Weed Risk Assessment Form

Botanical name and common name
- Curly dock (*Rumex crispus* L.)
- Bitter dock (*R. obtusifolius* L.)
- Dooryard dock (*R. longifolius* DC.)

Assessors:
- Irina Lapina
 Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501
tel: (907) 257-2710; fax (907) 257-2789
- Matthew L. Carlson, Ph.D.
 Assistant Professor, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501
tel: (907) 257-2790; fax (907) 257-2789

Reviewers:
- Michael Shephard
 Vegetation Ecologist Forest Health Protection State & Private Forestry, 3301 C Street, Suite 202, Anchorage, AK 99503; tel: (907) 743-9454; fax 907 743-9479
- Jeff Heys
 Exotic Plant Management Program Coordinator, National Park Service, Alaska Region - Biological Resources Team, 240 W. 5th Ave, #114, Anchorage, AK 99501 tel: (907)644-3451, fax: 644-3809
- Jeff Conn, Ph.D.
 Weed Scientist, USDA Agricultural Research Service PO Box 757200 Fairbanks, Alaska 99775 tel: (907) 474-7652; fax (907) 474-6184
- Erin Uloth
 Forest Health Protection State and Private Forestry, 3301 C Street Suite 202 Anchorage, AK 99503 tel: (907) 743-9459, fax (907) 743-9479

Outcome score:

<table>
<thead>
<tr>
<th>A. Climatic Comparison</th>
<th>Total (Total Answered*)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>This species is present or may potentially establish in the following eco-geographic regions:</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1 South Coastal</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2 Interior-Boreal</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3 Arctic-Alpine</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Invasiveness Ranking</th>
<th>Total (Total Answered*)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ecological impact</td>
<td>40 (40)</td>
<td>10</td>
</tr>
<tr>
<td>2 Biological characteristic and dispersal ability</td>
<td>25 (25)</td>
<td>16</td>
</tr>
<tr>
<td>3 Ecological amplitude and distribution</td>
<td>25 (25)</td>
<td>14</td>
</tr>
<tr>
<td>4 Feasibility of control</td>
<td>10 (10)</td>
<td>8</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (100)</td>
<td>48</td>
</tr>
<tr>
<td>Relative maximum score†</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

*For questions answered “unknown” do not include point value for the question in parentheses for “Total Answered Points Possible.”
† Calculated as 48/100.

A. Climatic Comparison for Rumex crispus, curly dock:

1.1. Has this species ever been collected or documented in Alaska?
- Yes – continue to 1.2
- No – continue to 2.1

1.2. Which eco-geographic region has it been collected or documented (see inset map)?
Proceed to Section B. Invasiveness Ranking.
- Yes South Coastal
- Yes Interior-Boreal
- Yes Arctic-Alpine
A. CLIMATIC COMPARISON for *R. obtusifolius*, bitter dock:

<table>
<thead>
<tr>
<th>1.1. Has this species ever been collected or documented in Alaska?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

1.2. Which eco-geographic region has it been collected or documented (see inset map)? Proceed to Section B. Invasiveness Ranking.

<table>
<thead>
<tr>
<th>Yes</th>
<th>South Coastal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Interior-Boreal</td>
</tr>
<tr>
<td>Yes</td>
<td>Arctic-Alpine</td>
</tr>
</tbody>
</table>

Documentation: *Rumex crispus* and *R. longifolius* have been documented from all eco-geographic regions of Alaska. *Rumex obtusifolius* is known from the South Coastal eco-geographic region (Weeds of Alaska Database 2005, Hultén 1968, UAM 2004).

