

United States Department of Agriculture

Forest Service Alaska Region R10-TP-143 August 2008

Invasiveness Ranking System for Non-Native Plants of Alaska

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Cover Photos: (large photo) White sweetclover growing in a burned area near Fairbanks. (Small photos left to right) Narrowleaf hawksbeard, Hempnettle, and Orange hawkweed.

Invasiveness Ranking System for Non-Native Plants of Alaska

Matthew L. Carlson¹, Irina V. Lapina¹, Michael Shephard², Jeffery S. Conn³, Roseann Densmore⁴, Page Spencer⁵, Jeff Heys⁵, Julie Riley⁶, Jamie Nielsen⁶

¹Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501.

²USDA, Forest Health Protection, State & Private Forestry, 3301 C Street, Suite 202, Anchorage, Alaska 99503.

³USDA, Agricultural Research Service, PO Box 757200, Fairbanks, Alaska 99775.

⁴US Geological Survey, Alaska Biological Science Center, 1101 East Tudor Road, Anchorage, Alaska 99503.

⁵National Park Service, 240 W. 5th Avenue, #114, Anchorage, Alaska 99501.

⁶University of Alaska Fairbanks, Cooperative Extension Service, 2221 E. Northern Lights Blvd.. #118, Anchorage, Alaska 99508-4143.

Abstract

Alaska is beginning to experience increased non-native plant establishment, spread, and devaluation of its lands. In response to this increasing threat, we developed a ranking system to evaluate the potential invasiveness and impacts of non-native plants to natural areas in Alaska. This ranking system is designed to be a robust, transparent, and repeatable procedure to aid land managers and the broader public in identifying problematic non-native plants and for prioritizing control efforts. Numerous ranking systems exist, but none are suited to predicting negative impacts to natural systems in Alaska. We created a ranking system that incorporated components from other systems, in which species are ranked by a series of questions in four broad categories: ecosystem impacts, biological attributes, distribution, and control measures. In addition, we include a climate screening procedure to evaluate the potential for establishment in three ecogeographic regions of Alaska. As additional information becomes available, the ranks may change over time. Here we present background and justification for this system and include the ranks of 113 non-native species that are in the state or are likely to be introduced in the future.

Key words: Alaska, invasive plants, invasiveness ranking, natural lands conservation, weed risk assessment

Introduction

The control of invasive, non-native plants is of increasing concern in ecosystem management across the world (Pimentel 2002). The invasion of non-natives into intact ecosystems is recognized by scientists and land managers as one of the primary causes of biodiversity loss, ranking second only to outright habitat loss (Pimm and Gilpin 1989, U.S. Congress 1993, Myers 1997, Stein et al. 2000). More than just the native biodiversity is threatened, however; the introduction of invasive non-natives threatens community structure and composition and ecosystem processes (Cronk and Fuller 1995, Walker and Smith 1997, Cox 1999). Not all non-native species are equally harmful. Most non-native species that are introduced are poorly adapted to their new environments and are unable to establish viable populations. Of those that can establish, only a small subset proceed to invade native ecosystems. Additionally, most introductions involve relatively few individuals and small populations of any species are much more susceptible to extirpation (see Taylor and Hastings 2005). Establishment is highly dependent on ecological and climatic conditions. As resources for managing invasive plants are limited, the need to evaluate and rank non-native species is a primary concern before expensive management is attempted, so that the most threatening species may be addressed first (Wainger and King 2001).

Focusing management efforts on those species that have the capacity for rapid expansion in natural settings yet are currently at low population sizes should be of highest concern (D'Antonio and Meyerson 2002). Eradication effort rises exponentially with infestation size, and elimination of non-natives is most likely to be successful in infestations smaller than 100 acres (Prather, et al. 2005). In particular, we recognize the need to evaluate the invasiveness of non-native plants in the context of their current and possible ecoregional distributions. This need to identify which species have the greatest potential for establishment and spread was highlighted as a necessary action in a strategic plan for noxious and invasive plant management in Alaska (Hébert 2001).

Non-Native Plants in Alaska

Alaska, the Yukon Territory, Northwest Territories, Nunavut, and northern British Columbia have remained relatively unaffected by the negative consequences of non-native plant establishment that has plagued most regions of the world. However, Alaska is at the cusp of facing serious ecological problems associated with introduced plants in both natural and human-altered landscapes (Carlson and Shephard 2007). While most non-native plant populations in Alaska are small and largely restricted to anthropogenically disturbed areas, a number of introduced plant species have begun to threaten intact biological communities and impact ecological conditions (Carlson and Shephard 2007, Conn et al. in press).

A total of 157 non-native plant taxa have naturalized (i.e., form self-perpetuating populations) in Alaska; an additional 136 non-native taxa are apparently ephemeral (Carlson and Shephard 2007). The naturalized taxa represent roughly 14 percent of the total flora (Carlson and Shephard in press and see Hultén 1968), with new non-native species recorded every year. This is not a particularly high percentage relative to most other states, for example 18 percent of California's flora (Hickman 1993), approximately 20 percent of Oregon's flora (Kaye pers. comm.), and 49 percent of Hawaii's flora, (Randall and Hoshovsky 2000) are non-native. Additionally, most non-native plants in Alaska are restricted to the small area of anthropogenic disturbance. Alaska has a population density of only 0.39 people per square kilometer, relative to the national average of 29 per square kilometer. The majority of infestations occur along the road network, despite the low densities of one kilometer of road per 68 square kilometers of land; the national average is one to 1.6 and the state with the second lowest density of roads is Nevada with 1 to 4 kilometers of road per square kilometer of land (State of Alaska 2004). Additionally, introductions and infestations of non-native plants on agricultural lands are not as serious a concern as in other regions since only 0.009 percent of Alaska's land is devoted to agriculture.

Despite a lower overall presence of non-native plants and reduced opportunities for introduction by humans in Alaska, a few species are showing alarming signs of spreading into natural areas. In particular, *Melilotus alba*, white

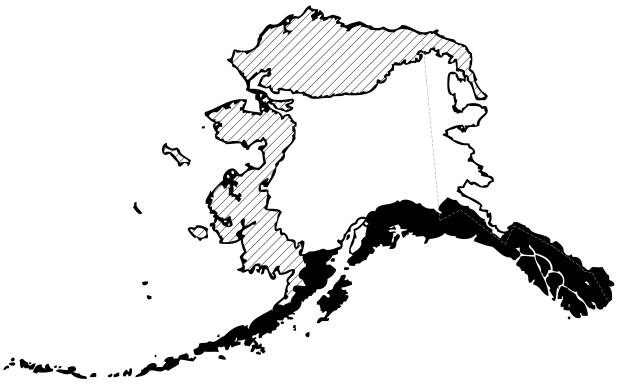
sweetclover, has become a dominant plant in previously sparsely vegetated river bars in interior, south-central, and southeast Alaska. While the long-term effects of this species on large glacial river flood plains is not known, it is apparent that rare native plants, habitat for fish and wildlife, and the natural hydrology are threatened. Other species such as *Bromus tectorum, Caragana arborescens, Centauria bierbesteinii, Hieracium aurantiacum, Impatiens glandulifera, Phalaris arundinacea, Polygonum xbohemicum,* and *Polygonum sachalinense* are particularly threatening, known to cause ecological and economic damage in other states, and are increasing in abundance (Shephard 2004, Carlson and Lapina 2004, Lapina and Carlson 2004, Brown 2005). The increasing impact of non-native plants is cause for concern since Alaska is the most ecologically pristine state in the U.S. and the state's economy is partially dependent on natural resources that could be degraded, such as forests, fisheries, and wildlife.

The majority of non-native plants, however, do not seem to be causing significant damage in natural ecosystems. This is a commonly observed pattern (Williamson 1996). Many of these plants, such as *Chenopodium album*, *Poa annua*, and *Stellaria media*, have been present in the state for decades or centuries, are widespread, and would be difficult to eradicate. These species generally occur at low densities on only the most anthropogenically disturbed sites, and have few known or anticipated negative impacts.

The most problematic groups of non-native plant species are those with poorly understood and intermediate impacts and those newly arriving to the state. Because it is difficult to anticipate these species' effects on Alaskan ecosystems there is often confusion among land managers as to which species require control. Additionally, some species that are not particularly problematic in other states are strikingly invasive in Alaska, such as *Caragana arborescens, Elymus sibiricus, Melilotus alba, Prunus padus,* and *Vicia cracca.* Unfortunately, few data are available for ecological and community effects of most species in Alaska or similar ecosystems elsewhere. The impacts of moderately invasive species and those not present in Alaska are often not well understood yet could still affect natural systems and interfere with land management goals. Building the capacity to rank those species not currently present in the state and those in the state but fall between the two extremes of invasiveness is important and largely prompted our efforts to develop a ranking system for Alaska.

Invasiveness ranking background

A wide variety of invasiveness assessment models have been produced in the last decade. These assessment models generally share a series of questions evaluating spatial characteristics, known or potential impacts on resources of value (e.g., biodiversity, agriculture, water resources, or aesthetics), biological characteristics, and ease of control. Scores are given for each question and totaled to produce a final evaluation. Within this basic structure a variety of approaches have been taken, from those including the history and activity of species in specific sites (Hiebert and Stubbendieck 1993) to those explicitly including positive and negative economic impacts (Robertson et al. 2003). The value of the individual ranking systems is clearly related to the particular aims and context of researchers, and it is unreasonable to expect a single system to be effective in all contexts. For reviews of ranking systems see Groves et al. (2001) and Williams and Newfield (2002).


It should be noted that despite a large interest in attempting to predict invasiveness from plant traits, the reasons for the success of some introduced species and failure of others have remained largely mysterious (Williamson and Fitter 1996). Further, the success of invasions appears to be very context specific (D'Antonio 1993) and one cannot predict future conditions from the initial spread (Mack 1996). Despite this, there are a number of traits that are correlated with the probability of invasion (cf. Darwin 1859, Baker 1974, Forcella and Wood 1984, Rejmanek and Richardson 1996, Hodkinson and Thompson 1997, Pysek 1997, Rejmanek 1999, Rejmanek 2001), with the behavior of the species in other regions as one of the most valuable characteristics.

Overview and aims

The authors, representing numerous state and federal agencies met under the recognition for the need to prioritize non-native species management in the state. Our aim was to create a transparent, repeatable, and robust ranking system in which we could evaluate both the likelihood of a non-native species establishing in Alaska's natural systems and its consequences to the ecology and community. We recognized six components as necessary for the ranking system.

- 1. The ranking system must have a screening procedure to evaluate the probability of species establishment in three ecogeographic regions of the state based on its worldwide range. The ecogeographic regions are Pacific maritime, Interior-boreal, and Arctic-alpine (based on Nowacki et al. 2001, figure 1).
- 2. The evaluation of consequences must be focused on impacts to the ecological functioning and community of natural systems that dominate the state (rather than to evaluate impacts to agriculture, anthropogenically disturbed landscapes, or economic sectors).
- 3. The system must maintain the flexibility to evaluate both species present in the state and those that may be transported to the state in the future.
- 4. Species should be evaluated relative to one another rather than assigning species to particular classes of invasiveness.
- 5. The ranking system should be based on clear documentation for all questions, but also allow for species to be evaluated when some information is lacking.
- 6. The outcomes of the system must be in accordance with current knowledge and understanding (Hiebert 1997, Pheloung et al. 1999, Williams and Newfield 2002).

Figure 1. Ecogeographic regions of Alaska (Nowacki et al. 2001).

Black represents Pacific maritime, white represents Interior-boreal, and hatched represents the Arctic-alpine ecoregions. The dashed gray line represents the Alaska-Canada border.

Our goals were to inform land managers of the relative dangers of each species and to create a tool to be used in conjunction with site and distributional information to prioritize control actions. For examples, see Treatment Prioritization Tool (AKEPIC 2005) and Invasive Plant Treatment Guide: National Wildlife Refuges in Alaska (ENSR 2006). We understand that each land management agency has its own priorities and resources, and the ranking system must be designed to be flexible in its incorporation in decision making plans.

Methods

We reviewed existing non-native plant invasiveness ranking systems to identify those components that would be included as attributes in the design of a system for natural lands in Alaska (see Williams et al. 2003). We evaluated four systems: "Ranking Invasive Exotic Plant Species in Virginia," developed by Virginia Department of Conservation and Recreation (Heffernan et al. 2001); "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands," developed by California Exotic Pest Plant Council (Warner et al. 2003); "Weed Risk Assessment System," prepared by the Australian Quarantine and Inspection Service (Pheloung et al. 1999); and the "Southwest Exotic Species Ranking System" (Hiebert and Stubbendieck 1993). After reviewing available literature, species biographies were produced for 12 species to be used as a standard reference for the four systems, thereby reducing variation among reviewers due to alternative information. The species were chosen to encompass a broad range in their known levels of impact to natural ecosystems in Alaska and other regions, the amount of literature available for the species, and their distribution and abundance in the state (Table 1). This exercise was designed to highlight strengths and weaknesses of each of the systems and the components that were critical for Alaska.

Species	Amount of Information Available in the Literature	Perceived Invasiveness to Alaskan Wildlands	Alaskan Distribution
Bromus tectorum	well documented	highly invasive	widespread, low abundance
Chenopodium album	well documented	weakly invasive	widespread, high abundance
Crepis tectorum	moderately-well documented	moderately invasive	widespread, low abundance
Descurainia sophia	moderately-well documented	weakly invasive	widespread, low abundance
Hieracium aurantiacum	well documented	highly invasive	localized, variable abundance
Leucanthemum vulgare	moderately-well documented	moderately invasive	widespread, variable abundance
Linaria vulgaris	moderately-well documented	moderately-highly invasive	widespread, variable abundance
Matricaria discoidea	well documented	weakly invasive	widespread, low abundance
Melilotus alba	moderately-well documented	highly invasive	widespread, high abundance
Polygonum cuspidatum	well documented	highly invasive	localized, high abundance
Sorbus aucuparia	poorly documented	moderately invasive	localized, variable abundance
Vicia cracca	moderately-well documented	moderately-highly invasive	localized, high abundance

Table 1. Species and general attributes used in evaluation of invasive species ranking
systems

The scoring from each system is very different, including both numerical and categorical ranks of different scales. To compare effective scales and variation within and among the systems and to gauge how robust the five systems, we standardized invasiveness scores by dividing scores of each species by that of *Polygonum cuspidatum*, a species perceived to be one of the most invasive to natural habitats in Alaska by the authors¹. A discrete numerical system was created for nominal categorical systems (e.g., "not invasive" = 0, "low invasiveness" = 1, "medium invasiveness" = 2, etc.). Additionally we graphically compared levels of variation among the scores and assessors for three species commonly believed to represent different levels of invasiveness: high (*Polygonum cuspidatum*), intermediate (*Sorbus aucuparia*), and low (*Matricaria discoidea*). To allow comparisons among the species we standardized scores relative to the maximum score possible for each system.

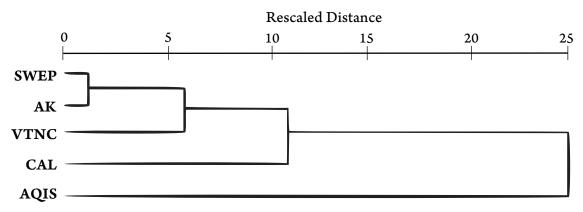
Two of us (M.L. Carlson and I.V. Lapina) produced a draft ranking system that was evaluated in a similar manner to the four existing ones. Scores were given in response to a series of questions and used to calculate subcategory (i.e., ecology, biology, distribution, and control) and final scores. The results section discusses the format and justifications for the questions. We then modified the draft Alaska system with input from all authors. Additionally, we included a climate screening procedure that is described in the results section.

Similarities among the five systems in the ranks of the 12 test species were compared using hierarchical cluster analysis in SPSS Base 9.0. All invasiveness scores were standardized to the potential maximum for each system and squared Euclidean distances were used to generate the distance matrix for the cluster analysis.

To determine which sections (ecology, biology, distribution, and control) in the Alaska system had greater explanatory power, we explored the relationship of each of four section scores to overall invasiveness. We produced scores for all sections and overall invasiveness based on a consensus of the authors for all species. Spearman rank correlation coefficients were produced for all sections and overall invasiveness. Additionally, we removed the sectional component to invasiveness for each section comparison to avoid autocorrelation for this analysis (e.g., overall invasiveness–ecology score was used in comparing to the ecology score and overall invasiveness–biology score was used in comparing to the biology score). R² values were calculated for each sectional score relative to the corrected invasiveness. Not all questions in the sectional scores were answered and these scores were removed from the analysis.

Following the construction of the invasiveness ranking system for Alaska, we proceeded to rank 95 species present in Alaska and 18 potential future invaders. The species were chosen to encompass all perceived degrees of invasiveness and distributions in Alaska, including the species considered to be the most invasive already present in the state and the most threatening potential future invaders (the ranks are presented in Appendix B). Taxa that are believed to have been absent from Alaska prior to European contact are considered "non-native." We rank a few species that may have been present in the region for centuries in small populations (e.g., *Phalaris arundinacea* at hot springs sites in interior Alaska), but have recently expanded their ranges and abundances dramatically and are now most likely combinations of Eurasian and North American genotypes. We included notes on nativity for all species with questionable origins.

Short species biographies, initial scores, and documentation were produced based on literature reviews. For very similar congeneric species (e.g., *Rumex crispus*, *R. longifolius*, and *R. obtusifolius*), a single score was given to the group of species. Scores and documentation were then added or altered by the coauthors. Upon completion of the 113 scores the committee reevaluated each species relative to the others to ensure consistency in scoring, identify potential mistakes, and include new observations or documentation.


¹ Polygonum xbohemicum and P. sachalinense are more widespread in southeastern Alaska and appear to be more robust and ecologically threatening, but their documentation in the literature is weaker than P. cuspidatum. We expect that much of the literature has not distinguished among species and lumped the three taxa under P. cuspidatum (see Zika and Jacobson, 2003).

Results

The four existing systems, Invasive Exotic Plant Species in Virginia (Heffernan et al. 2001), California Exotic Pest Plant Council (Warner et al. 2003), the Australian AQIS Weed Risk Assessment System (Pheloung et al. 1999), and Southwest Exotic Species Ranking System (Hiebert and Stubbendieck 1993) all evaluate taxa in roughly similar categories of ecosystem alteration, community alteration, biological characteristics, and ease of control. The Virginia, California, and Southwest systems all require site specific data and are difficult to evaluate for broader regions. In addition to relying on biogeographical information, the California system requires population trend data that are not available for Alaska. For all systems, many characters that are traditionally associated with invasiveness, such as invasive elsewhere and breadth of native distribution are given little weight relative to less relevant characters. We recognized that none of the systems appear to handle unknown or ambiguous information well. For most systems missing information resulted in lower scores. Poorly known species should not be considered a *priori* to be less invasive. The scoring for the Australian and the California systems is not intuitive, requiring the use of look-up tables and scoring matrices. The outputs of most systems are categorical (i.e., high, medium, low invasiveness), resulting in an overly simplified rank and loss of potential information. No system used climatic or known habitat information to screen species from consideration; however, the Australian system does score species on suitability to Australian climates (2 points out of approximately 50 total points).

