

sticky ragwort

Senecio viscosus L.

Synonyms: None

Other common name(s): None

Family: Asteraceae

Invasiveness Rank: Not Ranked - The invasiveness rank is calculated based on a species' ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems.

Figure 1 Sticky ragwort (*Senecio viscosus*). Photo by Peter Dziuk.

Description

Sticky ragwort is a strong scented annual from a taproot that grows to 20-40 cm in height. Leaves, stems, and flowerheads are densely coated with glandular hair that makes the plant's surface feel sticky. The lower leaves are petiolate, 2 to 7 cm long by 1.5 to 4 cm wide, obovate to oblong in shape and pinnately dissected to pinnatifid with wavy or round-toothed margins. The upper leaves are smaller and sessile, sometimes clasping to the stem. Flower heads are generally 3 to 8 in quantity but can number up to 30. Sticky ragwort has a row of sepal-like bracts around

the calyx with 2 to 5 bractlets (largest to 4 mm). Phyllaries are 5 to 7 mm in length and have black tips. Ray florets are generally more or less 13 in quantity. Corolla laminae are 1 to 2 mm long and usually coiled, rarely extending beyond the phyllaries. The cypsela is usually glabrous, but occasionally hairy (Barkley 2020, Blamey and Grey-Wilson 1989).

Figure 2. Sticky ragwort (*Senecio viscosus*) leaf and characteristic hairs. Photo by Peter Dziuk.

Similar Species: Other ragwort species (*Senecio* spp.) including the more common non-native common groundsel (*Senecio vulgaris*) have similar growth form and leaf shape, but do not have sticky glandular hairs on leaves or stem. Unlike sticky ragwort, common groundsel has flowers that are generally ray-less.

Ecological Impact

Impact on community composition, structure, and interactions: Sticky ragwort is unlikely to persist under competitive stress, and when present, infestations are generally low cover over an area. May compete and negatively impact composition of native species that grow in very poor soil and in waste places (Prach 1987).

Figure 3. Sticky ragwort (*Senecio viscosus*). Photo by Peter Dziuk.

Impact on ecosystem processes: Sticky ragwort is a species prominent during the initial stages of primary succession but does not appear to persist in areas past early establishment/colonization of 1 to 3 years if under competitive stress and will likely be reduced or replaced by perennial plants (Prach 1987). The establishment of sticky ragwort after disturbance may impact the natural succession of early-seral native species.

Biology and Invasive Potential

Reproductive potential: Sticky ragwort is an annual forb and does not exhibit vegetative reproduction. A highly plastic and prolific seed producer, sticky ragwort can produce over 4,000 seeds per individual plant under very low competitive stress, and as low as 53 seeds under high competitive stress (Palmlad 1968).

Role of disturbance in establishment:

Sticky ragwort depends on a high degree of disturbance and is most found growing in open arid, disturbed habitats like roadsides, fill/rock importation, and waste places (Crawford 1996) (Emig and Kadereit 1993). It is only found in anthropogenically-impacted habitats in both the native and non-native range (Emig and Kadereit 1993).

Potential for long-distance dispersal: The possession of a pappus attached to the fruiting body suggests capability of long-distance dispersal via wind or water (Eriksson 1992).

Potential to be spread by human activity: Seeds of ragwort species (*Senecio* spp.) can be transported by vehicles, animals, and clothing.

Germination requirement: Appears to germinate in the spring but has been known to also germinate in autumn with a winter annual habit (Emig and Kadereit 1993). Sticky ragwort sets poor seed in wet summers (Akeroyd 1982).

Growth requirements: Sticky ragwort grows best in substrate with moderate acidity, low to moderate level of humus content in mineral soils, aridity, and high in nitrogen content (Emig and Kadereit 1993). A high water table can negatively impact the growth of sticky ragwort, although some species within the ragworts (*Senecio* spp.) may exhibit an increase in growth under anaerobic soil conditions, namely common groundsel

(*S. vulgaris*), which is present in AK (Crawford 1996, AKEPIC, CPNWH 2026). Germination to flower in sticky ragwort takes 290 days, and 17 days from flower to fruit (Emig and Kadereit 1993).

Legal Listings

- Has not been declared noxious in AK, Canada or other states.

