TANGLE LAKES BUREAU OF LAND MANAGEMENT ARCHAEOLOGICAL DISTRICT RARE VASCULAR PLANT INVENTORY - 2006 TECHNICAL REPORT

Matthew L. Carlson

Alaska Natural Heritage Program/

Environment and Natural Resources Institute University of Alaska Anchorage 707 A Street Anchorage, Alaska 99501

Bureau of Land Management Report :

April 2007

Assistance Agreement No. LAA 08-001

Funding Source: BLM, Glennallen Field Office District

ABSTRACT

In 2006 the Alaska Natural Heritage Program (AKNHP) conducted a vascular plant inventory of Tangle Lakes Archaeological District (TLAD) in accordance with an assistance agreement with the Bureau of Land Management, Glennallen Field Office (BLM). The objective of this project was to inventory and document the occurrence of rare plant species that occur on BLM-Glennallen District lands. This information is meant as a proactive step in the management of rare botanical resources on public lands. This first of three phases is concentrated on TLAD. Subsequent inventories will be focused on Gulkana Wild and Scenic River Corridor and the Delta Wild and Scenic River Corridor. AKNHP summarized previous vascular plant collections in the area and identified species of conservation concern that would possibly occur in TLAD. The 2006 inventory targeted diverse habitat types and areas proposed for construction of off-road vehicle trails. The AKNHP staff visited TLAD from 13 - 16 July and 1 - 4 August 2006 and sampled most habitats and TLAD areas. A total of 83 collections were made representing 78 vascular plant taxa. All the species encountered were relatively common to interior Alaska and the Alaska Range. Most rare plants in Alaska are apparently not effective disperses and the extensive recent (12,000 years ago) glaciation of the TLAD region makes the population establishment of these species unlikely. Areas, however, that were not wholly overridden and that possess greater diversity of surficial geology such as the Amphitheater Mountains to the south, may harbor rare plant species. Rare species that may be present, but were not detected are are described in this report. One introduced plant species was found in a remote trail.

TABLE OF CONTENTS

ABSTRACT	2
EXECUTIVE SUMMARY	4
INTRODUCTION	5
METHODS	-
Collecting History of Tangle Lakes Basin	7
Sampling Design	8
Site Descriptions	9
Field Methods	13
Vouchers and Curation	13
RESULTS AND DISCUSSION	
Species of Conservation Concern in the Tangle Lakes Basin	14
Aphragmus eschscholtzianus (G3 S3)	14
Arnica mollis (G5-S1)	15
Carex laxa (G5?-S1)	15
Douglasia gormanii (G4-S3)	15
Draba porsildii (G3G4-S1S2)	
Draba ruaxes (G3-S3)	
Papaver alboroseum (G3G4-S3)	15
Phlox richardsonii ssp. richardsonii (G4T2T3Q-S2Q)	
Potamogeton subsibiricus (G3-S3)	
Potentilla hippiana (G5-S1)	
Salix setchelliana (G4-S3)	16
Viola selkirkii (G5?-S3)	
Non-Native Species	
Conclusions	
ACKNOWLEDGEMENTS	-
LITERATURE CITED	18

APPENDICES

Appendix I - List of 2006 Plant Collections in Tangle Lakes Archaeological District...19 Appendix II - Alaska Natural Heritage Program definitions of conservation ranks......23

EXECUTIVE SUMMARY

The Glennallen Field Office District of the Bureau of Land Management supported vascular plant inventories and data reviews to document the occurrence, distribution, and relative abundance of plants of conservation concern occurring in the Tangle Lakes Archaeological District. Future efforts will be focused on the Gulkana Wild and Scenic River Corridor and the Delta Wild and Scenic River Corridor. The inventory was developed to provide baseline information for future management of natural resources on BLM-managed lands. In 2006 the University of Alaska Anchorage (UAA), Alaska Natural Heritage Program (AKNHP) conducted field inventories in Tangle Lakes Archaeological District under Assistance Agreement Number LAA 08-001. The primary goal was to document the occurance and distribution of rare vascular plants and identify areas where plant species may be impacted by proposed off-road vehicle trails. The inventories targeted diverse habitat types and poorly sampled areas.

While in collection regions, we inventoried by hiking to as many habitat types and geographic areas as possible and collecting specimens that were considered significant. Access to collection sites was by foot or by off-road vehicles. At each collection site, data were gathered on site characteristics, including latitude and longitude, associated species, soil conditions, etc. Plants were then pressed and dried and catalogued at the Alaska Natural Heritage Program. Final taxonomic determinations and herbarium mounting of specimens were completed by Alaska Natural Heritage Program and the University of Alaska Fairbanks Museum staff.

A total of 83 specimens were collected, recorded, pressed, and curated by AKNHP in 2006. These collections represent 78 individual taxa. All the species we encountered were relatively common to interior Alaska and the Alaska Range. However, in the surrounding area a number of rare species have been collected. Rare species known from near TLAD include:

- Aphragmus eschscholtzianus (Alaska Natural Heritage Program Rank: G3-S3)
- Arnica mollis (G5-S1)
- Carex laxa (G5?-S1)
- Douglasia gormanii (G4-S3)
- Draba porsildii (G3G4-S1S2)
- Draba ruaxes (G3-S3)
- Papaver alboroseum (G3G4-S3)
- Phlox richardsonii ssp. richardsonii (G4T2T3Q-S2Q)
- Potamogeton subsibiricus (G3-S3)
- Potentilla hippiana (G5-S1)
- Salix setchelliana (G4-S3)
- Viola selkirkii (G5?-S3)

None of these species are listed by Alaska BLM as "Sensitive." See Appendix II for definitions of Alaska Natural Heritage Program Ranks.

Despite only modest collection efforts in the Tangle Lakes area, the nature of the collections suggests that the diversity of vascular plants and of rare vascular plants is low. The majority of rare plants in Alaska are restricted to previously unglaciated

terrains and the extensive glaciation of the majority of TLAD region 12,000 years ago makes the population establishment of these species unlikely. The Amphitheater Mountains, however, were not wholly overridden and also appear to possess of more diverse surficial geology than the area to the south. One introduced plant species, *Rumex acetosella*, was found in a remote trail and it may represent a harbinger of future impacts from non-native species in the area.