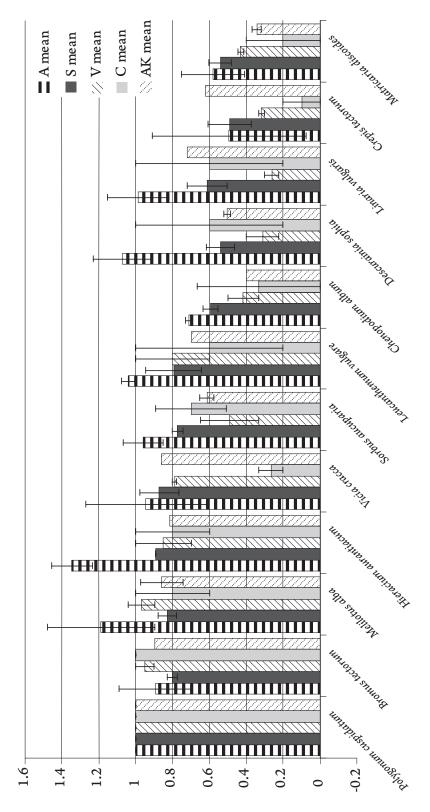
Overall, the existing systems and newly derived Alaska system were positively correlated in the relative ranks of the 12 test species (not shown). Despite the Southwest system's reliance on site data, its species ranks were very similar to those of the Alaska system (figure 2). The Virginia and California systems were more weakly clustered with the Alaska and Southwest systems. The most distantly related system to the others was Australian. The poor relationship among the Australian system scores and those of the other systems from a greater emphasis on agricultural impacts and specific ecological concerns (e.g., "causes a fire hazard") of the Australian system.

Figure 2. Dendrogram based on hierarchical cluster analysis representing similarities among five invasiveness ranking systems 12 non-native species ranks

Systems that ranked the same species most similarly are more closely joined (lower rescaled distance value). The cluster analysis used squared Euclidean distances in the distance matrix. SWEP = Southwest Exotic Species Ranking System, AK = Alaska Invasiveness Ranking System, VTNC = Invasive Exotic Plant Species in Virginia, CAL = California Exotic Pest Plant Council, AQIS = Australia Weed Risk Assessment System.

While the relative ranks of species among all of the systems were generally similar, there were numerous cases in which one species was ranked substantially differently between ranking systems (figure 3). For example, *Vicia cracca* was ranked very low in the California Exotic Plants system relative to the other systems. The Australian system tended to rank agricultural pest species, such as *Descurania sophia* and *Linaria vulgaris*, substantially higher than all the other systems.

Some of the systems resulted in much greater agreement in scores among assessors. The range in ranks among assessors was lowest for the Alaska system (ca. 0.05 for the three species in figure 4), relatively low in the Australian and Southwest systems (ca. 0.10 for these species), and high in the Virginia and California systems (as high as 0.80). In general, the broadly categorical systems (Virginia, California) resulted in greater variability among assessors (figure 4). The Australian system showed high consistency among assessors, but little effective range at distinguishing highly invasive species in natural ecosystems such as *Polygonum cuspidatum* from non-invasive species such as *Matricaria discoidea* (figure 4).


Outline of the Alaska Invasiveness Ranking System

The Alaska Invasiveness Ranking system is largely a hybrid of the four existing systems that we evaluated with some alterations and additions. In particular, we borrow many features from the Southwest Exotic Species Ranking System. Additionally, we include a climate screening procedure to eliminate species from consideration that are unlikely to establish in one of three bioclimatic zones in Alaska, numerical ranks, and a system for handling missing data. If a species passes the climate screening portion it is then evaluated in four subcategories: ecological impacts, biological characteristics and dispersal ability, distribution, and feasibility of control. Two authors (M.L. Carlson and I.V. Lapina) produced initial ranks and the remaining authors met as a committee to reach a consensus on ranks (nominal group techniques, see Hiebert 1997).

Climate screening:

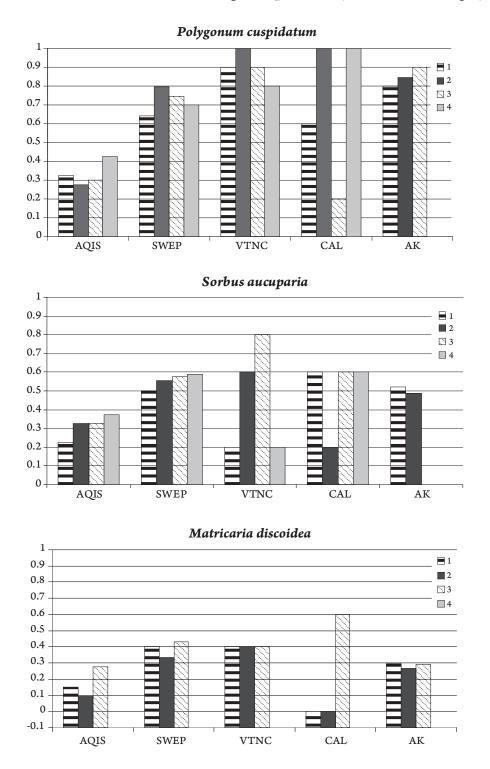

The first step in the climatic screening is to determine whether the species in question has been collected in the Pacific maritime, Interior-boreal, or Arctic-alpine ecogeographic regions of Alaska (see Unified Ecoregions: Nowacki et al. 2002). If the species has been collected in any of the three ecogeographic regions we record the general locations and sources of the information. If a species currently occurs in one or two of the three ecogeographic regions, we then run the climate matching program to determine if it is likely to spread to the other ecogeographic regions. We proceed with the ranking for species that have been collected in at least one ecogeographic region. If a species has not been collected in Alaska, but appears to have the potential to become established we research its current distribution, using floras and on-line databases, for high-latitude locations in Canada, Europe, Asia, South America, and Oceania. We then run the CLIMEX climate matching program to obtain percent similarity among weather stations where the species being evaluated is known to occur relative to three representative weather stations (Juneau, Fairbanks, and Nome) for each Alaskan ecogeographic region. We included the Anchorage weather station as an additional and more temperate Interior-boreal ecogeographic regional weather station for a number of species. Many introduced plants can invade greater environmental and climatic space than they do in their native range (Kriticos and Randall 2001, and see Lawton 1988), therefore we used a liberal cut-off for site similarity of 40 percent for accepting species (i.e., we ranked more species for Alaska than would predictably persist based on their native ranges).

Figure 3. Mean scores of species relative to *Polygonum cuspidatum* for five different ranking systems

(A = Australia AQIS Weed Risk Assessment System, S = Southwest Exotic Species Ranking System, V = Invasive Exotic Plant Species in Virginia, C = California Exotic Pest Plant Council, AK = Alaska Invasiveness Ranking System). Species were ranked independently by two to five assessors. Standard errors are also included.

Figure 4. Ranks for *Polygonum cuspidatum*, *Sorbus aucuparia*, and *Matricaria discoidea* by four assessors (1-4), working independently for five ranking systems.

Scores were standardized by dividing by the maximum score possible for each system to facilitate comparisons. AQIS = Australia Weed Risk Assessment System, SWEP = Southwest Exotic Species Ranking System, VTNC = Invasive Exotic Plant Species in Virginia, CAL = California Exotic Pest Plant Council, AK = Alaska Invasiveness Ranking System.

The CLIMEX program compares long-term meteorological databases and produces a level of similarity given by a "match index." The match index is the product of four equally weighted components: mean monthly absolute maximum and minimum temperature indices, annual rainfall index, and monthly rainfall pattern index (see Sutherst et al. 1999 for more details). The 40 percent match index was determined to be an acceptable cut-off based on distributional patterns of non-native species known in Alaska and those the committee considered very unlikely to persist. For example, the invasive Polygonum xbohemicum is known from Juneau as well as Bergen, Norway (Lid and Lid 1994), which has 73 percent climate similarity with Juneau. To determine the lower limit of similarity we compared the climates of areas with species very unlikely to establish in Alaska. For example, Acacia paradoxa is a noxious species restricted to southern California, and similarities of its introduced range and reference sites in Alaska range from 9 to 20 percent. Digitaria velutina is an annual grass from Africa and temperate Asia, now introduced in Texas and considered a quarantine weed in California (USDA 2002); it is extremely unlikely to establish in Alaska, and climate similarities from known locations of this species to Alaskan reference sites range from 9 percent to 26 percent. For reference, the 40 percent climate similarity encompasses the extreme northeastern U.S. and the coastal Pacific Northwest with the Pacific maritime ecogeographic region. The Interior-boreal ecogeographic region of Alaska is linked to a number of stations in Montana, Wyoming, and North Dakota. The Arctic-alpine ecoregion shares 40 percent similarity or higher with a few stations in Montana, at Mount Washington in New Hampshire, and a number of northern Siberian stations.

If a species was either collected in one or more ecogeographic region or the climate matching exceeded 40 percent, we proceed with the ranking. A species receives the same statewide rank regardless of whether it is determined to establish in one, two, or all three of the ecogeographic regions, because the information used for ranking was rarely restricted in applicability to particular Alaska regions.

Invasiveness Ranking:

Following the climatic screening, species are then ranked based on scores for 21 questions grouped into four sections: ecological impacts (40 points), biological characteristics and dispersal ability (25 points), distribution (25 points), and feasibility of control (10 points). For each question a numeric score is given based on explicit guidelines. The score values for each question and section were determined based on documented importance in the literature and the authors' knowledge, opinions, and goals. Questions range from two to 10 points in value, and each question has a documentation section that presents the rationale and information sources for the question (see Appendix C).

The effect of non-native species on ecological impacts in natural systems in Alaska was the primary concern of the authors. Predicting impacts is more difficult than predicting the ability to establish and spread (Rejmanek 2001); however, preserving natural ecological and community condition is a core goal of most land management agencies in Alaska. Therefore we emphasized the ecological and community impacts with 40 percent of the total possible score. See Williamson (2001) for a discussion of predicting invasive species impacts.

Ecological Impact:

Four questions regarding the potential severity of ecological impacts were weighted equally with 10 points and are similar to questions used in the Virginia (Heffernan et al. 2001) and California ranking systems (Warner et al. 2003). The four questions and relative values of responses are presented in table 2.

Biological Characteristics and Dispersal Ability:

The Biological Characteristics section has nine questions worth two or three points each. The questions focus on characteristics associated with the potential ability of a species to spread, establish, and flourish in natural areas or otherwise associated with invasiveness. Table 3 shows this subsection of the ranking system with justifications for questions.

Distribution:

One factor widely recognized for predicting which species may become invasive is a history of invasion in other regions and the distribution of those invasions (Forcella and Wood 1984, Rejmanek 1995, 1996, 1999, 2001). This section is composed of five questions valued between four and six points. This subsection of the ranking system with justifications for questions is presented in table 4.

Feasibility of Control:

The smallest section of this ranking system, with three questions for 10 points total, is devoted to control feasibility. Species that are difficult to control pose a greater threat than those that can be easily eradicated, therefore considered more invasive. We do not weight this section heavily (10 percent of the total rank), however, we consider preventative measures and early eradication to be more urgent in Alaska than large-scale control efforts. The questions and their justifications are shown in table 5.

Overall Score:

Scores and the number of points possible are tabulated for each section. If insufficient information is present to respond to a question it is scored as "unknown" and the maximum potential points for that question are removed to obtain "points possible." The final invasiveness score is given as the relative maximum score, which is equal to the sum of scores from each section divided by the total possible. This has the advantage of evaluating species on information known rather than artificially depressing the scores of poorly understood species. To illustrate, a hypothetical species that receives maximum scores for all questions except that it has unknown ecosystem impacts (i.e., Question 1.1 with 10 possible points = "unknown") would score 90 points out of 90 possible, and its Relative Maximum Score would be 100. The lowest (least invasive) score possible is zero.

Table 2. Excerpt of the ecological section of the Alaska invasiveness ranking system

1. Ecological Impacts

1.1. Impact on Natural Ecosystem Processes.	
A. No perceivable impact on ecosystem processes.	0
B. Has the potential to influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability).	3
C. Has the potential to cause significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl).	7
D. Likely to cause major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology; hydrology; or affects fire frequency, altering community composition; species fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species.).	10
U. Unknown	

1.2. Ir	npact on Natural Community Structure.	
A.	No perceived impact; establishes in an existing layer without influencing its structure.	0
B.	Has the potential to influences structure in one layer (e.g., changes the density of one layer).	3
C.	Has the potential to significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer).	7
D.	Likely to cause major alteration of structure (e.g., covers canopy, eradicating most or all layers below).	10
U.	Unknown	
1.3. Iı	npact on Natural Community Composition.	
A.	No perceived impact; causes no apparent change in native populations.	0
В.	Has the potential to influences community composition (e.g., reduces the number of individuals in one or more native species in the community).	3
C.	Has the potential to significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community).	7
D.	Likely to cause major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community).	10
U.	Unknown	
	npact on higher trophic levels (cumulative impact of this species on the animals, fungi, microbes, and other orga community it invades).	nisms
A.	Negligible perceived impact.	0
B.	Has the potential to cause minor alteration.	3
C.	Has the potential to cause moderate alteration (minor reduction in nesting/foraging sites, reduction in habitat connectivity, interference with native pollinators, injurious components such as spines, toxins).	7
D.	Likely to cause severe alteration of higher trophic populations (extirpation or endangerment of an existing	10

D. Likely to cause severe alteration of higher trophic populations (extirpation or endangerment of an existing 10 native species/population, or significant reduction in nesting or foraging sites).

U. Unknown

Showing the possible range of responses and values of impacts. For justifications of impact questions and categories see (Heffernan et al. 2001 and Warner et al. 2003).

Table 3. Excerpt of the biological section of the Alaska invasiveness ranking system

2. Biological Characteristics and Dispersal Ability

2.1. Mode of reproduction.

Reproduction through vegetative propagules has been shown to increase successful invasions in higher latitudes (Pysek 1997).

A. Not aggressive reproduction (few [0-10] seeds per plant and no vegetative reproduction).	0
B. Somewhat aggressive (reproduces only by seeds $(11-1,000/m^2)$.	1
C. Moderately aggressive (reproduces vegetatively and/or by a moderate amount of seed, $<1,000/m^2$).	2
D. Highly aggressive reproduction (extensive vegetative spread and/or many seeded, >1,000/ m^2).	3

U. Unknown

2.2. Innate potential for long-distance dispersal (bird dispersal, sticks to animal hair, buoyant fruits, wind-dispersal). Effective dispersal is known to be partially responsible for the success of many species in intact habitats (see Rejmanek and Richardson 1996).

A. Does not occur (no long-distance dispersal mechanisms).

B. Infrequent or inefficient long-dist	ance dispersal (occurs occasionally despite lack of adaptations).	2
C. Numerous opportunities for long-	distance dispersal (species has adaptations such as pappus, hooked	3
fruit-coats, etc.).		

0

U. Unknown

2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercia	ıl
sales, use as forage/revegetation, horticulture, spread along highways, transport on boats, contamination, etc.).	
Most non-natives rely on humans for transport and those that are regularly transported have a higher probability of escaping	
cultivation (Mack 2000, Kolar and Lodge 2001, Rejmanek 2001, Mack and Erneberg 2002).	
A. Does not occur.	0
B. Low (human dispersal is infrequent or inefficient).	1
C. Moderate (human dispersal occurs).	2

- D. High (there are numerous opportunities for dispersal to new areas).
- U. Unknown

2.4. Allelopathic

Allelopathic weeds often have a competitive advantage and are more likely to cause longer term ecosystem and community alterations (see Pheloung et al. 1996).

A. No	0
B. Yes	2
U. Unknown	

2.5. Competitive ability

The presence of these traits obviously improves the probability of establishment (see Pheloung et al. 1996).

- A. Poor competitor for limiting factors.
- B. Moderately competitive for limiting factors.
- C. Highly competitive for limiting factors and/or nitrogen fixing ability.

U. Unknown

2.6. Forms dense thickets, climbing or smothering growth habit, or otherwise taller than the surrounding vegetation.

The ability to form thickets or is taller than the surrounding vegetation is a trait shown to predict invasiveness elsewhere (Rejmanek and Richardson 1996, Goodwin, et al. 1999).

А.	No	0
B.	Forms dense thickets.	1
C.	Has climbing or smothering growth habit, or otherwise taller than the surrounding vegetation.	2
тт		

U. Unknown

2.7. Germination requirements.

Species that are able to germinate in the absence of natural or anthropogenic have a greater risk of establishing in intact communities.

A. Requires open soil and disturbance to germinate.	0
B. Can germinate in vegetated areas but in a narrow range or in special conditions.	2
C. Can germinate in existing vegetation in a wide range of conditions.	3
U. Unknown	

2.8. Other species in the genus invasive in Alaska or elsewhere.

Invasiveness is often associated with particular genera (e.g., Centauria and Bromus) and can be informative for a species in another region (Darwin 1859, Rejmanek 1999).

A. No	0
B. Yes	3
U. Unknown	

3

0

1

3

2.9. Aquatic, wetland, or riparian species.

Aquatic weeds have a history of more problematic invasions (see Galatowitsch et al. 1999, Pheloung et al. 1999). Additionally, riparian habitats display high connectivity and tend to be of great conservation concern in Alaska, and we therefore rank those species with an intermediate value.

A.	Not invasive in wetland communities.	0
B.	Invasive in riparian communities.	1
C.	Invasive in wetland communities.	3
тт	TT 1	

U. Unknown

Showing the possible range of responses and values of impacts. Justifications of questions are presented below each subsection in italics.

Table 4. Excerpt of the distribution section of the Alaska invasiveness ranking system

3. Distribution.

. ...

3.1. Is the species highly domesticated or a weed of agriculture.

Cultivated species are generally planted in high volumes and bred for environmental conditions in novel regions, making the probability of escape into native habitats higher. An intermediate score is given to species that are common weeds of agriculture, since these species not only pose an economic impact, but have numerous opportunities to transition from the agricultural fields to bordering natural areas.

A. No	0
B. Is occasionally an agricultural pest.	2
C. Has been grown deliberately, bred, or is known as a significant agricultural pest.	4
1	

U. Unknown

3.2. Known level of ecological impact in natural areas.

This point concerns how similar habitats are to those in Alaska and the degree of the ecological impacts in other regions. This point is based on a question from the Southwest Exotic Plants system (Hiebert and Studdendieck 1993). Species that are known to have severe impacts to habitats similar to those found in Alaska are given the highest score, while those species whose impacts are severe for somewhat dissimilar habitats or whose impacts are less for similar habitats are given lower scores.