Sources of information:

2.1. Is there a 40% or higher similarity (based on CLIMEX climate matching) between climates any where the species currently occurs and

a. Juneau (South Coastal Region)?
 Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking
 No

b. Fairbanks (Interior-Boreal)?
 Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking
 No

c. Nome (Arctic-Alpine)?
 Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking
 No

 – If “No” is answered for all regions, reject species from consideration

Documentation: Using the CLIMEX matching program, the climatic similarity between Nome and other areas where the species is documented is fairly high. The range of the species includes Chirka-Kem’ and Arkhangelsk, Russia (Gubanov et al. 2003), which have a 77% and 76% climatic match with Nome respectively. The range of *R. obtusifolius* includes also Røros and Dombås, Norway (Lid and Lid 1994), which have 76% and 63% climatic matches with Nome and 55% and 52% climatic matches with Fairbanks, respectively. Thus establishment of *R. obtusifolius* in Interior-Boreal and Arctic-Alpine eco-geographic regions of Alaska may be possible.

Sources of information:
B. INVASIVENESS RANKING

I. ECOLOGICAL IMPACT

1.1. Impact on Natural Ecosystem Processes

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No perceivable impact on ecosystem processes</td>
<td>0</td>
</tr>
<tr>
<td>B. Influences ecosystem processes to a minor degree (e.g., has a perceivable</td>
<td>3</td>
</tr>
<tr>
<td>but mild influence on soil nutrient availability)</td>
<td></td>
</tr>
<tr>
<td>C. Significant alteration of ecosystem processes (e.g., increases sedimentation</td>
<td>7</td>
</tr>
<tr>
<td>rates along streams or coastlines, reduces open water that are important</td>
<td></td>
</tr>
<tr>
<td>to waterfowl)</td>
<td></td>
</tr>
<tr>
<td>D. Major, possibly irreversible, alteration or disruption of ecosystem</td>
<td>10</td>
</tr>
<tr>
<td>processes (e.g., the species alters geomorphology; hydrology; or affects</td>
<td></td>
</tr>
<tr>
<td>fire frequency, altering community composition; species fixes substantial</td>
<td></td>
</tr>
<tr>
<td>levels of nitrogen in the soil making soil unlikely to support certain</td>
<td></td>
</tr>
<tr>
<td>native plants or more likely to favor non-native species)</td>
<td></td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Identify ecosystem processes impacted:

Impact of exotic docks on ecosystem processes has not been documented. However, population densities of exotic docks in natural or seminatural habitats of Alaska are currently low enough that likely only minor ecosystem functions are affected (M.L. Carlson – pers. obs.).

Rational:

Sources of information:

Carlson, M.L., Assistant Professor, Alaska Natural Heritage Program, University of Alaska, Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.

1.2. Impact on Natural Community Structure

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No perceived impact; establishes in an existing layer without influencing</td>
<td>0</td>
</tr>
<tr>
<td>its structure</td>
<td></td>
</tr>
<tr>
<td>B. Influences structure in one layer (e.g., changes the density of one layer)</td>
<td>3</td>
</tr>
<tr>
<td>C. Significant impact in at least one layer (e.g., creation of a new layer</td>
<td>7</td>
</tr>
<tr>
<td>or elimination of an existing layer)</td>
<td></td>
</tr>
<tr>
<td>D. Major alteration of structure (e.g., covers canopy, eradicating most or</td>
<td>10</td>
</tr>
<tr>
<td>all layers below)</td>
<td></td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Identify type of impact or alteration:

Curly dock is capable of changing the density of the existing layer of vegetation (I. Lapina – pers. obs.).

Rational:

Sources of information:

Lapina, I., Botanist, Alaska Natural Heritage Program, University of Alaska, Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 – Pers. obs.

1.3. Impact on Natural Community Composition

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No perceived impact; causes no apparent change in native populations</td>
<td>0</td>
</tr>
<tr>
<td>B. Influences community composition (e.g., reduces the number of individuals</td>
<td>3</td>
</tr>
<tr>
<td>in one or more native species in the community)</td>
<td></td>
</tr>
<tr>
<td>C. Significantly alters community composition (e.g., produces a significant</td>
<td>7</td>
</tr>
<tr>
<td>reduction in the population size of one or more native species in the</td>
<td></td>
</tr>
<tr>
<td>community)</td>
<td></td>
</tr>
<tr>
<td>D. Causes major alteration in community composition (e.g., results in the</td>
<td>10</td>
</tr>
<tr>
<td>extirpation of</td>
<td></td>
</tr>
</tbody>
</table>
one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community

U. Unknown

Documentation:

Identify type of impact or alteration:

Curly and bitter docks likely reduce the number of individuals in one or more native species in the community (Cal-IPC 2003).