Key Words -

Tangle Lakes Archaeological Distictc, inventory, vascular plants, rare plants, non-native plants

INTRODUCTION

The Alaska Natural Heritage Program (AKNHP) conducted a vascular plant survey of the Tangle Lakes Archaeological District (TLAD), a 226,660 acre site on the southern side of the Alaska Range in in the Copper River Drainage managed by Alaska Bureau of Land Management (BLM), Glennallen District. TLAD is listed on the National Register of Historic Places due to its importance in early North American prehistory and it represents one of the densist concentrations of early subarctic archaeological sites. The BLM is entrusted with the management of these cultural resources as well as additional resource uses such as recreation, energy and minerals, and habitat and wildlife. To meet the management objective of documenting the floristic resources and preserving the biological integrity of the region, the AKNHP entered into an assistance agreement with BLM to collect and identify rare plants and note the locations, distribution and abundance of populations.

Climate, Ecology, and Geomorphology

Floristic elements are strongly influenced by the abiotic environment and here we briefly summarize climate and geologic patterns of the region. TLAD is located roughly 15 miles west of Paxson at 63° N, 146° W, along the foothills of the Alaska Range of interior Alaska (Fig. 1). The climate is cold, dry and windy and is largely buffered from precipitation by the Alaska Range to the north and the Chugach Mountains to the south. The mean annual temperature in Paxson is 25.2° F, with cool to warm summers (average July temperature is 53.4° F) and cold and dry winters (average January temperature is -1.8° F, Western Region Climate Center, 2007).

Figure 1. Location of the Tangle Lakes Archaeological District, represented by the white square.

Approximately 70% of Paxson's 20.2 inches of precipitation falls as rain; however, snow covers the ground for much of the year (and falls in all months except June, July, and August). The area receives 106 inches of snow on average. The growing period is similar to other subarctic locations, with a few growing degree days in mid-late May, increasing in June, climaxing in July and August, and tapering off in September to the beginning of October.

Tangle Lakes Archaeological District is a mosaic of rugged mountain ranges, extensive hills, broad valleys, lakes, and lowlands, with elevations ranging from 2,700 ft to over

4,700 ft at Whistle Ridge. Mount Hayes rises to over 14,000 ft 30 miles to the north of TLAD. The geology is complex, including Precambrian metamorphics as well as recent volcanic and alluvial deposits. Rich mineral deposits are clustered north of Eureka Creek and south of the Alaska Range spine. These deposits include unusual substrates, such as ultramafics (Bittenbender et al. 2007), which often host narrowly endemic vascular plants, at least at lower latitudes (Kruckeberg 1987, Kruckeberg 1991). The Wrangellia composite terrane dominates most of the TLAD; the terrane is a complex assembly of accreated material, primarily of oceanic affinity (Bittenbender et al. 2007). The Wrangellia terrane includes a mixture of basalts, carbonate layers, and mafic-ultramafic intrusives. Extensive Quaternary deposits were produced primarily by glaciers. Additionally, glaciers shaped mountains and valleys during maximum glaciation (ca. 150,000 ybp), but were not continuous during the height of the Wisconsin (20,000 ybp). Some ridges such as the Amphitheater Mountains and Whistle Ridge appear to have remained unglaciated during the Wisconsin (see Manley and Kaufman 2002, Fig. 2).

The TLAD is bordered by the Swede Lake Trail to the east, the Denali Highway in the north, the Maclaren River to the west, and the lower slopes of the Alphabet Hills in the south. The Delta National Wild and Scenic River and Gulkana National Wild River are found within TLAD and extend to the north and the west of TLAD. The region encompasses two low mountain ridges, Whistle Ridge, which runs east-west to an elevation of 4,700 ft and the peak west of Swede Lake, which is a broadly conical peak, rising to 4,660 ft. Glacial processes left a complex network of irregular lakes, ponds, and ridges of unsorted glacial till throughout the lowlands of TLAD. The Maclaren River drains the western side of TLAD, the Gulkana River drains the southern section, and the Tangle River to Delta River drains the central and northern portions of the region. Smaller streams and wetlands are scattered throughout TLAD.

Vegetation in TLAD is dominated by low and tall shrub tundra, composed primarily of shrub birch (*Betula glandulosa*) and willows (*Salix* spp.), which occupies floodplains and sideslopes. Dwarf shrub-ericaceous tundra is prevalent along ridges, eskers, and moraines, and dry graminoid meadows are scattered throughout the region. Nearly unvegetated talus slopes and fellfields are found on steep portions and the upper elevations of Whistle Ridge. Wet graminoid meadows are restricted to the margins of ponds, small lakes, and streams. White and black spruce woodlands are found in the extreme eastern portion of TLAD.

METHODS

The Alaska Natural Heritage Program, University of Alaska Anchorage conducted a vascular plant survey of the Tangle Lakes Archaeological District (TLAD) in July and early August of 2006. Here we briefly review the sampling design and methods employed in this survey.

Figure 2. Glacial extents in interior Alaska (Manley and Kaufman 2002). The approximate boundary of TLAD is indicated as the yellow polygon.

Collecting History of Tangle Lakes Archaeological District

The earliest collections of the area are from Alf Erling Porsild and his brother Robert Thorbjørn in 1926 along the Delta River at Black Rapids. A. E. Porsild was a Danish born botanist that worked in Greenland before being hired by the Canadian government in the same year (1926) to study reindeer/caribou grazing in arctic Canada and Alaska. Later he was the chief botanist of the National Museum of Canada. Numerous collections were made in the Alaska Range just north of TLAD in 1941 by L. J. Palmer of the Bureau of Biological Survey, U.S. Department of Agriculture, who was another prominent naturalist in the early to mid 1900's in Alaska, and oversaw the musk-oxen rearing and reintroduction to Alaska. S. Galen Smith made numerous collections in 1953 when the Denali Highway was completed. Extensive collections were made around Tangle Lakes and Paxson by Janice Dawe while she was conducting her graduate studies at University of Alaska Fairbanks in the late 1970's. Intermittent collecting has occurred since this time, primarily restricted to the immediate road corridor.