A.	Not known t	to cause im	pact in any	v other natural	area.
11.	1 VOL MIOWIL (lo cause mi	pace in any	ounci matural	arca.

B.	Known to cause impacts in natural areas, but in dissimilar habitats and climate zones than exist in regions of Alaska.	1
C.	Known to cause low impact in natural areas in similar habitats and climate zones to those present in Alaska.	3
D.	Known to cause moderate impact in natural areas in similar habitat and climate zones.	4
E.	Known to cause high impact in natural areas in similar habitat and climate zones.	6

0

U. Unknown

3.3. Role of anthropogenic and natural disturbance in establishment.

Species with a habit of invading natural areas are clearly more dangerous than those restricted to the anthropogenic footprint (see Rejmanek 2001).

А.	Requires anthropogenic disturbances to establish.	0
В.	May occasionally establish in undisturbed areas but can readily establish in areas with natural	3
	disturbances.	
С.	Can establish independent of any known natural or anthropogenic disturbances.	5
U.	Unknown	

3.4. Current global distribution.

A species is given the highest score if it is known from at least continents and is known to invade subarctic or arctic habitats, an intermediate score if known from at least three continents, but not in subarctic to arctic habitats, and no points if known from two or fewer continents.

А.	Occurs in one or two continents or regions (e.g., Mediterranean region).	0
В.	Extends over three or more continents.	3
C.	Extends over three or more continents, including successful introductions in arctic or subarctic regions.	5
U.	Unknown	

3.5. Extent of the species U.S. range and/or occurrence of formal state or provincial listing.

The highest score is given to species that are known from 50 percent or more of U.S. states and formally listed as invasive or problematic in two or more states or Canadian provinces.

A. 0-5 percent of the states.	0
B. 6-20 percent of the states.	2
C. 21-50 percent, and/or state listed as a problem weed (e.g., "Noxious," or "Invasive") in 1 state or Canadian province.	4
D. Greater than 50 percent, and/or identified as "Noxious" in 2 or more states or Canadian provinces.	5
U. Unknown	0

Showing the possible range of responses and values of impacts. Justifications of questions are presented below each subsection in italics.

Table 5. Excerpt of the feasibility of control section of the Alaska invasiveness ranking system

4. Feasibility of Control

4.1. Seed banks

Species with seeds that are able to persist for greater than five years in the soil are given the highest score, since this requires a long-term investment in control (see Conn and Farris 1995).

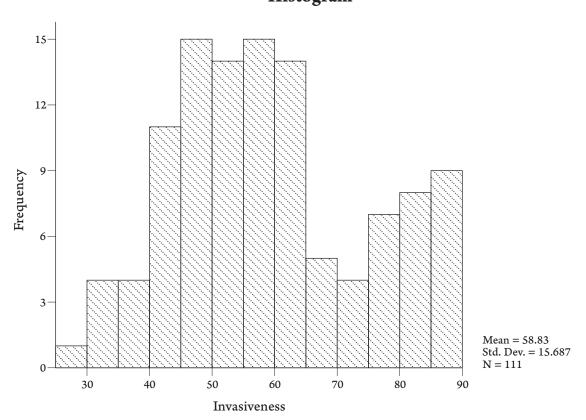
А.	Seeds remain viable in the soil for less than 3 years.	0
В.	Seeds remain viable in the soil for between 3 and 5 years.	2
С.	Seeds remain viable in the soil for 5 years and more.	3
U.	Unknown	

4.2. Vegetative regeneration

Species in which small fragments of the plant are capable of regenerating plants or that are able to regrow from root stumps are notoriously difficult to eradicate.

A.	No resprouting following removal of aboveground growth.	0
B.	Resprouting from ground-level meristems.	1
C.	. Resprouting from extensive underground system.	2
D.	Any plant part is a viable propagule.	3
U.	Unknown	

4.3. Level of effort required.


	stion asks if the management of invasive populations requires no investment in human and financial resources (i.e., ions are ephemeral), moderate, or a major, long-term investment of human and financial resources.	
А.	Management is not required (e.g., species does not persist without repeated anthropogenic disturbance).	0
	Management is relatively easy and inexpensive; requires a minor investment in human and financial resources.	2
	Management requires a major short-term investment of human and financial resources, or a moderate long-term investment.	3
D.	Management requires a major, long-term investment of human and financial resources.	4
U.	Unknown	

Showing the possible range of responses and values of impacts. Justifications of questions are presented below each subsection in italics.

Alaska Invasiveness Ranking System Results

The invasiveness ranks of 113 species are summarized in Appendix A and completed ranking forms are presented in Appendix B. A total of 18 of these species are not recorded from Alaska and two of these (*Centaurea solstitialis* and *Crupina vulgaris*) were rejected from consideration in the climate screening phase. We did not rank all known naturalized non-native plants. We choose a selection based on those species that land managers were most concerned about. Some were perceived to be a threat, some were frequent occurrences and others were recent arrivals. It should be noted that the closely related *Centaurea melitensis* recently was observed as a seedling in an Anchorage greenhouse, and it reached sexual maturity after being repotted and placed outside (Nielsen pers.

Figure 5. Frequency distribution of invasiveness ranks for 113 species ranked in the Alaska system.

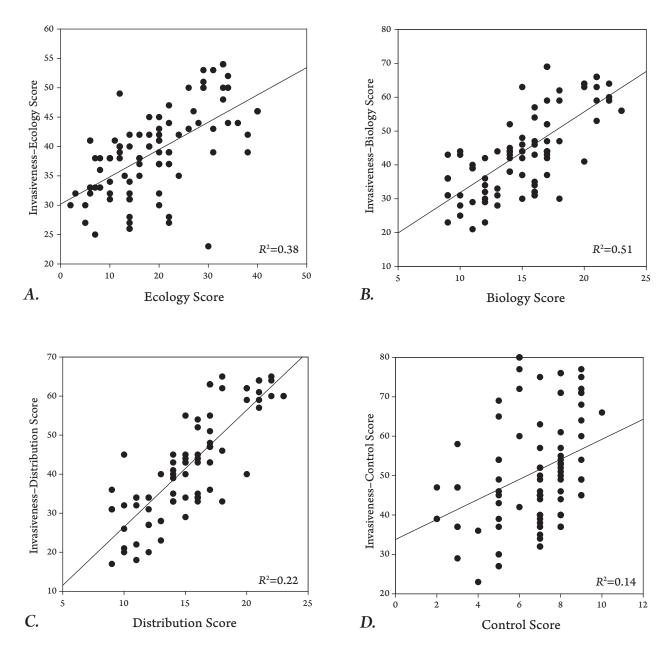
Histogram

obs.), suggesting that establishment might be possible in Alaska despite climate matching of less than 40 percent with its habitats elsewhere.

The maximum score obtained was 90 for *Myriophyllum spicatum*, which has not yet been confirmed in Alaska. The minimum score was 27 for *Lepidium densiflorum*, which is a species largely confined to imported gravel substrates of road beds at low densities in Alaska. Thus this system displays a broad effective range. The mean score was 58.8 and median score was 57 (sd = 15.7). The distribution of scores is moderately bimodal with a greater frequency of high and intermediate scores (figure 5). When only species present in Alaska are included the distribution approaches normality (p = 0.072, df = 99, Kolmogorov-Smirnov test of normality).

Scores for each section (ecological impacts, biological characteristics and dispersal ability, distribution, and feasibility of control) were positively correlated with one another and the overall invasiveness score (table 6). Distribution and control section scores, however, were not significantly correlated. Ecological impacts and biological characteristics were the best predictors of the overall invasiveness ranking ($R^2 = 0.38$ and 0.51, respectively, after removing the contribution of these sections to the overall scores, figure 6).

Table 6. Spearman rank correlations among four sections of the Alaska invasiveness ranking system


	Ecology	Biology	Distribution	Control	Invasiveness
Ecology	1.000	$0.610(^{2})$	$0.472(^{2})$	$0.275(^{1})$	0.933(²)
Ν		88	97	92	103
Biology N		1.000	0.490(²) 87	0.493(²) 82	0.805(²) 92
Distribution N			1.000	0.130 89	0.675(²) 103
Control N				1.000	.0.448(²) 96
Invasiveness N					1.000

 1 = significant correlation at the 0.05 level; 2 = significant correlation at the 0.01 level (2-tailed). Species with unknowns were removed from correlations.

A number of species, such as *Medicago lupulina, Rumex crispus,* and *Sonchus arvensis,* were found to have high scores in biological characteristics and dispersal ability but relatively low scores to ecological impacts. These species tend to be chronically present in agricultural and disturbed habitats and *Medicago lupulina* and *Rumex crispus* often grow at low densities, which are less likely to cause measurable impacts. It is noteworthy that the ability to establish and spread and the degree of ecological impacts are not necessarily positively correlated (Rejmanek 2001). *Zostera japonica* is a notable outlier in the ecological impacts relative to overall invasiveness, with relatively large ecological impacts, but with low scores for the remaining sections (figure 6A). This species is confined to the lower tidal zone, and the biological questions do not effectively evaluate this unusual vascular plant life history type (e.g. questions 2.5 and 2.6, competitive ability and thicket or climbing habit, respectively).

In one case we ranked a species (*Stellaria media*) for different habitat types and produced two different ranks: of (1) 42, for all habitats except grass-forb dominated seabird nesting sites and (2) 54 for grass-forb dominated seabird nesting sites. This was done because *Stellaria media* is considered weakly invasive and restricted to anthropogenic disturbance across most of Alaska; however, it is a serious problem on nutrient rich, grass-forb dominated seabird nesting habitats of the Commander Islands (Mochalova and Yakubov 2004), just west of the Aleutians and may pose a threat to seabird colonies in Alaska.

Figure 6. Scatter plots of 113 species' ranks for (A.) Ecological Impacts, (B.) Biological Characteristics and Dispersal Ability, (C.) Distribution, and (D.) Feasibility of Control section scores relative to the sum of the remaining sections. Proportion of the total variance accounted for by each section score (R^2) are also included.

Discussion

The existing weed risk assessment systems that we evaluated have useful approaches to predicting invasion and damage in particular contexts. The systems are largely driven by specific values of the authors (e.g., impacts to a specific area or to agriculture), many of which are not universal, and most require more information than is typically available (Williams and Newfield 2002), which is a severe drawback to a state such as Alaska that is only beginning to face large-scale introductions. For most non-native species, little to no research has been conducted in the state and the paucity of information curtails confidence in ranks. We emphasize the need for more research on invasive species ecology, distribution, and trends in Alaska.

The system presented here differs from the existing systems by including a climate filtering stage, handling species with a range of known information, and focusing on impacts to natural systems in Alaska. Despite those differences, the Alaska system produced ranks that were very similar to the Southwest system. We borrowed many components of the "innate ability to become a pest (i.e., biology)" and "ease of control sections" from the Southwest system, but did not include a similar "level of impact" section and the systems differed in the relative weight of the remaining sections.

Scores for the four sections of the Alaska system are generally strongly positively related to one another (i.e., species with large ecosystem impacts also have a more invasive biology, broad distributions, and are more difficult to control). However, the feasibility of control section was not as strongly correlated with the other sections and this is likely due to this section having only three questions, leading to greater variation in scores than the other sections. A number of species scored high values in the biological characteristics and distribution sections, but relatively low scores in the ecology section. These species represent a group of ruderal specialists (e.g., *Persicaria lapathifolium, Poa annua*, and *Plantago major*) that are good dispersers, highly dependent on soil disturbance, but poor competitors (see Baker 1974). While invasions and their impacts are very difficult to predict, our system stresses the importance of whether the species is invasive in other areas. This trait is most strongly correlated with the probability of invasion into new areas (Forcella and Wood 1984, Rejmanek and Richardson 1996, Rejmanek 2001).

Species that are regarded as particularly threatening to Alaskan ecosystems such as *Melilotus alba, Polygonum cuspidatum,* and *Vicia cracca* consistently ranked high in the Alaska system among reviewers, while more ruderal species such as *Chenopodium album* and *Matricaria discoidea* were consistently ranked with low scores, as expected. The Australian system, on the other hand, ranked species that are not considered problematic in Alaska with very high scores. This system gives more weight than the others to agricultural pests and to species linked to specific ecological concerns in Australia. Systems such as the Australian, Southwest, and Alaskan that produced continuous numeric invasiveness ranks resulted in less variation among assessors.

The distribution of scores in the Alaska system currently ranges from 27 (*Lepidium densiflorum*, the least invasive species) to 90 (*Myriophyllum spicatum*, the most invasive species, which is not yet recorded for Alaska). The average is 58. While different users will have different concepts of what constitutes various levels of invasiveness (e.g., what is "highly invasive" vs. "moderately invasive" may differ among management agencies), we divided the ranks into six blocks in Appendix A. We consider species with scores \geq 80 as "Extremely Invasive" and species with scores 70–79 as "Highly Invasive;" both of these groups are composed of species estimated to be very threatening to Alaska. Species with scores of 60–69 as "Moderately Invasive" and scores of 50–59 represent "Modestly Invasive" species; both of these groups still pose significant risks to ecosystems. Species with scores of 40–49 are "Weakly Invasive", and <40 are considered "Very Weakly Invasive." These last two groups generally have not been shown to significantly alter ecosystem processes and communities elsewhere and probably do not require as much attention as the other species.

We stress, however, that decisions on which species to control should be based on more information than solely invasiveness rank. The objectives of land managers will range from those attempting to eliminate all non-native plants to those attempting to control only the most invasive species. Further, the distribution, abundance, control costs, and likelihood of reintroductions of each non-native species should be evaluated prior to control actions. For example, greater gains will often be achieved by targeting new introductions than trying to control large-scale infestations, even of "highly invasive" species. A "Treatment Prioritization Tool" has been developed for Alaska (see AKEPIC 2005) to account for such site-specific factors that are beyond the scope of this system. The Alaska Region, U.S. Fish and Wildlife Service produced an "Invasive Plant Treatment Guide" (ENSR 2006) that uses a breadth of information, including invasiveness ranks, to prioritize control actions. Similarly, the National Park Service in Alaska is currently preparing an "Invasive Plant Management Plan" that uses invasiveness ranks and site-specific factors to determine appropriate control methods (J. Heys pers. comm.).

The distribution of scores is bimodal with a peak around the mean and a second peak at around 85. The 113 non-native species ranked (283 non-native vascular plants have been recorded for Alaska, Carlson and Shephard 2007) were not chosen at random. The peak around the mean rank represents species with intermediate impacts that are becoming widely established in Alaska and are being considered for management. The peak around 85 reflects the authors' desire to highlight particularly problematic species to promote efforts to control the establishment and spread of these species before they become widespread. The latter peak nearly vanishes when only non-native species currently present in Alaska are included.

The ranks produced to date should be viewed as a work in progress, as we expect that as more information becomes available the ranks and amount of documentation will change. We believe that this system can be used by others to screen potential species for the probability of establishing in Alaska (climate screening component) as well as producing additional invasiveness ranks. The number of introductions and number of populations appears to be increasing exponentially in Alaska, and many more species will require ranking (Carlson and Shephard 2007). Reliance on literature and documented observations along with clear guidelines for each question's scores should produce similar scores regardless of assessors' backgrounds. However, we stress the need for experts to review all ranks.

Acknowledgements

The U.S. Forest Service, State and Private Forestry and the Alaska Natural Heritage Program, University of Alaska Anchorage provided financial support for this effort. Keith Boggs, Susan Klein, Chris McKee, and Erin Uloth made valuable contributions and edits on this manuscript and on the species ranks. Robert Pattison and Trish Wurtz made particularly insightful contributions to the manuscript. Annette Untalasco and Melinda Lamb made final formatting, design, and layout contributions.

Literature Cited

- AKEPIC—Alaska Exotic Plant Information Clearinghouse. 2005. Invasive plants of Alaska. Carlson, M.L., J. Heys, M. Shephard, and J. Snyder (eds.), Alaska Association of Conservation Districts Publication. Anchorage, Alaska. 294 p.
- Baker, H.G. 1974. The evolution of weeds. Annual Review of Ecology and Systematics 5: 1-24.
- Brown, B. 2005. Update on orange hawkweed control project on Camp Island, Kodiak National Wildlife Refuge. Proceedings from the 6th Annual Statewide Noxious and Invasive Plants Management Workshop, Fairbanks, October 2005.
- Carlson, M.L. 2006. The spread of invasive plants in Alaska: Is establishment of exotics increasing? Presentations for 6th Alaska Noxious and Invasive Plants Management Workshop. Anchorage, Alaska.
- Carlson, M.L. and I. Lapina. 2004. Invasive non-native plants in the arctic: The intersection between natural and anthropogenic disturbance. Poster Presentation at the American Academy for the Advancement of Science meeting. Anchorage, Alaska.
- Carlson, M.L. and M. Shephard. 2007. The spread of invasive exotic plants in Alaska: Is establishment of exotics accelerating? Harrington, T.B. and S.H. Reichard (tech. eds.). Meeting the Challenge: Invasive Plants in Pacific Northwestern Ecosystems. USDA Forest Service, Pacific Northwest Research Station, Gen. Tech. Rep. PNW-GTR-694.
- Conn, J.S. and M.L. Farris. 1995. Seed viability and dormancy of 17 weed species after 9.7 years of burial in Alaska. Weed Science. 43: 583–585.
- Cox, G.W. 1999. Alien species in North America and Hawaii: Impacts on natural ecosystems. Island Press.
- Cronk, Q. and J. Fuller. 1995. Plant invaders: the threat to natural systems. Chapman Hall, New York.
- D'Antonio, C.M. 1993. Mechanisms controlling invasion of coastal plant communities by the alien succulent *Carpobrotus edulis*. Ecology 74:83–95.
- D'Antonio, C.M. and L.A. Meyerson. 2002. Exotic Plant Species as Problems and Solutions in Ecological Restoration: A Synthesis. Restoration Ecology 10: 703–713
- Darwin, C. 1859. The Origin of Species by Means of Natural Selection. Murray, London, UK.
- ENSR 2006. Invasive Plant Treatment Guide: National Wildlife Refuges in Alaska. U.S. Fish and Wildlife Service Report.
- Forcella, F. and J.T. Wood. 1984. Colonization potentials of alien weeds are related to their "native" distributions: implications for plant quarantine. Journal of the Australian Institute of Agricultural Science 50: 36–40.
- Galatowitsch, S.M., N.O. Anderson, and P.D. Ascher, 1999. Invasiveness in Wetland Plants in Temperate North America, University of Minnesota. Wetlands 19: 733–755.
- Goodwin, B.J., A.J. McAllister, and L. Fahrig. 1999. Predicting invasiveness of plant species based on biological information. Conservation Biology 13:422–426.
- Groves, R.H., F.D. Panetta, and J.G. Virtue. 2001. Weed Risk Assessment. CSIRO Publishing, Collingswood, Australia. 244 pp.