Rational:

Sources of information:

1.4. Impact on higher trophic levels (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades)

- **A.** Negligible perceived impact
- **B.** Minor alteration
- **C.** Moderate alteration (minor reduction in nesting/foraging sites, reduction in habitat connectivity, interference with native pollinators, injurious components such as spines, toxins)
- **D.** Severe alteration of higher trophic populations (extirpation or endangerment of an existing native species/population, or significant reduction in nesting or foraging sites)

Documentation:

Identify type of impact or alteration:

The seeds and vegetation of docks can be toxic to animals (Royer and Dickinson 1999). Bitter dock is avoided by rabbits, but it appears to be a favorite food of deer (Amphlett and Rea 1909, cited in Cavers and Harper 1964). Dock species are also an alternate host for number of viruses, fungi (Dal Bello and Carranza 1995), and nematodes (Edwards and Taylor 1963, Townshend and Davidson 1962). Hybrids between many species of the subgenus *Rumex* commonly occur. Although these hybrids are largely sterile, they can produce some viable seeds (Cavers and Harper 1964).

Rational:

Sources of information:

Score

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>0</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Moderate</td>
<td>7</td>
</tr>
<tr>
<td>Severe</td>
<td>10</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Possible 40

Total 10
B. Somewhat aggressive (reproduces only by seeds (11-1,000/m²))
C. Moderately aggressive (reproduces vegetatively and/or by a moderate amount of seed, <1,000/m²)
D. Highly aggressive reproduction (extensive vegetative spread and/or many seeded, >1,000/m²)
U. Unknown

2.2. Innate potential for long-distance dispersal (bird dispersal, sticks to animal hair, buoyant fruits, wind-dispersal)

A. Does not occur (no long-distance dispersal mechanisms)
B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)
C. Numerous opportunities for long-distance dispersal (species has adaptations such as pappus, hooked fruit-coats, etc.)
U. Unknown

Documentation:
Identify dispersal mechanisms:
Seeds can be dispersed a long distance by wind and water. The spines on the seeds of bitter dock facilitate distribution on animals’ fur and birds feathers (DiTomaso and Healy 2003, Cavers and Harper 1967).

2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contamination, etc.)

A. Does not occur
B. Low (human dispersal is infrequent or inefficient)
C. Moderate (human dispersal occurs)
D. High (there are numerous opportunities for dispersal to new areas)
U. Unknown

Sources of information:
Documentation:
Identify dispersal mechanisms:
Seeds can be easily dispersed by attaching to clothing, and fur of domestic animals. Seeds can also pass through the digestive system of cattle (Cavers and Harper 1964). Curly dock is a common contaminant of commercial seeds (Dorph-Petersen 1925, Singh 2001).
Rational:
Sources of information:

2.4. Allelopathic
A. No 0
B. Yes 2
U. Unknown

Documentation:
Describe effect on adjacent plants:
Allelopathy potential has not been recorded for dock species.
Rational:
Sources of information:

2.5. Competitive ability
A. Poor competitor for limiting factors 0
B. Moderately competitive for limiting factors 1
C. Highly competitive for limiting factors and/or nitrogen fixing ability 3
U. Unknown

Documentation:
Evidence of competitive ability:
Seedlings of docks have low competitive ability and cannot establish in vegetated areas. However, once established, these species became difficult weeds (Cavers and Harper 1964).
Rational:
The results of greenhouse experiments showed that bitter dock was more competitive than *Poa trivialis* and *Lolium perenne* (Gibson and Courtney 1977).
Sources of information:

2.6. Forms dense thickets, climbing or smothering growth habit, or otherwise taller than the surrounding vegetation
A. No 0
B. Forms dense thickets 1
C. Has climbing or smothering growth habit, or otherwise taller than the surrounding vegetation 2
U. Unknown

Score 0
Documentation:
Describe grow form:
Curly dock, bitter dock, and dooryard dock have not been observed forming dense thickets in Alaska (M.L. Carlson – pers. obs., I. Lapina – pers. obs.).