Sampling Design

In order to attain the goal of determining the presence of the federally protected threatened and endangered species, state protected species, sensitive species and species of concern within TLAD, we used the reconnaissance method of floristic survey. After discussions with the BLM District Wildlife Biologist, we concentrated our surveys on proposed all-terrain vehicle (ATV) expansion routes and areas most likely to harbor rare plants. We surveyed the Swede Lake Trail and more intensively along proposed routes along the southern end of Swede Lake. Landmark Gap South Trail, Oscar Lake Trail and the proposed connecting routes between these systems were surveyed. Last, we surveyed a portion of Whistle Ridge (see Fig. 3). The reconnaissance method was recommended as the best approach for plant inventories in all Alaska national parks by the wide group of botanists at the Alaska Plant Inventory Working Group September 2000 meeting; the general methodology is also supported by Catling and Reznicek (2003). The reconnaissance method involves identifying survey areas within landscape units via spatial analysis using the following key criteria:

- regionally unique geological or geomorphologic features
- communities or habitats of biological concern
- likely habitats of expected species, as indicated by regional floras and other collections
- under-represented plant communities in existing inventories
- logistical feasibility (e.g., access, cost)
- potential of certain types of sites to maximize species and communities encountered (e.g., ecotones, high environmental gradient areas)

We selected collection sites to represent a range in variability of landcover types, wetlands, and plant associations within TLAD. Collection sites were explored by covering the region by foot or ATV and by carefully examining all plant species to identify those that were noteworthy. Greater time and effort was expended in high diversity and high environmental gradient areas.

This targeted, judgment-based approach is an efficient way to locate populations of species of special concern based on known habitat preferences and patterns of distribution. As surveys progressed, the list of species of special concern was refined, as well as knowledge of species' habitat and geography.

Site Descriptions

After evaluating the locations of previous collections and giving consideration to logistic limitations, we decided to concentrate our sampling in four general collection regions. The primary collection region was the Swede Lake Trail, Landmark Gap South, Oscar Lake, and Whistle Ridge (Fig. 3). These regions allowed us to sample sites in a broad array of habitats and in areas most likely to be impacted by trail development.

Figure 3. Map of TLAD showing survey routes in the four collection regions investigated during the 2006 floristic inventory.

Swede Lake Proposed ATV Route

Swede Lake is located on the eastern boarder of TLAD at approximately 2,800 ft and the BLM is proposing to open a currently unimproved trail on to the southwest corner of the lake. We inventoried the approximately two mile region of the trail on 13 July 2006. The trail winds through a mesic, open, white spruce woodland, with small wetland intrusions and heavy shrub cover (Fig. 4). A well developed organic layer covers a mélange of mud, fines, and rocks. The area was dominated by shrub birch (*Betula glandulifera*), willows (*Salix alaxensis*, *S. barclayi*, and *S. pulchra*) and ericaceous shrubs (*Vaccinium uliginosum*, *V. vitis*-

idaea, and *Ledum palustre*), with occasional white spruce (*Picea glauca*). In a number of locations small fens were found. Some of the fens were on relatively steep slopes and others were more poorly drained. The fen habitats were underlain by thick peaty soil and dominated by sedges and grasses (*Carex aquatilis, C. canescens, Eriophorum chamissonis, Arctophila fulva, and Calamagrostis canadensis*) with occasional forbs and borded with willows and sparse white spruce. Aquatic plants at the lake margin were too immature for identification.

Landmark Gap South Proposed ATV Route

Landmark Gap South Trail is located in the center of TLAD at 3,100 to 3,500 ft in elevation. We inventoried the approximately five mile region of the proposed route on 14 July and 3 August 2006. The proposed trail bisects a number of habitats, primarily tall and low shrub scrublands (Fig. 5), mesic graminoid meadows and small ponds (Fig. 6). The scrub habitat was dominated by shrub birch (Betula glandulifera) with occasional willows (S. pulchra) and a thick carpet of crowberry (Empetrum nigrum) and lichens. Relatively common boreal forbes (e.g., Cornus canadensis, Pedicularis labradoricus, and Lupinus arcticus) were scattered along the trail margin and underneath the shrub canopy. The small ponds were shallow, with less than 1 m of water and had a rocky bottom with little aquatic vegetation. Narrow wetland corridors around the ponds and small creeks supported sedges (Carex aquatilis and C. saxatilis) and grasses (Deschampsia caespitosa, Calamagrostis canadensis, and Vahlodia atropurpurea in drier microsites) and were ringed by Salix pulchra and Betula glandulifera. In the lowlands between the knobs and ridges a mosaic of tussock grass-forb meadows weaves among the tall shrubs. In this habitat cloudberry is not uncommon, along with Altai fescue and goldenrod (Rubus chamaemorus, Festuca altaica, and Solidago multiradiata, respectively). We encountered a relatively recently drained pond that had a dry silty loam, moist soil and 30% bare ground. Carex saxatilis, Juncus filiformis, Deschampsia caespitosa, and Ranunculus flammula var. filiformis were the dominant species at this site.

Oscar Lake Proposed ATV Route

In the northwestern quadrat of TLAD is the well developed Oscar Lake Trail that terminates at the lake, approximately seven miles south from the trail's origin at the Denali Highway. The BLM proposes to construct a four mile trail running to the east and connecting with the western terminus of the Landmark Gap South Trail. We also surveyed an unimproved and restricted route extending from the Landmark Gap Trail southwest to the eastern end of Oscar Lake. The area we surveyed on 2 August 2006 ranged in elevation of 3,100 to nearly 4,000 ft in elevation. The habitats were very similar to those encountered along Landmark Gap South: primarily tall shrub habitats with smaller patches of forb-graminoid meadows (Fig. 7), wetlands, largely barren gravels or lichen dominated ridges, small ponds, and lakes (Fig. 8).