- Heffernan, K.E., P.P. Coulling, J.E. Townsend, and C.J. Hutto. 2001. Ranking Invasive Exotic Plant Species in Virginia. Natural Heritage Technical Report 01–13. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 27 pp. plus appendices.
- Hickman, J.C. The Jepson Manual of Higher Plants of California. University of California Press, Berkeley, California. 1400 pp.
- Hébert, M. 2001. Strategic plan for noxious and invasive plants management in Alaska. Cooperative Extension Service, University of Alaska Fairbanks, Fairbanks, AK. 35 pp plus appendices.
- Hiebert, R.D. 1997. Prioritizing invasive plants and planning for management. In J.O. Luken and J.W. Thieret (eds.) Assessment and Management of Plant Invasions. Springere, New York, pp. 195–212.
- Hiebert, R.D. and J. Stubbendieck. 1993. Handbook for Ranking Exotic Plants for Management and Control. Natural Resources Report NPS/NRMWRO/NRR-93/08. U.S. Department of the Interior National Park Service. Natural Resources Publication Office. Denver, Colorado. 29 pp.
- Hodkinson, D.J. and K. Thompson. 1997. Plant dispersal: The role of man. Journal of Applied Ecology 34: 1484–1496.
- Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA. 1008 p.
- Kolar, C.S. and D.M. Lodge. 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16:199–204.
- Kriticos, D.J. and R.P. Randall. 2001. A comparison of systems to analyze potential weed distributions. In Groves, R.H., F.D. Panetta, and J.G. Virtue (eds.) Weed Risk Assessment. CSIRO Publishing, Collingswood, Australia. pp. 61–79.
- Lapina, I. and M.L. Carlson. 2004. Non-native plant inventories of south-central Alaska. 30 pp. Report on file with US Forest Service, State and Private Forestry and Alaska Natural Heritage Program.
- Lawton, J.H. 1998. Small earthquakes in Chile and climate change. Oikos 82: 209–211.
- Lid, J. and D.T. Lid. 1994. Flora of Norway. The Norske Samlaget, Oslo. Pp. 1014.
- Mack, R.N. 1996. Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biological Conservation 78: 107–121.
- Mack, R.N. 2000. Cultivation fosters plant naturalization by reducing environmental stochasticity. Biological Invasions 2: 111–122.
- Mack, R.N. and M. Erneberg. 2002. The United States naturalized flora: largely the product of deliberate introductions. Annals of the Missouri Botanical Garden 89: 176–189.
- Mochalova, O.A. and V.V. Yakubov. 2004. Flora of Commander Islands. Vladivostok: Institute of Biology and Soil Science. 120 pp. In Russian.
- Myers, N. 1997. Global biodiversity II: Losses and threats. In G.K. Meffe and C.R. Carroll (eds.). Principles of Conservation Biology. Sinauer Associates, Sunderland, Massachusetts.
- Nowacki, G., P. Spencer, M. Fleming, T. Brock and T. Jorgenson. 2001. Unified ecoregions of Alaska. U.S. Department of the Interior, U.S. Geological Survey. Open file-report 02-297. 2 page map.
- Pheloung, P.C., P.A. Williams, S.R. Halloy. 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239–251.
- Pimentel, D. 2002. Biological Invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, Florida.
- Pimm, S.L. and M.E. Gilpin. 1989. Theoretical issues in conservation biology. In J. Roughgarden, R. May, and S.A. Levin (eds.). Perspectives in Ecological Theory. Princeton University Press, New Jersey.

- Prather, T., S. Robins, L. Lake, and C. Crabtree. 2005. New technology in invasive plant detection and management. Proceedings from the 6th Annual Statewide Noxious and Invasive Plants Management Workshop, Fairbanks, October 2005.
- Pysek, P. 1997. Clonality and plant invasions: Can a trait make a difference? In H. de Kroon and J. van Groenendael (eds.) The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden. pp. 405–427.
- Randall, J.M. and M.C. Hoshovsky. 2000. California's wildland invasive plants. In Bossard, C.C., J.M. Randall, and M.C. Hoshovsky (eds.) Invasive Plants of California's Wildlands. University of California Press, Berkeley, California. pp. 11–27.
- Rejmanek, M. 1995. What makes a species invasive? In Pysek, P., K. Prach, M. Rejmanek, and P.M. Wade (eds.), Plant Invasions. SPB Academic Publishing, The Hague. pp. 3–13.
- Rejmanek, M. 1996. A theory of seed plant invasiveness: The first sketch. Biological Conservation 78: 171–181.
- Rejmanek, M. 1999. Invasive plant species and invasive ecosystems. In O.T. Sandlund, P.J. Schei, and A. Vilken (eds.) Invasive Species and Biodiversity Management. Kluwer, Dordrecht. pp. 79–102
- Rejmanek, M. 2001. What tools do we have to detect invasive plant species? In Groves, R.H., F.D. Panetta, and J.G. Virtue (eds.) Weed Risk Assessment. CSIRO Publishing, Collingswood, Australia. pp. 34–51.
- Rejmanek, M. and D.M. Richardson. 1996. What attributes make some plant species more invasive? Ecology 77: 1655–1661.
- Robertson, M.P., M.H. Villet, D.H.K. Fairbanks, L. Henderson, S.I. Higgins, J.H. Hoffman, D.C. Le Mairte, A.R. Palmer, I. Riggs, C.M. Shackleton, and H.G. Zimmermann. 2003. A proposed prioritization system for the management of invasive alien plants in South Africa. South African Journal of Science 99: 1–7.
- Shephard, M. 2004. Status of Exotic Invasive Organisms in Alaska. <u>http://www.cnipm.org/statusofinvasivesak04.</u> <u>pdf.</u> USDA Forest Service. Anchorage, AK.
- State of Alaska. 2004. All Hazard Mitigation Plan. <u>http://www.ak-prepared.com/plans/mitigation/statehazmitplan.</u> <u>htm</u>. Division of Homeland Security and Emergency Management, Alaska.
- Stein, B., L. Kutner, and J. Adams. 2000. Precious heritage: The status of biodiversity in the United States. Oxford University Press, Oxford.
- Sutherst, R.W., G.F. Maywald, T. Yonow, and P.M. Stevens. 1999. CLIMEX: predicting the effects of climate on plants and animals: User guide. Csiro Publishing, Collingwood, Victoria. 88 p.
- Taylor, C.M. and A. Hastings. 2005. Allee effects in biological invasions. Ecology Letters 8: 895–908.
- U.S. Congress, Office of Technology Assessment. 1993. Harmful non-indigenous species in the United States. OTA-F-565. U.S. Government Printing Office, Washington, D.C.
- USDA (United States Department of Agriculture), NRCS (Natural Resource Conservation Service). 2002. The PLANTS Database, Version 3.5 (<u>http://plants.usda.gov</u>). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
- Walker, L.R. and S.D. Smith. 1997. Impacts of invasive plants on community and ecosystem properties. In J.O. Luken and J.W. Thieret (eds.). Assessment and Management of Plant Invasions. Springer, New York.
- Wainger, L.A. and D.M. King. 2001. Priorities for weed risk assessment: Using a landscape context to assess indicators of functions, services and values. In Groves, R.H., F.D. Panetta, and J.G. Virtue (eds.) Weed Risk Assessment. CSIRO Publishing, Collingswood, Australia. pp. 34–51.

- Warner, P.J., C.C. Bossard, M.L. Brooks, J.M. DiTomaso, J.A. Hall, A.M. Hawald, D.W. Johnson, J.M. Randall, C.L. Roye, M.M. Ryan, and A.E. Stanton. 2003 Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands. (<u>www.caleppc.org</u> and <u>www.swvma.org</u>.) California Exotic Pest Plant Council and Southwest Vegetation Management Association. 24 pp.
- Williams, P.A. and M. Newfield. 2002. A weed risk assessment system for new conservation weeds in New Zealand. Science for Conservation 209. New Zealand Department of Conservation. 1–23 pp.
- Williamson, M.H. 1996. Biological Invasions. Chapman and Hall, London.
- Williamson, M.H. and A. Fitter. 1996. The characteristics of successful invaders. Biological Conservation 78: 163–170.
- Williamson, M. 2001. Can the impact of invasive species be predicted? In Groves, R.H., F.D. Panetta, and J.G. Virtue (eds.) Weed Risk Assessment. CSIRO Publishing, Collingswood, Australia. pp. 20–33.
- Zika, P.F. and A.L. Jacobson. 2003. An overlooked Japanese knotweed hybrid (*Polygonum cuspidatum* X P. sachalinense; Polygonaceae) in North America. Rhodora 105: 143–152.

Appendices

Appendix A.1. Summary Scores Of Invasiveness Ranking Of 113 Non-native Plants Ordered By Overall Invasiveness Score.

Plant species	Common name	Ecological impact	Biological characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Myriophyllum spicatum +	Eurasian watermilfoil	38	20(22)	20	9	87(97)	90	Yes	Yes	Yes
Polygonum cuspidatum *	Japanese knotweed	33	21	23	7(7)	84(97)	87	Yes	Yes	_
Polygonum sachalinensis *	Giant knotweed	33	21	23	7(7)	84(97)	87	Yes	Yes	_
Polygonum X bohemicum *	Bohemian knotweed	33	21	23	7(7)	84(97)	87	Yes	Yes	_
Centaurea biebersteinii	Spotted knapweed	34	22	21	9	86	86	Yes	Yes	_
Spartina alterniflora * +	Smooth cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina anglica * +	Common cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina densiflora * +	Denseflower cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina patens * +	Saltmeadow cordgrass	40	17	23	6	86	86	Yes	_	_
Euphorbia esula +	Leafy spurge	31	21	23	9	84	84	Yes	Yes	_
Lythrum salicaria *	Purple loosestrife	34	20	21	8	83	84	_	Yes	_
Lythrum virgatum *	European wand loosestrife	34	20	21	8	83	84	_	Yes	_
Phalaris arundinacea	Reed canarygrass	33	20	24	6	83	83	Yes	Yes	Yes
Impatiens glandulifera	Ornamental jewelweed	29	22	22	7	80(98)	82	Yes	Yes	-
Heracleum mantegazzianum +	Giant hogweed	33	22	17	9	81	81	Yes	Yes	Yes
Melilotus alba	White sweetclover	29	22	21	9	81	81	Yes	Yes	Yes
Hydrilla verticillata +	Waterthyme	38	17(22)	14	9	78(97)	80	Yes	Yes	Yes
Nymphaea odorata ssp. odorata	American white waterlily	36	18	18	6(7)	78(97)	80	Yes	_	-
Hieracium aurantiacum *	Orange hawkweed	29	23	19	8	79	79	Yes	Yes	Yes
Hieracium caespitosum *	Meadow hawkweed	29	23	19	8	79	79	Yes	Yes	Yes
Bromus tectorum	Cheatgrass	34	15	23	6	78	78	Yes	Yes	Yes
Rubus discolor	Himalayan blackberry	38	18	12	9	77	77	Yes	_	-
Cirsium arvense	Canada thistle	26	17	21	10	76	76	Yes	Yes	Yes
Prunus padus	European bird cherry	31	21	17	5	74	74	Yes	Yes	-
Sonchus arvensis	Moist sowthistle	22	21	21	9	73	73	Yes	Yes	-
Vicia cracca	Bird vetch	27	16	21	9	73	73	Yes	Yes	Yes
Lepidium latifolium	Broadleaved pepperweed	28	17(22)	16	6(7)	67(94)	71	-	Yes	Yes
Alliaria petiolata	Garlic mustard	24(30)	16	16	7	63(90)	70	Yes	_	-
Brachypodium sylvaticum +	False slender brome	31	19(23)	14	5	69(98)	70	Yes	Yes	Yes
Cytisus scoparius	Scotch broom	26	17	18	8	69	69	Yes	-	-
Linaria vulgaris	Butter and eggs	22	17	21	9	69	69	Yes	Yes	Yes
Melilotus officinalis	Yellow sweetclover	24	18	19	8	69	69	Yes	Yes	Yes
Caragana arborescens	Siberian peashrub	24	14	21	5(7)	64(97)	66	-	Yes	Yes
Lonicera tatarica	Tatarian honeysuckle	22	19(23)	18	6	65(98)	66	Yes	Yes	-
Campanula rapunculoides	Rampion bellflower	18(40)	16(20)	20(25)	5(7)	59(92)	64	Yes	Yes	Yes
Medicago sativa ssp. falcata	Yellow alfalfa	15(30)	17	15(19)	7	54(84)	64	Yes	Yes	Yes
Hordeum jubatum	Foxtail barley	18	16	20	9	63	63	Yes	Yes	Yes
Senecio jacobaea + = Not known in AK (2006)	Stinking willie	20	15	20	8	63	63	Yes	Yes	Yes

+ = Not known in AK (2006)

* = Congeneric species ranked together

¹ Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, - = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Bromus inermis sp. inermis Smooth brome 20 16 18 8 62 62 Yes Yes Almus glutinosa + European alder 24 16 14 5 59(97) 61 Yes Yes Yes Carduus acanthoids * + Nodding plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Carduus proncephalus * + Winged plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Carduus tenuiflorus * + Winged plumeless thistle 20 15 18 8 61 61 Yes	Plant species	Common name	Ecological impact	Biological characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Alnus glutinosa + European alder 24 16 14 5 59(97) 61 Yes Yes Yes Carduus acanthoides + Spiny plumeless thistle 22 17 14 8 61 61 Yes Yes<			20	16	18	8	62	62	Yes	Yes	Yes
	-	European alder	24	16	14	5	59(97)	61	Yes	Yes	Yes
Carduus nutans $*+$ Nodding plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Carduus pycnocephalus $*+$ Italian plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Carduus tenuiflorus $*+$ Winged plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Cirsium vulgare Bull thistle 20 19(23) 18 3 60(98) 61 Yes Yes <td>-</td> <td>*</td> <td>22</td> <td>17</td> <td>14</td> <td>8</td> <td></td> <td>61</td> <td>Yes</td> <td>Yes</td> <td>Yes</td>	-	*	22	17	14	8		61	Yes	Yes	Yes
Carduus pycnocephalus * + Italian plumeless thistle 22 17 14 8 61 61 Yes Y	Carduus nutans * +		22	17	14	8	61	61	Yes	Yes	Yes
Carduus tenuifforus * + Winged plumeless thistle 22 17 14 8 61 61 Yes Yes Yes Cirsium vulgare Bull thistle 20 19(23) 18 3 60(98) 61 Yes Y	Carduus pycnocephalus * +	0.1	22	17	14	8	61	61	Yes	Yes	Yes
Cirsium vulgareBull thistle2019(23)18360(98)61Yes		-	22	17	14	8	61	61	Yes	Yes	Yes
Leucanthemum vulgare Oxeye daisy 20 15 18 8 61 61 Yes Yes Hordeum murinum ssp. leporinum Leporinum barley 18 17 17 8 60 60 - Yes Yes Elymus repens Quackgrass 20 15 19 5 59 S9 Yes Yes Yes Medicago sativa ssp. sativa Alfalfa 13(30) 17 16 7 53(90) S9 Yes	-		20	19(23)	18	3	60(98)	61	Yes	Yes	Yes
Hordeum murinum ssp. leporinumLeporinum barley18171786060-YesElymus repensQuackgrass20151955959Yes <td< td=""><td>e e</td><td>Oxeye daisy</td><td>20</td><td></td><td>18</td><td>8</td><td></td><td>61</td><td>Yes</td><td>Yes</td><td>Yes</td></td<>	e e	Oxeye daisy	20		18	8		61	Yes	Yes	Yes
Elymus repens Quackgrass 20 15 19 5 59 Yes Yes Medicago sativa ssp. sativa Alfalfa 13(30) 17 16 7 53(90) 59 Yes Yes Yes Sorbus aucuparia European mountain ash 22 14 16 7 59 59 Yes	ũ		18	17	17	8	60	60	_	Yes	_
Médicago sativa ssp. sativa Alfalfa 13(30) 17 16 7 53(90) 59 Yes			20		19	5	59	59	Yes	Yes	Yes
Sorbus aucuparia European mountain ash 22 14 16 7 59 59 Yes - Trifolium repens White clover 22 15 14 8 59 59 Yes	, 1	-	13(30)		16	7	53(90)	59	Yes	Yes	Yes
Trifolium repens White clover 22 15 14 8 59 59 Yes Yes </td <td>0</td> <td></td> <td>. ,</td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td>Yes</td> <td>_</td> <td>_</td>	0		. ,		16				Yes	_	_
Linaria dalmatica Dalmatian toadflax 16 14 19 9 58 58 - Yes Taraxacum officinale ssp. officinale Common dandelion 18 14 18 8 58 58 Yes Yes Gypsophila paniculata Baby's breath 20 14 18 3(7) 55(97) 57 Yes Yes Potentilla recta + Sulfur cinquefoil 20 13 17 7 57 Yes Yes Yes Tanacetum vulgare Common tansy 20 15 13 8 56(98) 57 Yes Yes<	-	*		15						Yes	Yes
Taraxacum officinale ssp. officinale Common dandelion 18 14 18 8 58 58 Yes Yes Gypsophila paniculata Baby's breath 20 14 18 3(7) 55(97) 57 Yes Yes Yes Potentilla recta + Sulfur cinquefoil 20 13 17 7 57 57 Yes Yes Yes Tanacetum vulgare Common tansy 20 15 13 8 56(98) 57 Yes Yes <td></td> <td></td> <td>16</td> <td>14</td> <td>19</td> <td>9</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>			16	14	19	9			_		_
Gypsophila paniculata Baby's breath 20 14 18 3(7) 55(97) 57 Yes Yes Yes Potentilla recta + Sulfur cinquefoil 20 13 17 7 57 57 Yes Yes Yes Tanacetum vulgare Common tansy 20 15 13 8 56(98) 57 Yes Yes <td></td> <td></td> <td>18</td> <td>14</td> <td>18</td> <td></td> <td></td> <td></td> <td>Yes</td> <td></td> <td>Yes</td>			18	14	18				Yes		Yes
Potentiilla recta † Sulfur cinquefoil 20 13 17 7 57 57 Yes Yes Tanacetum vulgare Common tansy 20 15 13 8 56(98) 57 Yes			20	14	18	3(7)		57	Yes	Yes	Yes
Tanacetum vulgare Common tansy 20 15 13 8 56(98) 57 Yes			20	13	17				Yes	Yes	_
Trifolium hybridum Alsike clover 22 12 18 5 57 57 Yes Yes Yes Convolvulus arvensis Field bindweed 18 14 16 8 56 56 Yes Yes Yes Lupinus polyphyllus Bigleaf lupine 14 16 17 8 55 55 Yes Yes <td< td=""><td></td><td>-</td><td>20</td><td></td><td></td><td></td><td></td><td>57</td><td>Yes</td><td>Yes</td><td>Yes</td></td<>		-	20					57	Yes	Yes	Yes
Convolvulus arvensis Field bindweed 18 14 16 8 56 56 Yes Yes Lupinus polyphyllus Bigleaf lupine 14 16 17 8 55 55 Yes Yes Crepis tectorum Narrowleaf hawksbeard 9(30) 17 18 3(7) 47(87) 54 Yes Yes Yes Phleum pratense Timothy 14 14 19 7 56 54 Yes	e e	,	22		18				Yes	Yes	Yes
Lupinus polyphyllus Bigleaf lupine 14 16 17 8 55 55 Yes Yes Crepis tectorum Narrowleaf hawksbeard 9(30) 17 18 3(7) 47(87) 54 Yes Yes </td <td></td> <td>Field bindweed</td> <td>18</td> <td>14</td> <td>16</td> <td>8</td> <td>56</td> <td>56</td> <td>Yes</td> <td>Yes</td> <td>Yes</td>		Field bindweed	18	14	16	8	56	56	Yes	Yes	Yes
Crepis tectorum Narrowleaf hawksbeard 9(30) 17 18 3(7) 47(87) 54 Yes Yes Personance Phleum pratense Timothy 14 14 19 7 56 54 Yes	Lupinus polyphyllus	Bigleaf lupine	14	16	17	8	55	55	Yes	Yes	Yes
Phleum pratense Timothy 14 14 19 7 56 54 Yes Yes Ranunculus acris* Tall buttercup 16 13(23) 15 9 53(98) 54 Yes Yes<		ē 1	9(30)	17	18				Yes	Yes	Yes
Ranunculus acris* Tall buttercup 16 13(23) 15 9 53(98) 54 Yes		Timothy	. ,	14	19			54	Yes	Yes	Yes
Ranunculus repens *Creeping buttercup1613(23)15953(98)54Yes <td></td> <td>'</td> <td>16</td> <td>13(23)</td> <td>15</td> <td>9</td> <td>53(98)</td> <td>54</td> <td>Yes</td> <td>Yes</td> <td>Yes</td>		'	16	13(23)	15	9	53(98)	54	Yes	Yes	Yes
Stellaria media/sea bird coloniesCommon chickweed14122085454YesYesYesDactylis glomerataOrchard grass16102255353YesYesYesTrifolium pratenseRed clover1612(22)16751(97)53YesYesYesVicia villosaWinter vetch2211(22)12(19)348(91)53YesYesZostera japonica +Dwarf eelgrass301081(3)49(93)53YesYesHypericum perforatumCommon St. Johnswort11151885252YesYesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYesYes		-	16	. ,	15	9	. ,	54	Yes	Yes	Yes
Trifolium pratenseRed clover16 $12(22)$ 167 $51(97)$ 53YesYesYesVicia villosaWinter vetch22 $11(22)$ $12(19)$ 3 $48(91)$ 53YesYesZostera japonica +Dwarf eelgrass30108 $1(3)$ $49(93)$ 53YesYesHypericum perforatumCommon St. Johnswort11151885252YesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYesYes	-		14		20	8		54	Yes	Yes	Yes
Trifolium pratenseRed clover16 $12(22)$ 167 $51(97)$ 53YesYesYesVicia villosaWinter vetch22 $11(22)$ $12(19)$ 3 $48(91)$ 53YesYesZostera japonica +Dwarf eelgrass30108 $1(3)$ $49(93)$ 53YesYesHypericum perforatumCommon St. Johnswort11151885252YesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYesYes	Dactylis glomerata	Orchard grass	16	10	22	5	53	53	Yes	Yes	Yes
Vicia villosaWinter vetch2211(22)12(19)348(91)53YesYesZostera japonica +Dwarf eelgrass301081(3)49(93)53YesYesHypericum perforatumCommon St. Johnswort11151885252YesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesPoa pratensis ssp. irrigata *Spreading bluegrass12141975252YesYesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYes	, .	0	16	12(22)	16	7	51(97)	53	Yes	Yes	Yes
Zostera japonica +Dwarf eelgrass301081(3)49(93)53YesYesHypericum perforatumCommon St. Johnswort11151885252YesYesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesYesPoa pratensis ssp. irrigata *Spreading bluegrass12141975252YesYesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYes	5 1	Winter vetch	22		12(19)	3			Yes	Yes	_
Hypericum perforatumCommon St. Johnswort11151885252YesYesPoa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesYesPoa pratensis ssp. irrigata *Spreading bluegrass12141975252YesYesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYes	Zostera japonica †										_
Poa pratensis ssp. pratensis *Kentucky bluegrass12141975252YesYesPoa pratensis ssp. irrigata *Spreading bluegrass12141975252YesYesYesPoa trivialis *Rough bluegrass12141975252YesYesYesVerbascum thapsusCommon mullien2091675252YesYes		e	11	15	18			52	Yes	Yes	Yes
Poa pratensis ssp. irrigata *Spreading bluegrass12141975252YesYesPoa trivialis *Rough bluegrass12141975252YesYesVerbascum thapsusCommon mullien2091675252YesYes		-	12	14	19	7	52	52	Yes	Yes	Yes
Poa trivialis*Rough bluegrass12141975252YesYesVerbascum thapsusCommon mullien2091675252YesYes			12	14	19	7	52	52	Yes	Yes	Yes
Verbascum thapsus Common mullien 20 9 16 7 52 52 Yes Yes						7					Yes
1			20	9	16	7	52			Yes	_
Digitalis purpurea Purple foxglove 16 11 19 5 51 51 Yes Yes	-		16		19	5	51			Yes	_
		1 0			9						Yes
					16						Yes
	Fallopia convolvulus		12		17						Yes
<i>Tragopogon dubius</i> Yellow salsify 20 11 16 3 50 50 Yes Yes	-		20		16		50				_
	0,1,0										Yes
											Yes

