scores suggest greater vulnerability to extirpation. Biological scores range from -50 (least vulnerable) to 50 (most vulnerable).

Population Size in Alaska (-10 to 10)
Unknown. Score 0

Range Size in Alaska (-10 to 10)
From southern coastal areas on the Alaska Peninsula (Eyerdam et al. 1936; Patten and Pruett 2009) east to Kodiak Island (Gabrielson and Lincoln 1951; Arcese et al. 2002; Patten and Pruett 2009; Gibson and Withrow 2015) and nearby islands (e.g. Barren Islands; Patten and Pruett 2009). Estimated 47,000 sq. km (using GoogleMaps). Some portion of this subspecies migrate south along the Alaskan coast in the winter (Patten and Pruett 2009). Score -2
Population Concentration in Alaska (-10 to 10)
-10
No subspecies specific information, likely same as species: does not concentrate (Arcese et al. 2002).

Reproductive Potential in Alaska

Age of First Reproduction (-5 to 5)
-5
No subspecies specific information, likely same as species: undocumented for Alaska, but elsewhere in North America, females breed at 1 year old (Hochachka 1990; Arcese et al. 2002).

Number of Young (-5 to 5)
1
No subspecies specific information, likely same as species: Johnston (1954) reported an average clutch size of 4.17 eggs for Alaska (n=17) and two clutches per year. Clutch sizes ranged from 3.05 to 3.99 eggs elsewhere along the eastern Pacific coast (Johnston 1954). Multiple broods per year are common in this species (Johnston 1954; Arcese et al. 2002).

Ecological Specialization in Alaska

Dietary (-5 to 5)
-5
No subspecies specific information, likely same as species: limited data for Alaska. Elsewhere in its range, this species is omnivorous, consuming terrestrial and aquatic invertebrates, seeds, and berries (reviewed in Arcese et al. 2002). The proportion of plant versus animal material in its diet shifts seasonally with availability (Arcese et al. 2002).

Habitat (-5 to 5)
1
Limited data available. Observed in eastern Aleutians in alder thickets or near the shore in lowland flats (Eyerdam 1936).

Knowledge of Population Trends in Alaska (-10 to 10)
Not currently monitored.

Knowledge of Factors Limiting Populations in Alaska (-10 to 10)
2
No subspecies specific information, likely same as species: the population ecology of song sparrows has been extensively studied on Mandarte Island in southern British Columbia and in other parts of its range (reviewed in Arcese et al. 2002; Chase et al. 2005). Winter survival may be negatively affected by adverse weather, limited food availability, and competition with other songbirds for food (Arcese et al. 2002; Johnson et al. 2018c). Meanwhile, reproductive success may be limited by food availability, brood parasitism, territoriality, and weather (Arcese et al. 2002; Chase et al. 2005). For example, a long-term study in Point Reyes, California, found a strong, positive correlation between annual rainfall and metrics of reproductive success (Chase et al. 2005). The importance of any one factor changes over time and space (Arcese et al. 2002; Chase et al. 2005) and studies are largely lacking for Alaska (though the genetics and evolution of Alaskan subspecies have been extensively...
studied e.g. Pruet and Winker 2005a; Pruet et al. 2008a; 2008b; Pruet and Winker 2010; Zink 2010). Some island populations were strongly affected by introduced predators, which have since been eradicated (Croll et al. 2016). Island populations may also be negatively affected by inbreeding, which reduces female reproductive success (Keller 1998). We rank this question as B until additional data are available for Alaskan populations.

Supplemental Information - variables do not receive numerical scores. Instead, they are used to sort taxa to answer specific biological or management questions.

<table>
<thead>
<tr>
<th>Harvest:</th>
<th>None or Prohibited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal Occurrence:</td>
<td>Breeding</td>
</tr>
<tr>
<td>Taxonomic Significance:</td>
<td>Subspecies</td>
</tr>
<tr>
<td>% Global Range in Alaska:</td>
<td>>10%</td>
</tr>
<tr>
<td>% Global Population in Alaska:</td>
<td>Unknown</td>
</tr>
<tr>
<td>Peripheral:</td>
<td>No</td>
</tr>
</tbody>
</table>

References