Rational:

Sources of information:
Carlson, M.L., Assistant Professor, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.
Lapina, I., Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 – Pers. obs.

2.7. Germination requirements

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requires open soil and disturbance to germinate</td>
<td>0</td>
</tr>
<tr>
<td>B. Can germinate in vegetated areas but in a narrow range or in special conditions</td>
<td>2</td>
</tr>
<tr>
<td>C. Can germinate in existing vegetation in a wide range of conditions</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 0</td>
</tr>
</tbody>
</table>

Documentation:
Describe germination requirements:
Dock species require open soil and removed vegetation for successful germination and establishment (Cavers and Harper 1964).

Rational:
Establishment from seeds was observed only in open habitat, such as disturbed shingle beaches or on freshly cultivated field (Cavers and Harper 1964).

Sources of information:

2.8. Other species in the genus invasive in Alaska or elsewhere

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No</td>
<td>0</td>
</tr>
<tr>
<td>B. Yes</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 3</td>
</tr>
</tbody>
</table>

Documentation:
Species:
Rumex acetosella L. is invasive in Connecticut and Iowa (USDA, NRCS 2006).

Sources of information:

2.9. Aquatic, wetland, or riparian species

<table>
<thead>
<tr>
<th>Option</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not invasive in wetland communities</td>
<td>0</td>
</tr>
<tr>
<td>B. Invasive in riparian communities</td>
<td>1</td>
</tr>
<tr>
<td>C. Invasive in wetland communities</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td>Score 3</td>
</tr>
</tbody>
</table>

Documentation:
Describe type of habitat:
Despite the fact that curly, bitter, and dooryard docks are common on disturbed ground, such as agricultural fields, roadsides, and waste grounds (DiTomaso and Healy 2003, Welsh 1974), these species may also invade riparian areas, including wet meadows, riverbanks, pond edges, and irrigation ditches (DiTomaso and Healy 2003, Royer and Dickinson 1999).

Rational:

Sources of information:
3. DISTRIBUTION

3.1. Is the species highly domesticated or a weed of agriculture

A. No
B. Is occasionally an agricultural pest
C. Has been grown deliberately, bred, or is known as a significant agricultural pest
U. Unknown

Score 2

Documentation:
Identify reason for selection, or evidence of weedy history:
Curly dock and bitter dock are serious agricultural weeds in many countries (Cavers and Harper 1964, Royer and Dickinson 1999). However this weed is not a big agricultural problem in Alaska (J. Conn – pers. com.).

Rational:

Sources of information:

3.2. Known level of ecological impact in natural areas

A. Not known to cause impact in any other natural area
B. Known to cause impacts in natural areas, but in dissimilar habitats and climate zones than exist in regions of Alaska
C. Known to cause low impact in natural areas in similar habitats and climate zones to those present in Alaska
D. Known to cause moderate impact in natural areas in similar habitat and climate zones
E. Known to cause high impact in natural areas in similar habitat and climate zones
U. Unknown

Score 1

Documentation:
Identify type of habitat and states or provinces where it occurs:
Curly dock is recorded invading California wetlands and causing low impact on plant communities and higher trophic levels (Cal-IPC 2003).