+ = Not known in AK (2006)

* = Congeneric species ranked together

¹ Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, – = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Plant species	Common name	Ecological impact	Biological characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Rumex crispus *	Curly dock	10	16	14	8	48	48	Yes	Yes	Yes
Rumex longifolius *	Dooryard dock	10	16	14	8	48	48	Yes	Yes	Yes
Rumex obtusifolius *	Bitter dock	10	16	14	8	48	48	Yes	Yes	Yes
Tripleurospermum perforata	Scentless false mayweed	13	13(23)	15	6	47(98)	48	Yes	Yes	Yes
Persicaria lapathifolia *	Curlytop knotweed	6	16	15(19)	7	44(94)	47	Yes	Yes	Yes
Persicaria maculosa *	Spotted ladysthumb	6	16	15(19)	7	44(94)	47	Yes	Yes	Yes
Achillea ptarmica	Sneezeweed	14	12	15	2(3)	43(93)	46	Yes	Yes	Yes
Poa annua	Annual bluegrass	8	13	18	7	46	46	Yes	Yes	Yes
Polygonum aviculare	Prostrate knotweed	7	15	16	7	45	45	Yes	Yes	Yes
Lappula squarrosa	European stickseed	10	12	17	5	44	44	Yes	Yes	Yes
Plantago major	Common plantain	8	13	16	7	44	44	Yes	Yes	Yes
Cotula coronopifolia	Common brassbuttons	14	11(23)	9	7	41(98)	42	Yes	_	_
Silene dioica *	Red catchfly	13	9	13	7	42	42	Yes	Yes	Yes
Silene latifolia *	Bladder campion	13	9	13	7	42	42	Yes	Yes	Yes
Silene noctiflora *	Nightflowering silene	13	9	13	7	42	42	Yes	Yes	Yes
Stellaria media/non-seabird sites	Common chickweed	10	12	15	5	42	42	Yes	Yes	Yes
Anthemis cotula	Stinking chamomile	8	12	14	7	41	41	Yes	Yes	_
Descurainia sophia	Herb sophia	8	13	18	2	41	41	Yes	Yes	Yes
Hesperis matronalis	Dames rocket	10	10(22)	17	2(7)	39(94)	41	Yes	Yes	_
Lolium perenne ssp. multiflorum	Italian ryegrass	14	10	15	2	41	41	Yes	Yes	Yes
Capsella bursa-pastoris	Shepherd's purse	7	11	18	4	40	40	Yes	Yes	Yes
Galeopsis bifida *	splitlip hempnettle	14	9	12(19)	3	38(94)	40	Yes	Yes	Yes
Galeopsis tetrahit *	brittlestem hempnettle	14	9	12(19)	3	38(94)	40	Yes	Yes	Yes
Poa compressa	Canada bluegrass	6	10	17	5(7)	38(97)	39	Yes	Yes	Yes
Chenopodium album	Lambsquarters	5	12	15	5	37	37	Yes	Yes	Yes
<i>Cerastium fontanum</i> ssp. <i>vulgare</i> *	Big chickweed	6	8(25)	15(19)	5	34(94)	36	Yes	Yes	Yes
Cerastium glomeratum *	Sticky chickweed	6	8(25)	15(19)	5	34(94)	36	Yes	Yes	Yes
Senecio vulgaris	Old-man-in-the-Spring	4	12	15	5	36	36	Yes	Yes	Yes
Saponaria officinalis	Bouncingbet	5(30)	8(22)	12	2(3)	27(80)	34	Yes	Yes	-
Matricaria discoidea	Disc mayweed	5	9	15	3	32	32	Yes	Yes	Yes
Spergula arvensis	Corn spurry	2	11	14	5	32	32	Yes	Yes	Yes
Mycelis muralis	Wall-lettuce	7	11(23)	8	4	30(98)	31	Yes	_	_
Lepidium densiflorum	Common pepperweed	1(30)	9(23)	8	4	22(88)	25	Yes	Yes	Yes
Centaurea solstitialis	Yellow star-thistle							-	_	-
Crupina vulgaris + = Not known in AK (2006)	Common crupina							_	_	-

+ = Not known in AK (2006)

* = Congeneric species ranked together

¹ Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, – = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Appendix A.2.

Summary Scores Of Invasiveness Ranking Of 113 Non-native Plants Ordered By Species Name

Plant species	Common name	Ecological Impact	Biological Characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Achillea ptarmica	Sneezeweed	14	12	15	2(3)	43(93)	46	Yes	Yes	Yes
Alliaria petiolata	Garlic mustard	24(30)	16	16	7	63(90)	70	Yes	_	_
Alnus glutinosa +	European alder	24	16	14	5	59(97)	61	Yes	Yes	Yes
Anthemis cotula	Stinking chamomile	8	12	14	7	41	41	Yes	Yes	_
Brachypodium sylvaticum +	False slender brome	31	19(23)	14	5	69(98)	70	Yes	Yes	Yes
Bromus inermis ssp. inermis	Smooth brome	20	16	18	8	62	62	Yes	Yes	Yes
Bromus tectorum	Cheatgrass	34	15	23	6	78	78	Yes	Yes	Yes
Campanula rapunculoides	Rampion bellflower	18(40)	16(20)	20(25)	5(7)	59(92)	64	Yes	Yes	Yes
Capsella bursa-pastoris	Shepherd's purse	7	11	18	4	40	40	Yes	Yes	Yes
Caragana arborescens	Siberian peashrub	24	14	21	5(7)	64(97)	66	_	Yes	Yes
Carduus acanthoides * +	Spiny plumeless thistle	22	17	14	8	61	61	Yes	Yes	Yes
Carduus nutans * +	Nodding plumeless thistle	22	17	14	8	61	61	Yes	Yes	Yes
Carduus pycnocephalus * +	Italian plumeless thistle	22	17	14	8	61	61	Yes	Yes	Yes
Carduus tenuiflorus * +	Winged plumeless thistle	22	17	14	8	61	61	Yes	Yes	Yes
Centaurea biebersteinii	Spotted knapweed	34	22	21	9	86	86	Yes	Yes	_
Centaurea solstitialis	Yellow star-thistle							_	_	_
<i>Cerastium fontanum ssp. vulgare</i> *	Big chickweed	6	8(25)	15(19)	5	34(94)	36	Yes	Yes	Yes
Cerastium glomeratum *	Sticky chickweed	6	8(25)	15(19)	5	34(94)	36	Yes	Yes	Yes
Chenopodium album	Lambsquarters	5	12	15	5	37	37	Yes	Yes	Yes
Cirsium arvense	Canada thistle	26	17	21	10	76	76	Yes	Yes	Yes
Cirsium vulgare	Bull thistle	20	19(23)	18	3	60(98)	61	Yes	Yes	Yes
Convolvulus arvensis	Field bindweed	18	14	16	8	56	56	Yes	Yes	Yes
Cotula coronopifolia	Common brassbuttons	14	11(23)	9	7	41(98)	42	Yes	-	-
Crepis tectorum	Narrowleaf hawksbeard	9(30)	17	18	3(7)	47(87)	54	Yes	Yes	Yes
Crupina vulgaris	Common crupina							_	_	-
Cytisus scoparius	Scotch broom	26	17	18	8	69	69	Yes	_	-
Dactylis glomerata	Orchard grass	16	10	22	5	53	53	Yes	Yes	Yes
Descurainia sophia	Herb sophia	8	13	18	2	41	41	Yes	Yes	Yes
Digitalis purpurea	Purple foxglove	16	11	19	5	51	51	Yes	Yes	-
Elymus repens	Quackgrass	20	15	19	5	59	59	Yes	Yes	Yes
Euphorbia esula +	Leafy spurge	31	21	23	9	84	84	Yes	Yes	-
Fallopia convolvulus	Black bindweed	12	16	17	5	50	50	Yes	Yes	Yes
Galeopsis bifida *	splitlip hempnettle	14	9	12(19)	3	38(94)	40	Yes	Yes	Yes
Galeopsis tetrahit *	brittlestem hempnettle	14	9	12(19)	3	38(94)	40	Yes	Yes	Yes
Glechoma hederacea	Ground ivy	14	12	14	8	48	48	Yes	Yes	Yes
Gypsophila paniculata	Baby's breath	20	14	18	3(7)	55(97)	57	Yes	Yes	Yes
Heracleum mantegazzianum +	Giant hogweed	33	22	17	9	81	81	Yes	Yes	Yes
Hesperis matronalis	Dames rocket	10	10(22)	17	2(7)	39(94)	41	Yes	Yes	-

+ = Not known in AK (2006)

* = Congeneric species ranked together

¹ Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, - = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Plant species	Common name	Ecological Impact	Biological Characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Hieracium aurantiacum *	Orange hawkweed	29	23	19	8	79	79	Yes	Yes	Yes
Hieracium caespitosum *	Meadow hawkweed	29	23	19	8	79	79	Yes	Yes	Yes
Hieracium umbellatum	Narrowleaf hawkweed	13(30)	16(20)	9	4(7)	42(82)	51	Yes	Yes	Yes
Hordeum jubatum	Foxtail barley	18	16	20	9	63	63	Yes	Yes	Yes
Hordeum murinum ssp. leporinum	Leporinum barley	18	17	17	8	60	60	_	Yes	-
Hydrilla verticillata +	Waterthyme	38	17(22)	14	9	78(97)	80	Yes	Yes	Yes
Hypericum perforatum	Common St. Johnswort	11	15	18	8	52	52	Yes	Yes	Yes
Impatiens glandulifera	Ornamental jewelweed	29	22	22	7	80(98)	82	Yes	Yes	-
Lappula squarrosa	European stickseed	10	12	17	5	44	44	Yes	Yes	Yes
Lepidium densiflorum	Common pepperweed	1(30)	9(23)	8	4	22(88)	25	Yes	Yes	Yes
Lepidium latifolium	Broadleaved pepperweed	28	17(22)	16	6(7)	67(94)	71	_	Yes	Yes
Leucanthemum vulgare	Oxeye daisy	20	15	18	8	61	61	Yes	Yes	Yes
Linaria dalmatica	Dalmatian toadflax	16	14	19	9	58	58	_	Yes	_
Linaria vulgaris	Butter and eggs	22	17	21	9	69	69	Yes	Yes	Yes
Lolium perenne ssp. multiflorum	Italian ryegrass	14	10	15	2	41	41	Yes	Yes	Yes
Lonicera tatarica	Tatarian honeysuckle	22	19(23)	18	6	65(98)	66	Yes	Yes	_
Lupinus polyphyllus	Bigleaf lupine	14	16	17	8	55	55	Yes	Yes	Yes
Lythrum salicaria *	Purple loosestrife	34	20	21	8	83	84	_	Yes	_
Lythrum virgatum *	European wand loosestrife	34	20	21	8	83	84	_	Yes	-
Matricaria discoidea	Disc mayweed	5	9	15	3	32	32	Yes	Yes	Yes
Medicago lupulina	Black medick	10	18	15	5	48	48	Yes	Yes	Yes
Medicago sativa ssp. falcata	Yellow alfalfa	15(30)	17	15(19)	7	54(84)	64	Yes	Yes	Yes
Medicago sativa ssp. sativa	Alfalfa	13(30)	17	16	7	53(90)	59	Yes	Yes	Yes
Melilotus alba	White sweetclover	29	22	21	9	81	81	Yes	Yes	Yes
Melilotus officinalis	Yellow sweetclover	24	18	19	8	69	69	Yes	Yes	Yes
Mycelis muralis	Wall-lettuce	7	11(23)	8	4	30(98)	31	Yes	_	_
Myriophyllum spicatum +	Eurasian watermilfoil	38	20(22)	20	9	87(97)	90	Yes	Yes	Yes
Nymphaea odorata ssp. odorata	American white waterlily	36	18	18	6(7)	78(97)	80	Yes	_	_
Persicaria lapathifolia *	Curlytop knotweed	6	16	15(19)	7	44(94)	47	Yes	Yes	Yes
Persicaria maculosa *	Spotted ladysthumb	6	16	15(19)	7	44(94)	47	Yes	Yes	Yes
Phalaris arundinacea	Reed canarygrass	33	20	24	6	83	83	Yes	Yes	Yes
Phleum pratense	Timothy	14	14	19	7	56	54	Yes	Yes	Yes
Plantago major	Common plantain	8	13	16	7	44	44	Yes	Yes	Yes
Poa annua	Annual bluegrass	8	13	18	7	46	46	Yes	Yes	Yes
Poa compressa	Canada bluegrass	6	10	17	, 5(7)	38(97)	39	Yes	Yes	Yes
Poa pratensis ssp. pratensis *	Kentucky bluegrass	12	10	19	7	52	52	Yes	Yes	Yes
Poa pratensis ssp. irrigata *	Spreading bluegrass	12	14	19	7	52	52 52	Yes	Yes	Yes
Poa trivialis *	Rough bluegrass	12	14	19	7	52 52	52 52	Yes	Yes	Yes
Polygonum aviculare	Prostrate knotweed	7	15	16	7	45	45	Yes	Yes	Yes
Polygonum cuspidatum *	Japanese knotweed	33	21	23	7(7)	43 84(97)	43 87	Yes	Yes	-
Polygonum cuspitutum Polygonum sachalinensis *	Giant knotweed	33	21	23 23	7(7) 7(7)	84(97) 84(97)	87 87	Yes	Yes	
Polygonum Suchainensis Polygonum X bohemicum *	Bohemian knotweed	33	21	23 23	7(7) 7(7)	84(97)	87 87	Yes	Yes	-
$ + = \operatorname{Not} \operatorname{known} \operatorname{in} \operatorname{AK} (2006) $	Donemian knotweed	- 33	21	23	/(/)	04(9/)	0/	165	165	-