Whistle Ridge

We surveyed the central portion of Whistle Ridge on 1 August 2006. This area supported a barren alpine habitat absent from much of TLAD. The lower slopes of the ridge had deep organic soils with intermittently exposed dioritic rocks and supported a graminoid-dwarf shrub-willow mosaic (Fig. 9). The dominant species were the graminoids: *Carex micropoda, C. podocarpa, Arctagrostis latifolia, Festuca altaica,* the dwarf shrubs: *Cassiope tetragona, Empetrum nigrum, Spirea stevenii,* the willows: *Salix polaris, S. pulchra,* the forbs: *Artemisia arctica, Rhodiola integrifolia,* and *Castellija caudata.* Along the steep north-facing slope this mosaic transitioned into nearly unvegetated talus slopes (Fig. 10), with *Hierochloe alpina, Trisetum spicatum, Antennaria monocephala, Artemisia arctica,* and *Luzula arcuata.*

Fellfields occupied the top of Whistle Ridge in windblown and well-drained sites (Fig. 11). This open habitat had moderate slopes, with dioritic rock exposed from the turf and lichen substrate. The occasional ground squirrel mounds supported a localized lush graminoid community. *Dryas octopetala, Salix arctica, Festuca altaica, Hierochloe alpina*, and *Diapensia lapponica* were prevalent in the fellfields. On the eastern and southeastern slopes of Whistle Ridge, we encountered a number of snowbeds of mesic graminoid-forb tundra that were dominated by *Arctagrostis latifolia, Carex nigricans, Artemisia arctica*, and *Senecio lugens* (Fig. 12).

Figure 11. Whistle Ridge, groundsquirrel mound in fellfield habitat.

Figure 12. Whistle Ridge, mesic graminoid-forb tundra habitat.

Field Methods

The field personnel consisted of two senior AKNHP botanists and project managers: Matt Carlson and Rob Lipkin. Access to the general collection areas was by ATV from the Denali Highway and by foot. Data and specimens were collected during two trips, one 13-16 July and one 1-4 August in the summer of 2006.

- Each site was mapped on an aerial photo or USGS topographic map and a georeferenced point was recorded using a handheld GPS. The routes surveyed were also mapped. Representative photos were taken of each site including the plant communities, unusual landforms, and notable plants.
- Each site was recorded and significant landforms and plant associations described. A species list was compiled for most sites, with notes on the abundance and habitat for all taxa collected, as well as other taxa present, where possible.
- Vouchers were collected and curated as discussed below.

Collections were made only if the population was large enough to support removal of individuals following the collecting protocols of Murray and Parker (1990) and Parker and Murray (1992).

Vouchers and Curation

The following data were recorded with each vouchered specimen: date, unique collection number, latitude and longitude (NAD27, decimal degrees, taken from a handheld GPS unit); slope, aspect, elevation, topographic position, associated landforms, associated species, vegetation class, substrate, soil moisture, cover class or frequency class, notes on characters not preserved well, associated photo number, phenology, and ecological observations. Each voucher specimen is referenced to a specific geographic locality, generally less than 1,000 m² (10,764 ft²), having a uniform habitat. Collections at each site ranged from single specimens to over twenty taxa.

The size of the population and area surveyed was included for species of concern. Population is defined here as a group of individuals of the same taxon that occupy the same locality separated from other such groups by more than 1 km (0.6 mile). This follows from the definition that NatureServe uses to define "element occurrences."

The first set of collections is archived at the Herbarium of the University of Alaska Museum (ALA). Whenever there was sufficient material, a duplicate, set was deposited with the University of Alaska Anchorage herbarium.

Specimens were given conditional names in the field by AKNHP botanists. Plant collections were later sorted, examined and identified by AKNHP botanists and the collections were then sent to ALA where notable finds and difficult taxa were reviewed by the Museum staff.

RESULTS AND DISCUSSION

Two botanists surveyed roughly 35 miles (approximately 250 acres inventoried) of the region. 78 species, representing 25 families were collected and have received identifications. The species are listed in Appendix I. Most species we observed are widespread and common in boreal Alaska. A relatively low diversity of substrate and habitat types was encountered, and the dominance of shrub birch habitats, which are notoriously species poor, are partially responsible for the low diversity. No rare plants present on the AKNHP tracking list, or BLM sensitive species list were collected in our surveys. One rare aquatic species, *Potamogeton subsibiricus* was previously collected from Delta National Wild and Scenic Corridor in Tangle Lakes, however. This species is considered rare globally and within the state (AKNHP 2007), but it is not considered a BLM Sensitive Species. An additional twelve species that are rare in the state (S3) to critically imperiled in the state (S1), but more common globally (G5 to G3) are know from the surrounding regions and it is possible they are present, but undetected in TLAD. These are briefly described here.

Species of Conservation Concern in the Tangle Lakes Basin and Delta River Corridor

Aphragmus eschscholtzianus (G3-S3)

This is a small, white-flowered mustard that is endemic to Alaska and Yukon, primarily in the Aleutian and Alaska Ranges. It is known from approximately 40 sites and typically populations are not large. In Alaska it is principally found on moist to wet alpine screes and cliffs saturated with snow melt and along streams in the alpine, typically on limestone (Fig. 13). Although it is nowhere common, this species has been found at an increasing number of scattered sites in alpine areas within its range. This species is the only North American representative of the genus, whose other six species are found in the Himalayas and Siberia. Carolyn Parker of the University of Alaska Museum collected this species from Rainbow Ridge in a snowmelt area along the Richardson Highway to the northeast of TLAD. It is possible that this species may be present in similar habitats on Whistle Ridge, the peak west of Swede Lake and more likely along the steep slopes adjacent to the Delta National Wild and Scenic River.

Figure 13. Aphragmus eschscholtzianus and typical steep limestone scree slope habitat (Aniakchak Caldera).

Arnica mollis (G5-S1)

There is only a single collection of this yellow-flowered composite in Alaska, which is a collection of H. T. Shacklette from 1967 near the Maclaren Glacier, just north of TLAD (see Hultén 1968). This species of *Arnica* is quite common in the Rocky Mountains to the south. It is difficult to predict where this taxon may occur in region, but a likely area to expect it is along the along mountain meadows south of the Alaska Range spine and adjacent to the upper Delta River.