Distribution and Abundance

Native and current distribution: Sticky ragwort is native to temperate Asia and Europe (USDA, ARS 2017). It is found in disturbed habitats throughout its native and non-native range (Emig and Kadereit 1993). Sticky ragwort grows as a weed in 14 US states and in all Canadian Provinces apart from the Yukon Territory, Northwest Territories, Nunavut and Labrador (USDA, NRCS 2026, Brouillet et al. 2010+). Sticky ragwort has been reported in Ruby, Anchorage, Haines, and Skagway (AKEPIC, CPNWH 2026, Densmore et al. 2001). For the most up-to-date distribution information for Alaska, please visit the [AKEPIC Database](#).

Management

Sticky ragwort has been experimentally controlled with hot water treatments (Hansson and Ascard 2002). Chemical control has been shown effective in controlling infestations of other ragwort species, especially if applied during the early stages of growth (Dixon and Clay 2004). Mechanical control methods such as hand-pulling may be effective for small populations of sticky ragwort. Infestations should always be revisited after initial treatment to determine if retreatment is necessary.

References:

AKEPIC database. Alaska Exotic Plant Information Clearinghouse Database. 2026. Available: <http://accs.uaa.alaska.edu/>

Barkley, T.M. *Senecio viscosus*. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America north of Mexico [Online]. 25+ vols. New York and Oxford. Vol. 20. http://floranorthamerica.org/Senecio_viscosus. [Accessed January 9, 2026].

Blamey, M., Grey-Wilson, C. 1989. The Illustrated Flora of Britain and Northern Europe. Hodder-Stoughton. P. 418.

Brouillet et al. 2010+. *Senecio viscosus* in VASCAN, the Database of Vascular Plants of Canada. <http://data.canadensys.net/vascan/taxon/9214> (consulted on 2026-1-09) <http://nhm2.uio.no/paf/>

Chayka K., Minnesota Wildflowers, MinnesotaWildflowers.info

Crawford, R. (1966). The Control of Anaerobic Respiration as a Determining Factor in the Distribution of the Genus *Senecio*. *Journal of Ecology*, 54(2), 403-413. doi:10.2307/2257957

CPNWH. (2026). Consortium of Pacific Northwest Herbaria Specimen Database. University of Washington Herbarium, Seattle, WA. <http://www.pnwherbaria.org> [accessed January 9, 2026]

Densmore, R. V., McKee, P. C., and Roland, C., 2001, Exotic plants in Alaskan National Park units: USGS, Alaska Biological Science Center.: Anchorage, AK., v. Published Report-564195.

Dixon, F. L., & Clay, D. V. (2004). Effect of herbicides applied pre-and post-emergence on forestry weeds grown from seed. *Crop Protection*, 23(8), 713-721.

Dziuk P.M., 2012 Minnesota Wildflowers, MinnesotaWildflowers.info

Emig, W. and Kadereit, J. W. (1993), The comparative biology of the closely related *Senecio nebrodensis* and *S. viscosus*, a narrow endemic and a widespread ruderal. *Nordic Journal of Botany*, 13: 369–375. <https://doi.org/10.1111/j.1756-1051.1993.tb00064.x>

Eriksson, O. (1992). Evolution of seed dispersal and recruitment in clonal plants. *Oikos*, 63: 439-448.

Germplasm Resources Information Network. Beltsville (MD): United States Department of Agriculture, Agricultural Research Service. [Accessed November 8, 2017]. Available from: <http://www.ars-grin.gov/>.

Harris, J. G. (2022). Plant identification terminology: an illustrated glossary. 2nd ed. Spring Lake, Utah: Spring Lake Pub.

Hansson, D. and Ascard, J. (2002), Influence of developmental stage and time of assessment on hot water weed control. *Weed Research*, 42: 307–316. <https://doi.org/10.1046/j.1365-3180.2002.00290.x>

ITIS. 2026. Integrated Taxonomic Information System (ITIS) on-line database, www.itis.gov, CC0 <https://doi.org/10.5066/F7KH0KBK> [Accessed January 09, 2026]

Palmblad, I. (1968). Competition in Experimental Populations of Weeds with Emphasis on the Regulation of Population Size. *Ecology*, 49(1), 26-34. doi:10.2307/1933557

Prach, K. (1987) Succession of vegetation on dumps from strip coal mining, N. W. Bohemia, Czechoslovakia. *Folia geobot. phytotax.* 339–354. <https://doi.org/10.1007/BF02853231>

USDA, NRCS. 2026. The PLANTS Database (<http://plants.usda.gov>, 7 November 2017, 09 January 9, 2026). National Plant Data Team, Greensboro, NC 27401-4901 USA.

Motheral, S., & Orrock, J. (2010).