+ = Not known in AK (2006)

* = Congeneric species ranked together

 1 Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, – = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Plant species	Common name	Ecological Impact	Biological Characteristics	Distribution	Control	Total	Invasiveness ¹	South Coastal	Interior Boreal	Arctic Alpine
Potentilla recta +	Sulfur cinquefoil	20	13	17	7	57	57	Yes	Yes	_
Prunus padus	European bird cherry	31	21	17	5	74	74	Yes	Yes	_
Ranunculus acris *	Tall buttercup	16	13(23)	15	9	53(98)	54	Yes	Yes	Yes
Ranunculus repens *	Creeping buttercup	16	13(23)	15	9	53(98)	54	Yes	Yes	Yes
Rubus discolor	Himalayan blackberry	38	18	12	9	77	77	Yes	_	_
Rumex acetosella	Common sheep sorrel	12	16	16	7	51	51	Yes	Yes	Yes
Rumex crispus *	Curly dock	10	16	14	8	48	48	Yes	Yes	Yes
Rumex longifolius *	Dooryard dock	10	16	14	8	48	48	Yes	Yes	Yes
Rumex obtusifolius *	Bitter dock	10	16	14	8	48	48	Yes	Yes	Yes
Saponaria officinalis	Bouncingbet	5(30)	8(22)	12	2(3)	27(80)	34	Yes	Yes	_
Senecio jacobaea	Stinking willie	20	15	20	8	63	63	Yes	Yes	Yes
Senecio vulgaris	Old-man-in-the-Spring	4	12	15	5	36	36	Yes	Yes	Yes
Silene dioica *	Red catchfly	13	9	13	7	42	42	Yes	Yes	Yes
Silene latifolia *	Bladder campion	13	9	13	7	42	42	Yes	Yes	Yes
Silene noctiflora *	Nightflowering silene	13	9	13	7	42	42	Yes	Yes	Yes
Sonchus arvensis	Moist sowthistle	22	21	21	9	73	73	Yes	Yes	_
Sorbus aucuparia	European mountain ash	22	14	16	7	59	59	Yes	_	_
Spartina alterniflora * +	Smooth cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina anglica * +	Common cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina densiflora * +	Denseflower cordgrass	40	17	23	6	86	86	Yes	_	_
Spartina patens * +	Saltmeadow cordgrass	40	17	23	6	86	86	Yes	_	_
Spergula arvensis	Corn spurry	2	11	14	5	32	32	Yes	Yes	Yes
<i>Stellaria media</i> /non-seabird sites	- ·	10	12	15	5	42	42	Yes	Yes	Yes
<i>Stellaria media</i> /sea bird colonies	Common chickweed	14	12	20	8	54	54	Yes	Yes	Yes
Tanacetum vulgare	Common tansy	20	15	13	8	56(98)	57	Yes	Yes	Yes
Taraxacum officinale ssp. officinale	Common dandelion	18	14	18	8	58	58	Yes	Yes	Yes
Tragopogon dubius	Yellow salsify	20	11	16	3	50	50	Yes	Yes	_
Trifolium hybridum	Alsike clover	22	12	18	5	57	57	Yes	Yes	Yes
Trifolium pratense	Red clover	16	12(22)	16	7	51(97)	53	Yes	Yes	Yes
Trifolium repens	White clover	22	15	14	8	59	59	Yes	Yes	Yes
Tripleurospermum perforata	Scentless false mayweed	13	13(23)	15	6	47(98)	48	Yes	Yes	Yes
Verbascum thapsus	Common mullien	20	9	16	7	52	52	Yes	Yes	_
Vicia cracca	Bird vetch	27	16	21	9	73	73	Yes	Yes	Yes
Vicia villosa	Winter vetch	22	11(22)	12(19)	3	48(91)	53	Yes	Yes	_
Zostera japonica †	Dwarf eelgrass	30	10	8	1(3)	49(93)	53	Yes	Yes	_

+ = Not known in AK (2006)

* = Congeneric species ranked together

¹ Invasiveness is equal to the Relative Maximum Score, which is equal to the sum of scores from each section divided by the total possible. See pages 10–11. Climate matches to the three ecoregions of Alaska are included (Yes = present or high probability of establishing in the ecoregion, - = absent and low probability of establishment). Scores >80 = "Extremely Invasive", 70-79 = "Highly Invasive", 60-69 = "Moderately Invasive", 50-59 = "Modestly Invasive", 40-49 = "Weakly Invasive", and < 40 = "Very Weakly Invasive".

Appendix B. Invasiveness Ranks of 113 non-native plants of Alaska.

Achillea ptarmica L.

Ranking Summa		
Ecoregion known or expected to occur	in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	14
Biological Characteristics and Dispersal	25	12
Amplitude and Distribution	25	16
Feasibility of Control	3	<u> </u>
Relative Maximum Climatic Compari	ison	4/
	Collected in	CLIMEX
	Alaska regions?	
South Coastal	Yes	
Interior Boreal	Yes	_
Arctic Alpine	No	Yes
Achillea ptarmica has been collected in in	terior boreal a	nd south
coastal ecogeographic regions of Alaska (
2004, UAM 2004). This species is known		
Europe as the northern province in Norw		
(Lid and Lid 1994). This region is recogn		
, , ,	0	
tundra vegetation (CAFF Circumpolar A		~ .
therefore, it is possible for this taxon to es	stablish in the	arctic
alpine ecoregion of Alaska		
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)	C	3
Ecosystem impacts are largely unknown.		
in dense patches and would likely reduce		
light availability for other plant species (I		
Impact on Natural Community Structure		3
This species appears to mildly increase th		
herbaceous layer along roadsides in south	i-central Alasi	ca
(I. Lapina pers. obs.).	. (0, 10)	2
Impact on Natural Community Composit		3
It is unknown if sneezewort causes chang		
This species can hybridize with native sp		
(Hurteau and Briggs 2003, Plants for a fu		
pose a genetic risk. Current population si		
and not particularly dense, suggesting the		
on individual native species is minor (I. L	apina pers. ob	
Impact on Higher Trophic Levels (0–10)		5
Sneezewort is a host for numerous aphid,		
fungi species (MacLachlan et al. 1996). I	~	
and flies (Andersson 1991, Plants for a fu	ture 2002), an	d its
presence may alter local pollination ecolo	ogy.	
Total for Ecological Impact		14/40
Biological Characteristics and D	Dispersal	Score
Mode of Reproduction $(0-3)$		3
Sneezewort reproduces by abundant seed	ds and branchi	ng
rhizomes (Lid and Lid 1994).		
Long-distance dispersal (0–3)	_	0
Seeds lack pappus and are not dispersed l	ong distances	(Gubanov
et al. 1995).		
Spread by humans $(0-3)$		2
This species is grown as an ornamental ar cultivation (Welsh 1974).	nd has escaped	

common name: sneezewort, Russian daisy

,	-
Allelopathic (0–2)	0
This species is not known to be allelopathic.	
Competitive Ability (0–3)	1
Sneezewort is a very vigorous plant. It can tolerate heat	, cold,
low soil fertility, and drought. It is likely to compete wit	h native
species for nutrient, soil, and water (MacLachlan et al.	1996).
Thicket-forming/Smothering growth form $(0-2)$	0
This species is rhizomatous, but does not grow into imp	enetrable
thickets (I. Lapina pers. obs.).	
Germination requirements (0–3)	0
Germination of Achillea species is improved by exposure	re to light
(MacLachlan et al. 1996). This suggests that seed germ	ination in
established vegetation is less likely.	
Other invasive species in the genus $(0-3)$	3
Achillea filipendulina Lam. is an introduced and weedy	species in
Alaska (AKEPIC 2006).	<u>^</u>
Aquatic, wetland or riparian species $(0-3)$	3
While rarely observed in riparian habitats in North Am	ierica,
this species is often associated with wet meadows, mars	
streambanks in Europe (Gubanov et al. 1995).	, , , , , , , , , , , , , , , , , , , ,
Total for Biological Characteristics and Dispersal	12/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture (0–4)	4
Sneezewort is grown as an ornamental and has escaped	
cultivation. A number of varieties have been bred (Gub	
1995, MacLachlan et al. 1996).	unov et un
Known level of impact in natural areas $(0-6)$	4
This species is known to have spread into meadows of n	
Norway, but is only found occasionally (Lid and Lid 19	
Role of anthropogenic and natural disturbance in). 1
establishment $(0-5)$	1
Sneezewort occurs in the Matanuska–Susitna Valley al	ongtha
	-
forest edges and areas that have been disturbed decades	sago
(I. Lapina pers. obs.).	-
Current global distribution (0–5) Sneezewort is native to Central Europe; it is now wides	5 prood in
North America and it is known from Tasmania (Csurh	
Edwards 1998). It is known to occur in arctic–subarctio	c regions
of Scandinavia (Lid and Lid 1994).	
Extent of the species U.S. range and/or occurrence of	2
formal state or provincial listing $(0-5)$	
Sneezewort is known from 17 of the northern United S	
(USDA 2002). This species is not considered noxious in	1 North
America (Rice 2006).	
Total for Ecological Amplitude and Distribution	15/25
Feasibility of Control	Score
Seed banks (0–3)	U
No information is available on seed longevity.	
Vegetative regeneration $(0-3)$	2
This species is rhizomatous and is able to resprout (Lid	and Lid
1994).	
Level of effort required $(0-4)$	U
Unknown. It is difficult to assess the feasibility of eradi	cating this
weed (Csurhes and Edwards 1998).	
Total for Feasibility of Control	2/3
Total score for 4 sections	43/93

S

B-1

Alliaria petiolata (Bieb.) Cavara & Grande common names: garlic mustard

Ranking Summar	·y		Spread by humans (0–3) 3
Ecoregion known or expected to occur	in		Anthropogenic distribution appears to be the primary dispersal
South Coastal		Yes	mechanism of Alliaria petiolata. Seeds are transported on boots,
Interior Boreal		No	clothes, and hair, and by roadside mowing, automobiles, and
Arctic Alpine		No	trains (Nuzzo 2000). The species has medicinal properties
	otential Max.	Score	(McGuffin 1997). This plant is an ingredient in several 'gourmet'
Ecological Impact	30	24	recipes. At least one U.S. seed company (Canterbury Farms)
Biological Characteristics and Dispersal	25	16	
Amplitude and Distribution	25	16	offers <i>Alliaria petiolata</i> seeds for sale (\$1.00/package) (Nuzzo
Feasibility of Control	10	7	2000).
Relative Maximum		70	Allelopathic $(0-2)$ 2
Climatic Comparis		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Alliaria petiolata produces several phytotoxic chemicals that may
	Collected in	CLIMEX	interfere with native plant species. The roots contain sinigrin and
	laska regions?	similarity?	glucotopaeolin (Nuzzo 2000).
South Coastal	Yes	-	Competitive Ability (0–3) 3
Interior Boreal	No	No	Garlic mustard outcompetes native herbaceous species for light,
Arctic Alpine	No	No	moisture, nutrient, and space (Rowe and Swearingen 2003).
Garlic mustard has been collected in south	0		Experiments demonstrated that seedlings of chestnut and oak
downtown Juneau, (AKEPIC, 2004). Usin	0		had reduced growth when grown with Alliaria petiolata (Nuzzo
matching program, climatic similarity bet	ween Fairba	nks and	2000).
areas where the species is documented is v	ery low. This	is true	Thicket-forming/Smothering growth form $(0-2)$ 0
for Nome as well. However, this taxon has			Grows from 1 to 4 feet tall (Nuzzo 2000, Wisconsin DNR 2004)
Stockholm, Sweden (Natur Historiska Ri			Although aggressive, this taxon does not have a smothering
2004), which has a moderate climate mate			growth habit
with Anchorage, suggesting that establish			Germination requirements (0–3) 3
Alaska may be possible.	inent in sout		Seeds can remain dormant for 20 months (Blossey 2003). Cold
		Score	stratification is necessary for germination. Germinates well in
Ecological Impact		U	intact woodland communities (Wisconsin DNR 2004). Can
Impact on Ecosystem Processes (0–10) No information was found identifying imp	acts to acon	-	germinate in both light and dark after dormancy is broken (Byers
	Jacis to ecos	ystem	
processes.	0 10)	10	1988, Bloom et al. 1990). Exposed soil caused by deer trampling
Impact on Natural Community Structure (has been suggested to facilitate spread of the species (Blossey
Garlic mustard dramatically displaces nat	-		2003), but garlic mustard is capable of germinating in the absence
and tree seedlings (Blossey 2003, Blossey		lant	of exposed soil.
Conservation Alliance Alien Plant Workin		_	Other invasive species in the genus $(0-3)$ 0
Impact on Natural Community Composition		7	Alliaria petiolata is the only species of the genus Alliaria in North
Garlic mustard can completely dominate a	_		America. (Blossey et al. 2002, USDA 2002).
plants in the rich herbaceous understory la	ayer (Nuzzo i	2000).	Aquatic, wetland or riparian species $(0-3)$ 0
Impact on Higher Trophic Levels $(0-10)$	1.1. 6	7	Alliaria petiolata formerly considered a plant of flood plains
Garlic mustard appears to alter habitat sui			and moist woods has become common in drier and more open
mammals, and amphibians, and may affec	t population	s of these	habitats (Byers and Quinn 1987). It occurs in forest edges,
species. Phytotoxic chemicals produced by	y Alliaria pet	<i>iolata</i> may	hedgerows, shaded roadsides, and urban areas, and occasionally
interfere with growth of native species (N	uzzo 2000).		in full sun (Nuzzo 2000).
Total for Ecological Impact		24/30	Total for Biological Characteristics and Dispersal 16/25
Biological Characteristics and D	ispersal	Score	Ecological Amplitude and Distribution Score
Mode of Reproduction (0–3)	-	3	Highly domesticated or a weed of agriculture (0–4) 0
Plant produce an average of 136–295 seed	s (Byers and	Quinn	<i>Alliaria petiolata</i> is a weed of natural areas (Blossey et al. 2002).
1998), and up to 2,421 seeds under lab cor	ditions (Nu	zzo 2000).	Although used in cooking and medicines, this taxon in not
Maximum production per plant is estimat			domesticated or associated with agriculture.
plant with 12 stems (Nuzzo 2000).	,		Known level of impact in natural areas $(0-6)$ 4
Long-distance dispersal (0–3)		2	Garlic mustard is common in low-quality forests in central
Seeds typically fall within a few meters of	the plant. Wi		
dispersal is limited, and seeds do not float	-		Pennsylvania (Nuzzo 2000) and less frequent in isolated
			woodlots in central Indiana (Brothers and Springarn 1992). It is
readily attach to moist surfaces. It may be	uispersea by	rodents,	rarely found under coniferous trees in the Midwest, but has been
birds, and deer (Nuzzo 2000).			reported from under seven species of coniferous trees in Ontario
			Garlic mustard is most frequently recorded from moist, usually
			riverine, habitat and waste ground in Kansas and Oklahoma
			(Nuzzo 2000)

Role of anthropogenic and natural disturbance in 4	Feasibility of Control Score
establishment (0–5)	Seed banks (0–3) 2
Alliaria petiolata is disturbance adapted and frequently in sites	A small percentage of seed remains viable in the seed bank for up
subjected to continued or repeated disturbance (Luken et al.	to 4 years (Byers and Quinn 1998, Nuzzo 2000).
1997, Pyle 1995). Byers and Quinn (1998) found that garlic	Vegetative regeneration (0–3) 2
mustard resource allocation was greatest in the most disturbed	Garlic mustard can resprout after removal of aboveground
site. Continued disturbance promotes greater seed production	biomass (Wisconsin DNR 2004).
which in turn promotes larger populations. In the absence of	Level of effort required $(0-4)$ 3
disturbance, garlic mustard gradually declines to a low stable	Once garlic mustard is established, the management goal is to
level (Nuzzo 2000).	prevent seed production until the seed bank is exhausted. This
Current global distribution (0–5) 3	requires post removal management over several growing seasons.
Native to Europe, <i>Alliaria petiolata</i> also occurs in North Africa,	Many successful control regimes involve a combination of spring
India, Sri Lanka, New Zealand, and North America.	burning, hand pulling, and herbicide treatment. Monitoring once
Extent of the species U.S. range and/or occurrence of 5	or twice annually for garlic mustard presence is required. After
formal state or provincial listing $(0-5)$	3 years of hand pulling of an infestation in Juneau, the plants are
Alliaria petiolata is considered to be noxious in Alabama,	flowering earlier and at shorter heights (Raymond E. Paddock
Minnesota, Vermont, and Washington (Invaders Database	pers. com.).
System 2003).	Total for Feasibility of Control7/10
Total for Ecological Amplitude and Distribution 16/25	Total score for 4 sections63/90

S

Alnus glutinosa (L.) Gaerth.

common name: European alder, black alder, European black alder

Ranking Summa	ary		Ecological Impact Score
Ecoregion known or expected to occu			Impact on Ecosystem Processes (0–10) 7
South Coastal		Yes	European alder is a pioneer species capable of colonizing exposed
Interior Boreal		Yes	soil. It produces copious litter and fixes nitrogen, thereby
Arctic Alpine		Yes	altering soil conditions (Funk 2005, USDA 2002). European
	Potential Max.	Score	alder produces biomass abundantly. Six-year-old European
Ecological Impact	40	24	alder produced more than 6 times the volume of litter per
Biological Characteristics and Dispersal	40	16	tree compared to native trees of the same age. Alder leaf litter
Amplitude and Distribution	25	14	
Feasibility of Control	7	5	decomposes easily, which quickly increases soil fertility (Funk
Relative Maximum		61	2005).
Climatic Compar	ison		Impact on Natural Community Structure (0–10) 5
	Collected in	CLIMEX	European alder colonizes bare ground and creates an initial layer
	Alaska regions?	similarity?	of vegetation (Funk 2005, McVean 1953).
South Coastal	No	Yes	Impact on Natural Community Composition (0–10)5
Interior Boreal	No	Yes	European alder is capable of creating a pure stands in its native
Arctic Alpine	No	Yes	range. In North America it is usually present in association with
Alnus glutinosa has not been collected in	Alaska (Hulté	en 1968,	willow (McVean 1953).
Welsh 1974, AKEPIC 2004, UAM 2004). Using the C	LIMEX	Impact on Higher Trophic Levels (0–10) 7
matching program, climatic similarity between Juneau and areas		and areas	European alder has been found associated with nitrogen-fixing
where Alnus glutinosa is documented is h	-		Frankia (Hall et al. 1979). A portion of this fixed nitrogen
the species includes Bergen, Kristiansan			becomes available for other species. European alder provides
and Lid 1994), which has 73%, 60%, and			food for deer, rabbits, hares, and several bird species. Dozens
with Juneau, respectively. The range of th			of insects and diseases have been observed in association with
Røros and Dombås, Norway, which have	~		European alder but few cause serious damage. European alder
matches with Nome, and 55% and 52% c			hybridizes readily with many other alders, particularly with
Fairbanks, respectively. Thus, establishment of Alnus glutinosa		lutinosa	Alnus incana and A. rubra. Establishment of European alder leads
in south coastal, interior boreal, and arct	0		to increases in earthworm population which, via bioturbation
regions may be possible.			increase the rate of soil development (Funk 2005, McVean 1953).
			Total for Ecological Impact 24/40