Carex laxa (G5?-S1)

This sedge is globally common, but it is known from only a handful of sites in Alaska. This species looks quite similar to *C. limosa, C. magellanica, C. pluriflora*, and *C. rariflora*, but differs in having a long, tubiform sheath of the upper bract. There is a report of this species for the Mile 172-174 along the Richardson Highway in the vicinity of Paxson Lake. It is possible for this species to show up in wet habitats adjacent to woodlands in the southeastern portion of TLAD.

Douglasia gormanii (G4-S3)

This species' range is restricted to interior Alaska and the Yukon, primarily north of the Alaska Range, but it is not particularly rare. Alan Batten, Janice Dawe, and Dave Murray collected this species along Bear Creek on the Richardson Highway in a dryassedge-meadow and it is also known northwest of TLAD in high elevation sites of the Alaska Range (UAM 2007). It is possible that it may be present at higher elevations in TLAD.

Draba porsildii (G3G4-S1S2)

This is a fairly widely distributed mustard that is known from a few scattered sites in the mountains of central Alaska and Yukon. Alan Batten and Janice Dawe collected this species on unstable shaley scree at Darling Creek off of the Delta River.

Draba ruaxes (G3-S3)

The distribution of *Draba ruaxes* is concentrated in the Alaska Range to the Wrangell Mountains in Yukon with a number of outlying collections in the Tanana Uplands, Chugach Mountains, and on the Seward Peninsula. S. Galen Smith collected this species along Rainbow Mountain in 1953 and 1955 and it is possible for it to be found in the mountains to the southwest in TLAD.

Papaver alboroseum (G3G4-S3)

This is a striking light orange-pink poppy that ranges from Kamtschatka through the Aleutian and Alaska Ranges. It is found primarily on eroding alpine screes especially near glaciers. Carolyn Parker collected this species along a rocky stream bed and a south-facing dirt bank on Rainbow Ridge.

Phlox richardsonii ssp. richardsonii (G4T2T3Q-S2Q)

There is a report of a taxonomically questionable subspecies of *Phlox richardsonii* from Donnelly Dome, northeast of TLAD, in the AKNHP rare plant database. It is most likely that this taxon is synonymous with *Phlox hoddii* (R. Lipkin pers. comm.). This plant is known from approximately ten locations in east-central Alaska from dry mountain slopes and is also more abundant in the Northwest Territories.

Potamogeton subsibiricus (G3-S3)

This rare pondweed was collected from Tangle Lakes in 0.6 m water from a stoney bottom in mid August of 1953 by S. Galen Smith. This species is known mostly from Alaska and adjacent Yukon, but a few sites are also from Siberia and from Hudson Bay, Canada. It is moderately rare in the state, with about 15 known sites. This species has a combination of traits that distinguishes it from other *Potamogeton* species: it lacks floating leaves, the submerged leaves are linear, 1.5-2 mm wide, and 9-17 nerved, it has stipules free from the leaf, and it has a nearly round stem.

Potentilla hippiana (G5-S1, Summit to McCarty)

Along the Richardson near Summit (63 10' to 64 10'N. -145 40'W) at 2,000 to 3,000 ft elevation, Porsild made the only collection of *Potentilla hippiana* in the state (Porsild, 1939). This species is widespread in the Canadian and American prairies to the southeast. Despite numerous botanists collecting along the Richardson Highway, this species has not been collected again and it is not likely that it would be found in TLAD.

Salix setchelliana (G4-S3)

Salix setchelliana is a small willow with fleshy, reddish-margined leaves that is endemic to Alaska and Yukon and is found on sandbars and gravel bars along glacial rivers. A collection of this willow is recorded for the Delta Creek Campground along the Richardson Highway to the north of TLAD. It is possible that this species may be located along the Maclaren River and along the upper stretches of the Delta River in the National Wild and Scenic River corridor.

Viola selkirkii (G5?-S3)

This violet has populations scattered throughout the northern hemisphere, but it seems to be moderately rare in the state, with about 20 known locations from Juneau to Denali and the Tikchik Lakes. Two collections of the violet were made along the upper Delta River in mid June of 1999 in willow scrub habitats. One collection is from just below the confluence with Wildhorse Creek and the other is at the Rainy Creek-Delta River confluence. Both of these collections appear to be northeast of the Delta National Wild and Scenic River, but is is possible that *Viola selkirkii* will be found in TLAD.

Non-Native Species of Conservation Concern in TLAD

We collected *Rumex acetosella* (sheep sorrel) a problematic non-native species in a relatively remote portion of the district along the proposed ATV Oscar Lake route, at 63.02891°N and 146.37910°W (Fig. 14).

The site is a tall knob at the terminus of a closed trail. The top of the knob appears to to be used as a camping and hunting lookout. and is an open disturbed area surrounded by shrub birch (Fig. 15). We estimated roughly 100 plants were present. This species is widespread across Alaska in disturbed mineral soils and is one of the non-native plants that are invading more remote sites, such as alpine trails in the Kenai Mountains. Rumex acetosella is ranked as weakly to moderately invasive (51 out of 100 possible points) by the Alaska Natural Heritage Program (see http://akweeds.uaa.alaska.edu/), because there is little documented impacts to ecosystem function or community composition, but this species does have many characteristics of highly weedy and difficult to control species.

In general the Denali Highway is largely free of non-native species. Only in the most developed areas are the weakly invasive, but

ubiquitous Poa annua, Plantago major, and Taraxacum officinale ssp. officinale.

The presence of non-native plants established in relatively remote areas of TLAD does indicate that this may become a larger issue for the BLM, especially if ATV or horse-packing use increases. ATVs that are previously used in more developed areas such as Anchorage, Fairbanks, and Mat-Su areas are likely to harbor numerous weed seeds that may be deposited in TLAD. Additionally, locating and controlling weed populations in remote areas will be difficult and expensive. We recommend that the *Rumex acetosella* population is completely removed – hand pulling for a few years should be successful in exhausting the seedbank in this small population. Additionally, we suggest that the BLM encourage or require ATV users to clean their off-road vehicles before use on BLM lands.