Sources of information:

3.3. Role of anthropogenic and natural disturbance in establishment

A. Requires anthropogenic disturbances to establish
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances
C. Can establish independent of any known natural or anthropogenic disturbances
U. Unknown

Score 1
3.4. Current global distribution

A. Occurs in one or two continents or regions (e.g., Mediterranean region) 0
B. Extends over three or more continents 3
C. Extends over three or more continents, including successful introductions in arctic or subarctic regions 5
U. Unknown

3.5. Extent of the species U.S. range and/or occurrence of formal state or provincial listing

A. 0-5% of the states 0
B. 6-20% of the states 2
C. 21-50%, and/or state listed as a problem weed (e.g., “Noxious,” or “Invasive”) in 1 state or Canadian province 4
D. Greater than 50%, and/or identified as “Noxious” in 2 or more states or Canadian provinces 5
U. Unknown

3.6. Current range in Alaska

A. Within the North Slope district 0
B. Within the Interior and South Slope districts 3
C. Across all districts 5
U. Unknown

Documentation:
Identify type of disturbance:
Curly, bitter, and dooryard dock generally colonize disturbed ground, however it may occasionally establish in intact wetland communities (Cavers and Harper 1964, DiTomaso and Healy 2003). In Alaska these species are always associated with roadside disturbance (M.L. Carlson – pers. obs.).
Rational:
Sources of information:
Carlson, M.L., Assistant Professor, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.

Describe distribution:
These species of docks are indigenous to Europe. They have been introduced into North and South Africa, North and South America, Asia, Australia and New Zealand. Curly dock and bitter dock are found in arctic habitats in Norway and northern Russia (Cavers and Harper 1964, Hultén 1968).
Rational:
Sources of information:

Identify states invaded:
Curly and bitter docks are distributed throughout most of the United States. Dooryard dock can be found in the northeast United States and in Alaska (USDA, NRCS 2006). Rumex crispus is declared noxious in Indiana, Iowa, Michigan and Minnesota (USDA, NRCS 2006). Rumex crispus is a Federal Noxious weed in Canada (Royer and Dickinson 1999).
Rational:
Sources of information:
4. FEASIBILITY OF CONTROL

4.1. Seed banks

A. Seeds remain viable in the soil for less than 3 years
 Score: 0

B. Seeds remain viable in the soil for between 3 and 5 years
 Score: 2

C. Seeds remain viable in the soil for 5 years and more
 Score: 3

U. Unknown
 Score: Unknown

Documentation:
Identify longevity of seed bank:
Seeds of docks can remain viable in the soil for over 38 years (Toole 1946) and even over 80 years (Darlington and Steinbauer 1961).
Rational:

Sources of information:

4.2. Vegetative regeneration

A. No resprouting following removal of aboveground growth
 Score: 0

B. Resprouting from ground-level meristems
 Score: 1

C. Resprouting from extensive underground system
 Score: 2

D. Any plant part is a viable propagule
 Score: 3

U. Unknown
 Score: Unknown

Documentation:
Describe vegetative response:
Adventitious buds on the roots and underground stems produce new shoots after damage. New shoots can produce autumn flowers very quickly (Monaco and Cumbo 1972).
Rational:

Sources of information:

4.3. Level of effort required

A. Management is not required (e.g., species does not persist without repeated anthropogenic disturbance)
 Score: 0

B. Management is relatively easy and inexpensive; requires a minor investment in human and financial resources
 Score: 2

C. Management requires a major short-term investment of human and financial resources, or a moderate long-term investment
 Score: 3

D. Management requires a major, long-term investment of human and financial resources
 Score: 4

U. Unknown
 Score: Unknown

Documentation:
Identify types of control methods and time-term required:
Hand-cutting plants below the ground or herbicide application can control infestations of exotic docks. Monitoring after treatment is required due to long-lived seed banks
and the ability to regenerate from root fragments (Cavers and Harper 1964, DiTomaso and Healy 2003).

Rational:

Sources of information:

<table>
<thead>
<tr>
<th>Total Possible</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

Total for 4 sections Possible | 100 |
Total for 4 sections | 48 |

References:

Carlson, M. L., Assistant Professor, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.
Lapina, I., Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 – Pers. obs.