Biological Characteristics and Dispersal	Score	Ecological Amplitude and Distribution Score
Mode of Reproduction $(0-3)$	3	Highly domesticated or a weed of agriculture $(0-4)$ 0
European alder reproduces almost entirely by seed. The		European alder is not domesticated and or known as an
number of seeds per catkin is 60, the number of female		agricultural weed (Funk 2005, McVean 1953).
is estimated to be about 4,000 per tree; thus a single tre		Known level of impact in natural areas (0–6) 3 European alder has invaded forests and wetlands in Wisconsin
produce a total of 24,000 seeds. Root suckers are rare. I		
green branches beginning to take root in soft swamp m	ud have	(Wisconsin DNR 2004). European alder has been naturalized
been observed in Britain (McVean 1953).	2	in Tennessee and has the potential to become a problem in the future (SE-EPPC 2001).
Long-distance dispersal $(0-3)$	3	Role of anthropogenic and natural disturbance in 3
Fruits float, therefore, are efficiently dispersed by flowing		establishment (0–5)
water and wind drift over standing water. Dispersal by		European alder is a pioneer species readily colonizing open
possible although seeds are generally split open and the		ground. Natural and humanmade disturbances might promote
consumed. Wind dispersal occurs but is not very effect		infestation. In particular, grazing may favor the spread of trees
(McVean 1953). The fruits of European alder are small		
They possess two lateral flat corky outgrowths and an o		by reducing the shading and smothering effect of tall vegetation on the seedlings, and breaking the turf and litter mat (McVean
resistant coat. They can float for over 12 months in still	water	1953).
(McVean 1955).	2	Current global distribution (0–5) 3
Spread by humans (0–3) European alder has been recommended for planting for	2	European alder has a broad natural range that includes most of
mine remediation (Funk 2005). It has escaped from red		Europe except the Arctic and extends into North Africa and Asia.
		The species is naturalized throughout the Northeastern United
mine soils and now grows naturally in surrounding are are numerous horticultural varieties in cultivation in B		States and Maritime Canada (Funk 2005, McVean 1953).
		Extent of the species U.S. range and/or occurrence of 5
none have been released in the United States (USDA $2^{(1)}$ Allelopathic (0–2)	002).	formal state or provincial listing $(0-5)$
European alder is not listed as an allelopathic (USDA 2	-	European alder is naturalized throughout the Northeastern
Competitive Ability $(0-3)$	1	United States and Maritime Canada (Funk 2005, McVean 1953).
European alder is capable of competing with willow, las	rch,	This species considered invasive in Tennessee and Wisconsin
poplar, and birch. Pure alder stands can form, although		(SE-EPPC 2001, USDA 2002, Wisconsin DNR 2004).
species colonize simultaneously (Funk 2005, McVean		Total for Ecological Amplitude and Distribution 14/25
European alder possesses an extensive root system, wh		Feasibility of Control Score
enables it to survive in waterlogged soils (McVean 1955		Seed banks (0–3) U
access deep-lying soil moisture. In Europe, alder is con		In study by McVean (1955), seeds were viable after three winters
be the deepest rooting tree species and more shade tole		of storage in stoppered bottles at room temperature. Longevity of
willow, larch, poplar, and birch (Funk 2005).		seeds buried in the soil is unknown.
Thicket-forming/Smothering growth form $(0-2)$	2	Vegetative regeneration $(0-3)$ 2
European alder is a shrub or tree that reaches heights u	p to 60–70	European alder commonly sprouts from the stump after cutting
feet. Pure stands are common its native range; in its int		or burning (Funk 2005, McVean 1953). Fallen green branches
range it often occurs in thickets with willows (McVean		have been observed to take root in soft mud (McVean 1953).
Germination requirements (0–3)	2	Level of effort required (0–4) 3
European alder can germinate in light or darkness, but	successful	Mechanical or chemical methods are acceptable for European
establishment of seedlings requires relatively high light	t intensity	alder control (USDA 2002).
(McVean 1953). Germination of alder seeds may be dep	pressed by	Total for Feasibility of Control 5/7 Total score for 4 sections 59/97
the presence of tannins in alder litter (McVean 1955).		10tal score for 4 sections 59/97
Other invasive species in the genus $(0-3)$	0	\$
No other weedy alder species are known (USDA 2002)		U U U U U U U U U U U U U U U U U U U
Aquatic, wetland or riparian species $(0-3)$	3	
The native habitat of European alder is stream and lake	sides	
(Gubanov et al. 2003, McVean 1953).		

(Gubanov et al. 2003, McVean 1953). Total for Biological Characteristics and Dispersal 16/25

common names: stinking chamomile, dog fennel, mayweed

Ranking Summary			Biological Characteristics and Dispersal Score
Ecoregion known or expected to occur in			Mode of Reproduction (0–3) 3
South Coastal		Yes	The number of seeds produced by a plant varies widely
Interior Boreal		Yes	depending on the soil fertility and the intensity of competition.
Arctic Alpine		No	Plants of average size are capable of producing from 550 to
	tialMax.	Score	
Ecological Impact	40	8	12,000 achenes. The largest plant observed at the experimental
Biological Characteristics and Dispersal	25	12	site in Britain had a reproductive capacity of 27,000 achenes (Kay
Amplitude and Distribution	25	14	1971).
Feasibility of Control	10	7	Long-distance dispersal (0–3) 0
Relative Maximum		41	The achenes of mayweed chamomile lack any structural
Climatic Comparison			adaptations for dispersal (Kay 1971).
Colle	ected in	CLIMEX	Spread by humans (0–3) 3
Alaska	regions?	similarity?	Mayweed chamomile seed can easily contaminate grass seeds.
South Coastal	Yes	-	Achenes remaining on the plant may be dispersed some distance
Interior Boreal	Yes	-	with hay. They may also be dispersed on footwear and clothes, in
Arctic Alpine	No	No	mud and soil adhering to agricultural equipment, and the feet of
Anthemis cotula has been collected in south coa			farm animals (Kay 1958, USDA ARS 2005).
boreal ecogeographic regions of Alaska (Hulté	én 1968, V	Velsh	Allelopathic (0–2) 2
1974, AKEPIC 2004, UAM 2004). Using the (CLIMEX		Mayweed chamomile is potentially allelopathic to certain forage
matching program, climatic similarity between			species (Smith 1990). Mayweed chamomile leaf-tissue extract
where the species is documented is high. Speci			resulted in 50% reduction in Italian ryegrass and alfalfa seed
Røros, Norway (Lid and Lid 1994), which has	0		germination. Tissue extracts also influenced Italian ryegrass and
match with Nome. However, mayweed chamo			alfalfa seedlings growth (Smith 1999).
mostly from areas with July mean temperature			Competitive Ability (0–3)
			Mayweed chamomile is able to compete with crop species (cf.
(Kay 1971). These conditions are unlikely to o			Kay 1971, Matthews 1972, Ogg et a. 1993). It is suggested to be
alpine ecogeographic region (WRCC 2005). T			declining in abundance following its introduction in Denmark
of Anthemis cotula in arctic alpine Alaska is pre	edicted to	not be	500 years previously, due in part to reduced competitive ability
possible.			
Ecological Impact		Score	(Erneberg 1999). It is a serious weed problem in nonirrigated
Impact on Ecosystem Processes (0–10)	1.0	1	fields in the Pacific Northwest (Kells 1989) and it can form
Though mayweed chamomile has not been rep			monocultures to the exclusion of pasture species (Matthews
undisturbed areas (Kay 1971, Roberts and Nei			1972). Ogg et al. (1993) describe the species as having only a
2004, Whitson et al. 2000), it may retard succe	ession afte	er sites	slight impact on pea yield when comprising less than 50% of the
have been invaded.			total plants.
Impact on Natural Community Structure (0–10		1	Thicket-forming/Smothering growth form $(0-2)$ 0
Mayweed chamomile typically grows in large			Mayweed chamomile typically grows in large numbers and can
change the density of the layer on cultivated fie	elds or ruc	leral sites.	change the density of the layer on cultivated fields or ruderal sites.
It is not known from undisturbed plant comm		Lay 1971).	It does not form thickets and does not have a climbing growth
Impact on Natural Community Composition (0		1	habit (Smith 1987, Douglas et al. 1998, Whitson 2000).
Mayweed chamomile has not been observed in	n undistui	rbed	Germination requirements (0–3) 0
areas in Alaska (Hultén 1968, AKEPIC 2004)	and no in	npact on	Mayweed chamomile is a weed of cultivated fields and is known
native populations has been documented (Kay	y 1971, Ro	berts and	only germinating on disturbed soils (Gealy et al. 1985, Gealy et
Neilson 1981, Whitson et al. 2000).			al. 1994, Kay 1971, Roberts and Neilson 1981).
Impact on Higher Trophic Levels (0–10)		5	Other invasive species in the genus $(0-3)$ 3
Mayweed chamomile is unpalatable to grazing	g animals.	The	Anthemis arvensis L. considered a weed in Colorado (USDA
flowers are visited and pollinated mainly by sy	-		2002)
and other Diptera. Hybrids with Tripleurosperi	-		Aquatic, wetland or riparian species (0–3) 0
and Anthemis tinctoria have been recorded. We			Mayweed chamomile is commonly found in cereal crops, waste
spittlebugs, bugs, moths, slugs, and snails have	-		areas, farm yards, overgrazed pastures, and along roadsides (Kay
to feed on mayweeds, causing serious damage	_		1971, Roberts and Neilson 1981, Whitson et al. 2000)
vegetative parts of plants (Erneberg 1999). Thi			Total for Biological Characteristics and Dispersal 12/25
			· · · · · · · · · · · · · · · · ·
seriously infected by fungi (Kay 1971). Maywe			
potentially allelopathic to certain forage specie	es (Smith		
Total for Ecological Impact		8/40	

Ecological Amplitude and Distribution Score	Extent of the species U.S. range and/or occurrence of 5
Highly domesticated or a weed of agriculture $(0-4)$ 4	formal state or provincial listing $(0-5)$
Mayweed chamomile is a long-established weed of arable land in	Mayweed chamomile occurs in nearly all states of the United
Britain. Its achenes have been found in archaeological material	States. It is declared a noxious weed in Colorado and Nevada
dated to medieval times. The fact that Anglo-Saxon farmers	(USDA 2002).
were the first to cultivate the heavy soils favoring mayweed	Total for Ecological Amplitude and Distribution 14/25
chamomile, suggest that it may have become an important	Feasibility of Control Score
agricultural weed in Britain during Anglo-Saxon times (Kay	Seed banks (0–3) 3
1958). Mayweed chamomile has become the most important	Up to 6.7% of seeds remained viable in the soil after 5 year of
weed in agriculture (Ivens 1979).	sown in study by Roberts and Neilson (1981). Chippindale and
Known level of impact in natural areas (0–6) 0	Nilton (1934) suggested 6 years seed viability for mayweed
Mayweed chamomile is not known to cause an impact on any	chamomile. Salzmann (1954, cited in Kay 1971) obtained 63%
natural areas.	germination after 1 year of burial in the soil, 68% germination
Role of anthropogenic and natural disturbance in 0	after 3 years and only 6% after 11 years. Viability of seeds was
establishment (0–5)	recorded up to 30 years after burial (Darlington and Steinbauer
Kay (1971) suggested that stinking chamomile does not grow in	1961).
undisturbed habitats. Seedling establishment is slow and readily	Vegetative regeneration (0–3) 2
crowded out by competing plants on vegetated sites. Mayweed	Mayweed chamomile can produce vigorous new shoots from the
chamomile grows best in open conditions (Ivens 1979). This	undamaged lower parts of the plant after cutting (Kay 1971).
species has been encountered only on disturbed sites in Alaska	Level of effort required (0–4) 2
(AKEPIC 2004, Hultén 1968, Kay 1971, Welsh 1974).	Combinations of rotation grazing and herbicides treatment are
Current global distribution (0–5) 5	the best methods of successful control of mayweed chamomile
Mayweed chamomile is native to the Mediterranean region, but	(Ivens 1979). This weed is known to be resistant to a number of
has been widely introduced as a weed in the temperate zone.	herbicides.
Its European distribution extends to southern Norway, central	Total for Feasibility of Control 7/10
Sweden and southern Finland. Its southern extent includes the	Total score for 4 sections41/100
Canary Islands, Egypt, and Western Asia. This species has been	S
introduced to the United States, Canada, Argentina, Australia,	
and New Zealand (Hultén 1968, Ivens 1979, Kay 1957, USDA	
ARS 2005).	

Brachypodium sylvaticum (Huds.) Beauv.

Ranking Summary Ecoregion known or expected to occur in South Coastal Yes Interior Boreal Yes Arctic Alpine Yes Potential Max. Score **Ecological Impact** 40 31 **Biological Characteristics and Dispersal** 23 19 Amplitude and Distribution 25 14 Feasibility of Control 10 5 **Relative Maximum** 70 **Climatic Comparison CLIMEX** Collected in Alaska regions? similarity? South Coastal No Yes Interior Boreal No Yes Arctic Alpine No Yes Brachypodium sylvaticum has not been documented in Alaska (Hultén 1968, Welsh 1974, AKEPIC 2004, UAM 2004). Using the CLIMEX matching program, climatic similarity between Juneau and areas where the species is documented is high. False brome is common along the coastal region of Norway, including the area around Bergen, which has a 73% similarity with Juneau. This suggests that there are likely no abiotic limitations to its establishment in south coastal Alaska. Range of the species includes Kirov and Kazan, Russia (Gubanov et al. 1995), which has a 66%, and 58% climatic match with Nome, and 60% and 59% climatic match with Fairbanks respectively. Thus establishment of Brachypodium sylvaticum in interior boreal and arctic alpine ecogeographic regions may be possible. However, this species does not range into alpine or arctic regions of Scandinavia (Lid and Lid 1994). **Ecological Impact** Score Impact on Ecosystem Processes (0–10) False brome hinders tree reestablishment, altering natural successional processes. It also has the potential to change fire regimes and to impact riparian and stream habitats (Kaye 2001, Tu 2002). False brome reduces riparian tree growth, shading, and stream structure (Kaye 2001) Impact on Natural Community Structure (0–10) False brome can become dominant in the understory of forests, forming nearly monospecific stands (Kaye 2001, Tu 2002). This species may limit establishment of shrubs and trees (Kaye 2001, Tu 2002) Impact on Natural Community Composition (0-10)9 False brome appears to outcompete and completely exclude native forbs and grasses. It also inhibits establishment of tree seedlings (Kaye 2001, Tu 2002). Impact on Higher Trophic Levels (0–10) False brome may be unpalatable to wildlife. It reduces the quality of habitat for mammals, native insects, birds, and even fish (Kaye 2001, Tu 2002). **Total for Ecological Impact** 31/40 **Biological Characteristics and Dispersal** Score Mode of Reproduction (0-3)2 False brome reproduces rapidly from seed, but does not form creeping rhizomes (Kaye 2001, Tu 2002).

common names: false brome, slender false brome

stenuer laise bron	le
Long-distance dispersal (0–3)	2
Seeds can be dispersed by wildlife species (Kaye 2001).	
Spread by humans $(0-3)$	3
Seeds of false brome disperse on vehicles, boots, clothes,	
and forestry equipment. It appears to initially disperse along	
roadsides, and then move out into undisturbed areas and	
clearcuts (Kaye 2001). False brome is also occasionally culti-	vated
for ornamental purposes (Hitchcock and Cronquist 1973).	vateu
Allelopathic (0–2)	U
There is no data concerning allelopathy.	0
Competitive Ability (0–3)	3
False brome appears to outcompete and completely exclude	5
native forbs and grasses (Tu 2002). The species has ability to	
tolerate a wide range of habitats. It can be found growing in	
	1)
sun or shade, in dry or moist areas (Cal-IPC 2005, Kaye 200	
Davies and Long (1991) suggested the existence of two disti	
morphological types within populations of the species that a	re
adapted to different types of environmental conditions.	
Thicket-forming/Smothering growth form $(0-2)$	2
Individual bunches increase in size, eventually uniting to for	
solid mat 12–18 inches high that overwhelms smaller plants	(Cal-
IPC 2005)	
Germination requirements (0–3)	3
False brome has been observed germinating in completely	
vegetated natural areas (Kaye 2001).	
Other invasive species in the genus $(0-3)$	3
Brachypodium distachyon (L.) Beauv. is listed as an invasive p	lant
in California (USDA 2002).	
Aquatic, wetland or riparian species $(0-3)$	1
In its native range false brome is most commonly found in fo	
and woodlands, but may occur in open habitats (Gubanov et	
al. 1995). False brome is well-established in closed-canopy	
coniferous forest in western Oregon, often growing along rip	parian
margins (Hitchcock and Cronquist 1973, Kaye 2001).	
	/23
8 1	ore
Highly domesticated or a weed of agriculture $(0-4)$	0
False brome is not known as a weed of agriculture.	
Known level of impact in natural areas $(0-6)$	4
False brome is rapidly invading coniferous forest in western	
Oregon, where it excludes native forbs and grasses, and inhib	oits
establishment of tree seedlings (Kaye 2001).	
Role of anthropogenic and natural disturbance in	3
establishment (0–5)	
It likely requires disturbance for initial establishment, but or	
a population is established it can easily penetrate undisturbe	d
forests (Kaye 2001).	
Current global distribution (0–5)	3
False brome is native to North Africa, Northern and	
Mediterranean Europe, and Asia (Hitchcock and Cronquist	
1973). It has been documented as a part of early successional	l
grassland from Japan (Werger et al. 2002). In North America	
known only from Oregon (Kaye 2001, USDA 2002).	
Extent of the species U.S. range and/or occurrence of	4
formal state or provincial listing $(0-5)$	
In North America it is officially known only from Oregon, w	here
it is considered to be a noxious weed (Kaye 2001, USDA 200	
	/25

Feasibility of Control	Score	Level of effort required (0–4)	3
Seed banks (0–3)	0	Removal of the entire plant by digging is effective for	or small
Seeds remain viable in the soil for less than 1 year (7	Tu 2002). In	infestations, but is extremely time and labor-intensi	ve. Repeated
a study in Oregon seed viability dropped to less than	n 2% after 2	mowing, grazing, or burning may eliminate seed pr	oduction.
years in the soil (Thomas Kaye pers. com.). Herbicides can be applied late in the season after most other		ost other	
Vegetative regeneration (0–3)	2	species are dormant (Kaye 2001, Tu 2002).	
False brome can resprout from a small stem or root f	fragments	Total for Feasibility of Control	5/10
when cut. It is fire tolerant and is able to resprout with	thin 2 weeks	Total score for 4 sections	69/98
after a burn (Cal-IPC 2005, Kaye 2002).		0	
		Ϋ́ΥΫ́Υ	

Bromus inermis ssp. inermis Leyss.