CONCLUSIONS

We did not locate any Federal, State or BLM-listed rare or sensitive plant species in our 2006 surveys of TLAD. In general, the flora was not particularly diverse and while our surveys were only able to cover a small portion of TLAD, it does not seem likely that BLM-listed sensitive plants will be found within the TLAD boundaries and especially near the proposed ATV routes. One non-native plant population was located in a remote area

and we recommend that this population is destroyed and that the BLM consider measures to reduce the risk of future non-native plant introductions.

ACKNOWLEDGEMENTS

The AKNHP is grateful for the logistical and financial support of the Glennallen BLM office, and in particular of the biology coordinator, Kari Rogers.

LITERATURE CITED

AKNHP (Alaska Natural Heritage Program). 2007. Rare plants of Alaska tracking list. University of Alaska Anchorage.

http://aknhp.uaa.alaska.edu/botany/Botany tracking page.htm.

- AKNHP (Alaska Natural Heritage Program). 2007. Non-native plants of Alaska. University of Alaska Anchorage. <u>http://akweeds.uaa.alaska.edu/</u>.
- Bittenbender, P. E., K. W. Bean, J. M. Kurtak, and J. Deininger. 2007. Mineral assessment of the Delta River Mining District Area, East-central Alaska. BLM Alaska Technical Report 57. 676 pp.
- Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA.
- Kruckeberg, A. R. 1987. Serpentine endemism and rarity. *In* T. S. Elias (ed.) Conservation and Management of Rare and Endangered Plants. Sacramento, California. pp. 121-128.
- Kruckeberg, A. R. 1991. An essay: Geoedaphics and island biogeography for vascular plants. Aliso 13:225-238.
- Lipkin 1995, Tande 2001) and in National Parks in Alaska (Carlson et al. 2003, Carlson et al. 2004, Lipkin 2004
- Manley and Kaufman, 2002. Alaska PaleoGlacier Atlas: A Geospatial Compilation of Pleistocene Glacier Extents.

http://instaar.colorado.edu/QGISL/ak_paleoglacier_atlas/)

- Murray, D. F., and C. L. Parker. 1990. An introduction to plant collecting. University of Alaska Museum on-line report. <u>http://uaf.edu/museum/herb/howtocoll.html</u>.
- Parker, C. L., and D. F. Murray. 1992. Collecting voucher specimens for documentation. Unpublished report prepared for the Alaska Rare Plant Working Group. University of Alaska, Fairbanks.
- Porsild, A. E. 1939. Contributions to the flora of Alaska. Rhodora 41:142-301.
- UAM (University of Alaska Museum) Database. 2004. University of Alaska Museum Arctos Database. http://arctos.database.museum/SpecimenSearch.cfm.
- Western Regional Climate Center. 2007. <u>http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?akpaxs</u>. Accessed 14 May 2007.

APPENDIX I – LIST OF VASCULAR PLANTS COLLECTED FROM TLAD IN 2006

Coll Num	Snacias	Family	Specific locality	Lat dd	Lon dd	Elev (ft)	Habitat
	Aconitum delphiniifolium	Ranunculaceae	Landmark Gap South ATV	63.04476	-146.16		Shrub birch and willow tundra knoll
			trail				
2006-251	Agrostis scabra	Poaceae	Osar Lake Trail, hill, ATV	63.02891	-146.379	3371	Shrub birch tundra
			pullout				
2006-170	Antennaria alpina	Asteraceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white
							spruce
2006-201	Antennaria monocephala	Asteraceae	Landmark Gap South	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub
			proposed ATV trail				birch-willow and ericaceous shrublands
2006-227	Arctagrostis latifolia	Poaceae	Whistle Ridge, toe slope	63.08903	-146.305	4089	Mesic toe slope/graminoid, dwarf shrub
							willow mosaic
2006-175	Arctophila fulva	Poaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
						2020	birch shrublands
2006-257	Arnica latifolia	Asteraceae	Maclaren Summit - Oscar	63.0864	-146.433	3467	Mesic forb-graminoid meadow
			Trail				
2006-223	Arnica lessingii	Asteraceae	Whistle Ridge, toe slope	63 08903	-146.305	4089	Mesic toe slope/graminoid, dwarf shrub
2000 220	Sinned recomign	, lotor accouct	Thirdie Thage, tee clope	00.00000	140.000	1000	willow mosaic
2006-171	Artemisia arctica	Asteraceae	Swede Lake trail sw route	62 98268	-145.865	3031	Shrub birch tundra, occasional white
				02.00200			spruce
2006-250	Calamagrostis lapponica	Poaceae	Osar Lake Trail, hill, ATV	63.02891	-146.379	3371	Shrub birch tundra
2000 200			pullout	00.02001	110.010		
2006-206	Campanula lasiocarpa	Campanulaceae	Valley between Oscar Lake	63.02252	-146.189	3261	Mosaic of forb graminoid meadows and
2000-200		Campandiaceae	and Landmark Gap South	05.02252	140.105	5201	open Salix pulchra shrublands
2006-240	Cardamine bellidifolia	Brassicaceae	Trail Whistle Ridge, side slope	63 08692	-146.301	4302	Side slope, dioritic rock outcrop in talus
2000 2.0		Diacondicato		00.00002	1 10.001		field
2006-174	Carex aquatilis	Cyperaceae	Swede Lake	62 97845	-145.885	2923	Wet, muddy swale in open white spruce,
		-,,					birch shrublands
2006-166	Carex canescens	Cyperaceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white
							spruce
2006-173	Carex canescens	Cyperaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
							birch shrublands
2006-228	Carex lachenalii	Cyperaceae	Whistle Ridge, toe slope	63.08903	-146.305	4089	Mesic toe slope/graminoid, dwarf shrub
			5				willow mosaic
2006-235	Carex lachenalii	Cyperaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus
		- //					field
2006-190	Carex microchaeta ssp.	Cyperaceae	Landmark Gap South ATV	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
	nesophila	- //	trail				
2006-230	Carex micropoda	Cyperaceae	Whistle Ridge, toe slope	63.08903	-146.305		Snowbed, in moist talus, dwarf shrub
2000 200		opperateac	Annolie Huge, lee olope	00.00000	140.000		graminoid tundra
2006-245	Carex micropoda	Cyperaceae	Whistle Ridge	63 08047	-146.304	4372	Snowbed
2000 210		ojponaccac		00.00011	110.001	1012	
2006-256	Carex pachystachya	Cyperaceae	Osar Lake Trail	63.03069	-146.375	3290	Mesic forb-graminoid meadow
2000-200	salon paony stateny a			55.55003	140.010	5250	and the gramment meadow
2006-220	Carex podocarpa	Cyperaceae	Whistle Ridge, toe slope	63.08903	-146.305	4080	Mesic toe slope/graminoid, dwarf shrub
2000-228	Salex poundipa	Syperaceae	Transie Ruge, De Slope	55.00303	-140.000	4009	willow mosaic
2006-197	Carex saxatilis	Cyperaceae	Landmark Gap South	63.04106	-146.18	3462	Pond margin on a broad knoll in shrub
2000-19/		Cyperaceae	proposed ATV trail	03.04100	-140.16	349Z	birch-willow
	0	0		00.00000	4.40.004	1000	
2006-236	Carex sp.	Cyperaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field

Coll Num	Species	Family	Specific locality	Lat_dd	Lon_dd	Elev (ft)	Habitat
2006-254	Carex stylosa	Cyperaceae	Osar Lake Trail	63.03069	-146.375	3290	Swale-wet graminoid shrub birch-salix
							mosaic
2006-262	Carex stylosa	Cyperaceae	Landmark Gap South Trail -	62.02044	-146 172	2202	Dried pond in shrub birch mosaic
2000-203	Carex styloga	Cyperaceae	proposed ATV route	03.02044	-140.175	5205	Direc pond in sindb birth mosaic
			proposition				
2006-180	Castilleja caudata	Scrophulariaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
							birch shrublands
2006-224	Claytonia sarmentosa	Portulacaceae	Whistle Ridge, toe slope	62 00002	-146.305	4090	Mesic toe slope/graminoid, dwarf shrub
2000 224	Chaytonna dannemoda	1 ondiacaceae	windle ridge, loc diope	00.00000	140.000	4005	willow mosaic
2006-179	Comarum palustre	Rosaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
							birch shrublands
2006-259	Cornus canadensis	Cornaceae	Junction with Landmark	63.03069	-146.132	3264	Shrub birch ericaceous shrub
2000 200		0011140040	Gap South Trail and survey		110.102	0201	
			route				
2006-202	Deschampsia caespitosa	Poaceae	Landmark Gap South	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub
			proposed ATV trail				birch-willow and ericaceous shrublands
2006-262	Deschampsia caespitosa	Poaceae	Landmark Gap South Trail -	63 02044	-146.173	3203	Dried pond in shrub birch mosaic
2000 202			proposed ATV route	00.02011		0200	
2006-184	Epilobium palustre	Onagraceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch
							white spruce
2006-176	Equisetum sylvaticum	Equisetaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
							birch shrublands
2006-247	Erigeron peregrinus	Asteraceae	Whistle Ridge	63.08047	-146.304	4372	Snowbed
2006-177	Eriophorum chamissonis	Cyperaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce,
							birch shrublands
2006-200	Gentiana glauca	Gentianaceae	Landmark Gap South	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub
			proposed ATV trail				birch-willow and ericaceous shrublands
2006-232	Hieracium triste	Asteraceae	Whistle Ridge, toe slope	63.08903	-146.305		Snowbed, in moist talus, dwarf shrub
							graminoid tundra
2008 227	/ line able a status	Deeree	10/histle Didne, side slave	62.00602	4.46.004	4000	Oide slave distitute sets substants in talue.
2006-237	Hierochloe alpina	Poaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field
							lield
2006-198	Huperzia selago	Lycopodiaceae	Landmark Gap South	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub
			proposed ATV trail				birch-willow and ericaceous shrublands
2006-248	Juncus drummondii	Juncaceae	Whistle Ridge	63.08047	-146.304	1272	Snowbed
2000-240	ouncus arannionan	Juncaceae	willoue Kiuge	03.00047	-140.304	4072	Showbed
2006-261	Juncus filiformis	Juncaceae	Landmark Gap South Trail -	63.02044	-146.173	3203	Dried pond in shrub birch mosaic
			proposed ATV route				
2006-244	Kobresia myosuroides	Cyperaceae	Whistle Ridge, broad ridge	63 0834	-146.304	4589	Broad fellfield ridge, ground squirrel
2000 211	, inconcernity councilable	o,poraceae	innene inage, ereadinage				burrow
2006-191	Lupinus arcticus	Fabaceae	Landmark Gap South ATV	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
			trail				
2006-239	Luzula arcuata ssp.	Juncaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus
	unalaschcensis						field
2006-258	Luzula multiflora	Juncaceae	Junction with Landmark	63.03069	-146.132	3264	Shrub birch ericaceous shrub
			Gap South Trail and survey route				
2006-183	Luzula parviflora	Juncaceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch
						2000	white spruce
2006-189	Lycopodium alpinum	Lycopodiaceae	Landmark Gap South ATV	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
			trail				
2006-194	Pedicularis labradorica	Scrophulariaceae	Landmark Gap South ATV	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
			trail				

Coll Num	Species	Family	Specific locality	Lat_dd		Elev (ft)	Habitat
2006-195	Pedicularis parviflora	Scrophulariaceae	Landmark Gap South ATV trail	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
2006-246	Phleum alpinum	Poaceae	Whistle Ridge	63.08047	-146.304	4372	Snowbed
2006-167	Poa alpina	Poaceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white spruce
2006-168	Poa arctica	Poaceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white spruce
2006-233	Poa arctica	Poaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field
2006-234	Poa paucispicula	Poaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field
2006-182	Polemonium acutiflorum	Polemoniaceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch white spruce
2006-207	Polygonum viviparum	Polygonaceae	Valley between Oscar Lake and Landmark Gap South	63.02252	-146.189	3261	Mosaic of forb graminoid meadows and open Salix pulchra shrublands
2006-188	Potentilla diversifolia	Rosaceae	Trail Landmark Gap South ATV trail	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
2006-203	Pyrola minor	Pyrolaceae	Landmark Gap South proposed ATV trail	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub birch-willow and ericaceous shrublands
2006-260	Ranunculus flammula var. filiformis	Ranunculaceae	Landmark Gap South Trail - proposed ATV route	63.02044	-146.173	3203	Dried pond in shrub birch mosaic
2006-241	Ranunculus pygmaeus	Ranunculaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, seep/rivulet in dioritic rock outcrop in talus field
2006-199	Rhodiola integrifolia	Crassulaceae	Landmark Gap South proposed ATV trail	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub birch-willow and ericaceous shrublands
2006-208	Rubus arcticus	Rosaceae	Valley between Oscar Lake and Landmark Gap South Trail	63.02252	-146.189	3261	Mosaic of forb graminoid meadows and open Salix pulchra shrublands
2006-249	Rumex acetosella	Polygonaceae	Osar Lake Trail, hill, ATV pullout	63.02891	-146.379	3371	Shrub birch tundra
2006-252	Rumex aquaticus L. var. fenestratus	Polygonaceae	Osar Lake Trail	63.03069	-146.375	3290	Swale-wet graminoid shrub birch-salix mosaic
2006-226	Salix polaris	Salicaceae	Whistle Ridge, toe slope	63.08903	-146.305	4089	Mesic toe slope/graminoid, dwarf shrub willow mosaic
2006-172	Salix pulchra	Salicaceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white spruce
2006-193	Salix reticulata	Salicaceae	Landmark Gap South ATV trail	63.04476	-146.16	3590	Shrub birch and willow tundra knoll
2006-255	Sanguisorba canadensis	Rosaceae	Osar Lake Trail	63.03069	-146.375	3290	Mesic forb-graminoid meadow
2006-225	Saxifraga nelsoniana	Saxifragaceae	Whistle Ridge, toe slope	63.08903	-146.305	4089	Mesic toe slope/graminoid, dwarf shrub willow mosaic
2006-243	Saxifraga nivalis	Saxifragaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field
2006-242	Saxifraga rivularis	Saxifragaceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, seep/rivulet in dioritic rock outcrop in talus field
2006-186	Senecio lugens	Asteraceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch white spruce

Coll Num	Species	Family	Specific locality	Lat_dd	Lon_dd	Elev (ft)	Habitat
2006-231	Sibbaldia procumbens	Rosaceae	Whistle Ridge, toe slope	63.08903	-146.305		Snowbed, in moist talus, dwarf shrub graminoid tundra
2006-181	Solidago multiradiata	Asteraceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce, birch shrublands
2006-205	Stellaria longipes	Caryophyllaceae	Valley between Oscar Lake and Landmark Gap South Trail	63.02252	-146.189	3261	Mosaic of forb graminoid meadows and open Salix pulchra shrublands
2006-178	Swertia perennis	Gentianaceae	Swede Lake	62.97845	-145.885	2923	Wet, muddy swale in open white spruce, birch shrublands
2006-238	Taraxacum phymatocarpum	Asteraceae	Whistle Ridge, side slope	63.08692	-146.301	4302	Side slope, dioritic rock outcrop in talus field
2006-253	Thalictrum sparsiflorum	Ranunculaceae	Osar Lake Trail	63.03069	-146.375	3290	Swale-wet graminoid shrub birch-salix mosaic
2006-169	Trisetum spicatum	Poaceae	Swede Lake trail sw route	62.98268	-145.865	3031	Shrub birch tundra, occasional white spruce
2006-204	Vahlodea atropurpurea	Poaceae	Landmark Gap South proposed ATV trail	63.04106	-146.18	3452	Pond margin on a broad knoll, shrub birch-willow and ericaceous shrublands
2006-187	Valeriana capitata	Valerianaceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch white spruce
2006-185	Veronica wormskjoldii	Scrophulariaceae	Swede Lake trail	62.97535	-145.888	2930	Wet graminoid-forb in tall-shrub birch white spruce
2006-192	Viola langsdorfii	Violaceae	Landmark Gap South ATV trail	63.04476	-146.16	3590	Shrub birch and willow tundra knoll

	Species Global Rankings					
G1:	Critically imperiled globally.					
G2:	Imperiled globally.					
G3:	Rare or uncommon globally.					
G4:	Apparently secure globally, but cause for long-term concern.					
G5:	Demonstrably secure globally.					
G?:	Unranked.					
G#G#:	Global rank of species uncertain, best described as a range between the two ranks.					
G#Q:	Taxonomically questionable.					
G#T#:	Global rank of species and global rank of the described variety or subspecies of the species.					
GNR:	UnrankedGlobal rank not yet assessed.					
GU:	Unrankable.					
GH:	Historical Occurrence.					
GX:	Extinct.					
HYB:	Hybrid.					

APPENDIX II – DEFINITIONS OF AKNHP RANKS

	Species State Rankings					
S1:	Critically imperiled in state.					
S2:	Imperiled in state.					
S3:	Rare or uncommon in state.					
S4:	Apparently secure in state, but with cause for long-term concern.					
S5:	Demonstrably secure in state.					

S#S#	State rank of species uncertain, best described as a range between the two ranks.
S?:	Unranked.
SU	Unrankable.
SA:	Accidental
SR:	Reported from the state, but not yet verified.
SRF:	Reported falsely.
SP:	Potential to occur in the state
SE:	ExoticSome, or all, populations are introduced within state.
HYP:	Hybrid.
SSYN:	Synonym.

Qualifier	Qualifiers:			
B:	Breeding status.			
N:	Non-breeding status.			
?:	Inexact.			
Q:	Questionable taxonomy.			