	-	
Ranking Summ	ary	
Ecoregion known or expected to occu	ir in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	20
Biological Characteristics and Dispersal	25	16
Amplitude and Distribution	25	18
Feasibility of Control	10	8
Relative Maximum		62
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Bromus inermis ssp. inermis has been rep		ecoregions
of Alaska (Hultén 1968, Densmore et al	. 2001).	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		5
Smooth brome may inhibit natural succ		
(Densmore et al. 2001, Rutledge and M		
Impact on Natural Community Structure		5
Establishes in an existing layer, increasing		
and reducing the density of shorter herb	aceous layers (1	l. Lapina
and M.L. Carlson pers obs.).		
Impact on Natural Community Compos	ition (0–10)	5
It forms a dense sod that may eliminate	other species, t	hus
contributing to the loss of species divers	sity in natural a	reas
(Butterfield et al. 1996, Rutledge and M	cLendon 1996)	. In recent
years Bromus inermis has largely replace	,	
certain other native species (Elliott 1949	* *	
Impact on Higher Trophic Levels (0–10)	·)•	5
Smooth brome has high palatability for	grazing animal	e
2002). It is an alternate host for the viral		
		- ·
		· ·
	occur (Emott)	1747,
		20/40
10tal for Ecological Impact		20/40
1987, Royer and Dickinson 1999). In so swarms with <i>B. inermis</i> ssp. <i>pumpelliana</i> Hultén 1968). Total for Ecological Impact	uthern Alaska l	nybrid

common names: smooth brome

	common names: smooth brom	e
]	Biological Characteristics and Dispersal Sco	re
	Mode of Reproduction (0–3)	3
	Bromus inermis reproduces by rhizomes and seeds. The number	er
	of seeds produced has a very wide range. Each plant is capable	
	of producing 156–10,080 viable seeds (Butterfield et al. 1996,	
	Sather 1987). In studies by McKone (1985) Bromus inermis ha	d
	significantly lower average seed set (17.2 per plant). Reproduc	tive
	potential in Alaska is unknown.	_
	Long-distance dispersal (0–3)	1
	Seeds may be transported short distances by wind and ants	
	(Rutledge and McLendon 1996, Sather 1987).	2
	Spread by humans (0–3)	3
	Smooth brome, often planted as a forage crop, persists after	
	cultivation and infests surrounding vegetation. It is spread wh	len
	soil containing rhizomes is moved (Densmore et al. 2001).	0
	Allelopathic (0–2) There is no known allelopathy potential. (USDA 2002).	0
	Competitive Ability (0–3)	2
	Smooth brome is a highly competitive weed in agricultural fie	_
	(Butterfield et al. 1996). In Alaska its competitiveness is largel	
	restricted to sunny sites with nutrient rich mesic soils (J. Con	
	pers. com.).	
	Thicket-forming/Smothering growth form (0–2)	2
	It forms a dense sod that often excludes other species (Butterf	_
	et al. 1996, Rutledge and McLendon 1996). Stands are very de	
	and often greater than 1 m tall (M.L. Carlson pers. obs.)	
	Germination requirements $(0-3)$	2
	Butterfield et al. (1996) suggests this species establishes in	
	undisturbed or lightly disturbed areas, while Densmore et	
	al. (2001) indicate it requires open soil and disturbance for	
	germination.	
	Other invasive species in the genus $(0-3)$	3
	Bromus arenarius Labill., B. briziformis Fischer and C. Meyer,	
	B. diandrus Roth, B. japonicus Thunb. ex Murr., B. hordeaceus	
	L., B. madritensis L., B. secalinus L., B. stamineus Desv., B. steri	lis
	L., B. tectorum L., and B. trinii Desv. (Wilken and Painter 1993	3,
	Royer and Dickinson 1999, USDA 2002).	
	Aquatic, wetland or riparian species $(0-3)$	0
	Smooth brome is a weed of roadsides, forests, prairies, fields,	
	lawns, and lightly disturbed sites (Butterfield et al. 1996,	
	Rutledge and McLendon 1996).	
	Total for Biological Characteristics and Dispersal 16/2	25

Eastanial Anglitz da en d'Distribution - Comp	Extent of the species U.S. range and/or occurrence of 5
Ecological Amplitude and Distribution Score	
Highly domesticated or a weed of agriculture $(0-4)$ 4	formal state or provincial listing $(0-5)$
It is widely planted as a forage species in Alaska— <i>Bromus inermis</i>	Found throughout United States and Canada, except in the
has been widely planted as a pasture and forage crop and for	southeastern states (Royer and Dickinson 1999, USDA 2002).
revegetation along roadsides and along pipeline corridors	Listed as a weed in Tennessee (Royer and Dickinson 1999). The
(Densmore et al. 2001).	species is not considered noxious in North America (Invaders
Known level of impact in natural areas (0–6) 3	Database System 2003, USDA 2002).
Bromus inermis appears to be invading native prairie from	Total for Ecological Amplitude and Distribution 18/25
roadsides in Wisconsin and other states (Sather 1987, WDNR	Feasibility of Control Score
2003). It is found in mid-successional sites in Iowa and Nebraska.	Seed banks (0–3) 3
In Minnesota smooth brome is found in late successional	Studies report a range of seeds longevity of 2–10 years
sites that were disturbed over 50 years ago, but it may spread	(Butterfield et al. 1996, Rutledge and McLendon 1996).
vegetatively into undisturbed areas (Butterfield et al 1996).	Vegetative regeneration (0–3) 2
Role of anthropogenic and natural disturbance in 3	Plants may regrow after cutting (Densmore et al. 2001, Rutledge
establishment (0–5)	and McLendon 1996).
Smooth brome can establish in undisturbed or lightly disturbed	Level of effort required (0–4) 3
areas (Butterfield et al. 1996). In Alaska its distribution is largely	Cultural, chemical, and mechanical control methods have
restricted to areas of substrate disturbance (I. Lapina pers. obs.,	all been used in agriculture (Butterfield et al. 1996, Rutledge
M.L. Carson pers. obs.).	and McLendon 1996). Unfortunately, most current control
Current global distribution (0–5) 3	techniques are not effective in natural communities (J. Conn
Distribution range of smooth brome includes Europe, temperate	pers. com.).
Asia, and North America (USDA, ARS 2004).	Total for Feasibility of Control8/10
	Total score for 4 sections62/100
	S

Bromus tectorum L.

common names: cheatgrass, downy brome

Ranking Summ	arv		Impact on Natural Community Composition (0–10) 7
Ecoregion known or expected to occu			Cheatgrass closes communities to the establishment of native
South Coastal		Yes	perennial herbaceous species, causing a reduction in the
Interior Boreal		Yes	biodiversity of the natural community (Warner et al. 2003).
Arctic Alpine		Yes	Impact on Higher Trophic Levels (0–10) 7
·	Potential Max.	Score	The sharp spikelets and rough awns damage the mouth and eyes
Ecological Impact	40	34	of livestock. The effects on native game species are unknown.
Biological Characteristics and Dispersal	25	15	Cheatgrass is an alternate host for over 20 viruses (Carpenter and
Amplitude and Distribution	25	23	Murray 2005, Royer and Dickinson 1999).
Feasibility of Control	10	6	Total for Ecological Impact 34/40
Relative Maximum		78	Biological Characteristics and Dispersal Score
Climatic Compa			Mode of Reproduction (0–3) 1
	Collected in	CLIMEX	Cheatgrass establishes by seeds only. Seed production capacity
	Alaska regions?	similarity?	can be over 300 seeds per plant (Butterfield et al. 1996, Rutledge
South Coastal	Yes	-	and McLendon 1996, Warner et al. 2003). Stevens (1957)
Interior Boreal	Yes	-	
Arctic Alpine	Yes	-	reported seed production of 700 per plant.
Bromus tectorum has been collected in s			Long-distance dispersal (0–3) 3
Kodiak] (Hultén 1968), interior boreal			Cheatgrass can be spread by wind and by attachment to animal
and Dawson (Hultén 1968)], and arctic alpine [Nome] (Hultén fur (fur (Warner et al. 2003). Caryopses are hairy and sharp pointed.	
1968) ecoregions in Alaska.			Spread by humans (0–3) 3
Ecological Impact		Score	Cheatgrass spreads through attaching to human clothing and
Impact on Ecosystem Processes (0–10)		10	along transportation corridors such as highways and railroads. It
Cheatgrass infestations close communi	ties to the estab	lishment	also contaminates grain seed, hay, straw, and soil (Warner et al.
of the seedlings of perennial herbaceous	s species. It also	changes	2003).
the frequency and timing of wildfires in			Allelopathic (0–2) 0
(Carpenter and Murray 2005). Infestati			Cheatgrass has not been recorded as an allelopathic.
nutrient dynamics (Blank and Young 20	0		Competitive Ability (0–3) 3
Impact on Natural Community Structure		10	Cheatgrass is highly competitive with perennial grasses for soil
Cheatgrass forms a monoculture, creati			moisture and nutrients (Carpenter and Murray 2005).
community (Carpenter and Murray 200			Thicket-forming/Smothering growth form $(0-2)$ 0
community (ourpenter and Wallay 200			Cheatgrass tends to form dominant stands (Carpenter and
			Murray 2005).

Germination requirements (0–3) 2	Current global distribution (0–5) 5	
Seeds require fall, winter, or early spring moisture to germinate.	Originally from the Mediterranean region and Eurasia,	
It germinates best in the dark or in diffuse light, and readily	cheatgrass has spread throughout Europe, southern Russia, west	
germinates under a wide range of temperatures. Optimal	Central Asia, North America, Japan, South Africa, Australia, New	
germination occurs in the top 2.5 cm of soil and no emergence	Zealand, Iceland, and Greenland. Populations have established	
occurs from seeds buried 4 inches below the surface (Anderson	in northern Norway, Iceland, and Greenland (Carpenter and	
1996, Mack and Pyke 1983, Warner et al. 2003).	Murray 2005, Warner et al. 2003).	
Other invasive species in the genus $(0-3)$ 3	Extent of the species U.S. range and/or occurrence of 5	
Bromus commutatus Schrad., B. hordeaceus L., B. inermis Leyss.,	formal state or provincial listing $(0-5)$	
and B. secalinus L.	Bromus tectorum is listed as a noxious weed in Colorado, Alberta,	
Aquatic, wetland or riparian species $(0-3)$ 0	Manitoba, and Saskatchewan (Invaders Database System 2003,	
Cheatgrass is common in pastures, rangeland, winter crops,	Royer and Dickinson 1999, USDA, NRCS 2002).	
sand dunes, shrub–steppe areas, roadsides, and waste places Total for Ecological Amplitude and Distribution		
(Carpenter and Murray 2005, Royer and Dickinson 1999).	Feasibility of Control Score	
Total for Biological Characteristics and Dispersal 15/25	Seed banks (0–3) 2	
Ecological Amplitude and Distribution Score	Seeds remain viable in the soil for 2–5 years (Burnside et al. 1996,	
Highly domesticated or a weed of agriculture $(0-4)$ 4	Carpenter and Murray 2005, Chepil 1946).	
Cheatgrass is a weed of croplands, especially winter wheat and	Vegetative regeneration $(0-3)$ 0	
alfalfa (Royer and Dickinson 1999).	Cheatgrass has no ability to resprount after removal of	
Known level of impact in natural areas (0–6)6above ground growth (Carpenter and Murray 2005, Warner		
Cheatgrass forms dominant stands in sagebrush rangelands,	2003).	
juniper, and pine woodlands, less commonly in aspen and	Level of effort required (0–4) 4	
conifer communities [Colorado and California] (Rutledge and	Control of cheatgrass requires a combination of chemical,	
McLendon 1996, Warner et al. 2003). It has invaded undisturbed	mechanical methods, and proper livestock management. Native	
grassland communities in eastern Washington, Idaho, eastern perennial grasses should be seeded after treatment. Monitori		
Oregon, Nevada, and Utah (Carpenter and Murray 2005). also recommended for a few years after treatment (Carpenter		
Role of anthropogenic and natural disturbance in 3	Murray 2005).	
establishment (0–5)	Total for Feasibility of Control6/10	
Disturbance, typically heavy grazing, allows cheatgrass to invade	Total score for 4 sections78/100	
and proliferate in plant communities (Carpenter and Murray	\$	
2005, Warner et al. 2003).	Ĵ	

Campanula rapunculoides L.

Ranking Summ			
Ecoregion known or expected to occu	ir in		
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
	Potential Max.	Score	
Ecological Impact	40	18	
Biological Characteristics and Dispersal	25	16	
Amplitude and Distribution	25	20	
Feasibility of Control	7	5	
Relative Maximum 64			
Climatic Comparison			
	Collected in	CLIMEX	
	Alaska regions?	similarity?	
South Coastal	Yes	_	
Interior Boreal	No	Yes	
Arctic Alpine	No	Yes	
Campanula rapunculoides has been collected in Anchorage and			
Cordova (UAM 2004). The native range of creeping bellflower			
includes Røros and Dombås, Norway (Lid and Lid 1994), which			
has a 55% and 52% of climatic match with Fairbanks and 76%			
and 63% of climatic match with Nome (CLIMEX 1999). These			
suggest that establishment of creeping bellflower in interior			
boreal and arctic alpine ecogeographic regions of Alaska may be			
possible.			

common names: creeping bellflower

1 0	
Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	3
Creeping bellflower likely reduces soil moisture and nu	trients
(Royer and Dickinson 1999).	
Impact on Natural Community Structure (0–10)	5
Creeping bellflower is able to form dense thickets (Gub	anov et al.
2004). This species forms ground cover in mixed birch-	-spruce
forest in Anchorage parks. It also was observed interfer	ing with
raspberry stands (M. Rasy pers. obs.).	-
Impact on Natural Community Composition (0–10)	7
Creeping bellflower is able to reduce numbers of individ	duals of
co-occurring species, especially grasses (Lewis and Lyr	nch 1998).
Impact on Higher Trophic Levels (0–10)	3
The flowers of creeping bellflower are pollinated by bee	s, flies,
beetles, moths, and butterflies. It is noted that creeping	bellflower
rarely if ever damaged by browsing animals (Plants For	A Future
2004).	
Total for Ecological Impact	18/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Creeping bellflower reproduces by creeping rhizomes a	nd by
seeds. Each plant may produce 3,000–15,000 seeds anr	nually
(Gubanov et al. 2004, Whiston et al. 2000, Royer and I	Dickinson
1999).	

Long-distance dispersal (0–3) 3	Known level of impact in natural areas (0–6) 3
Seeds spread by wind because of their light weight and small	Creeping bellflower is known to invade mixed birch-spruce
wings (Gubanov et al. 2004).	forest in Anchorage (M. Rasy pers. obs.).
Spread by humans (0–3) 3	Role of anthropogenic and natural disturbance in 3
Creeping bellflower was introduced to North America as an	establishment (0–5)
ornamental plant (Royer and Dickinson 1999). It frequently	It is readily establish along trails, but is capable of moving into
escapes from gardens (Whitson et al. 2000). This plant also	adjacent undisturbed areas (M. Rasy pers. obs.).
disperses with nursery stock (Alfnes 1975).	Current global distribution (0–5) 5
Allelopathic (0–2) U	Creeping bellflower is native to Europe and Western Asia,
Unknown	including arctic and subarctic regions of Norway and Sweden
Competitive Ability (0–3) 3	(Lid and Lid 1995). It has naturalized in North America and
Creeping bellflower is a serious competitor for soil moisture and	has been occasionally recorded in Siberia (USDA, ARS 2005,
nutrients. It thrives under the canopy or in sun (Whitson et al.	Gubanov et al. 2004).
2000, Royer and Dickinson 1999). This species appears to be a	Extent of the species U.S. range and/or occurrence of 5
successful competitor with lawn grasses and native raspberries	formal state or provincial listing $(0-5)$
(M. Rasy pers. obs.).	Creeping bellflower is found in most American states and
Thicket-forming/Smothering growth form $(0-2)$ 1	Canadian provinces (USDA 2002, Royer and Dickinson 1999).
Creeping bellflower is able to form dense thickets and quickly	This species is listed as a weed in Alberta and Manitoba (Invaders
colonize areas (Gubanov et al. 2004); however, it does not	Database System 2003, Royer and Dickinson 1999).
generally overtop surrounding vegetation.	Total for Ecological Amplitude and Distribution 20/25
Germination requirements (0–3) U	Feasibility of Control Score
Unknown	Seed banks (0–3) U
Other invasive species in the genus (0–3) 3	Unknown
Campanula glomerata is an introduced cultivated species known	Vegetative regeneration (0–3) 2
to be invasive in gardens (J. Riley pers. com.); however, it does	Creeping bellflower sprouts readily from roots fragments
not have legal weed status (USDA 2002).	(I. Lapina pers. obs., Plants For A Future 2004).
Aquatic, wetland or riparian species (0–3) 0	Level of effort required (0–4) 3
Creeping bellflower is a weed of gardens, horticultural fields, and	Creeping bellflower infestation is extremely difficult to eradicate
forest plantations. It is a serious weed in lawns. In its native range	(Gubanov et al. 2004). It is practically impossible to control
creeping bellflower grows in open woodlands, forest edges, and	this species mechanically, and it is problematic to control it
meadows (Gubanov et al. 2004, Royer and Dickinson 1999).	by chemical methods. Some of the selective herbicides can be
Total for Biological Characteristics and Dispersal 16/20	effective (Alfnes 1975).
Ecological Amplitude and Distribution Score	Total for Feasibility of Control 5/7
Highly domesticated or a weed of agriculture $(0-4)$ 4	Total score for 4 sections 59/92
Creeping bellflower is used as an ornamental plant in Europe and	§
North America (USDA, ARS 2005, Whitson et al. 2000). It is a	V
serious weed in the nursery industry (Alfnes 1975). In European	
countries it is cultivated in vegetable gardens (Plants For A	

Future 2004).

Capsella bursa-pastoris (L.) Medik. L. common names: shepherd's purse

Ranking Summa	ry	
Ecoregion known or expected to occur	in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	7
Biological Characteristics and Dispersal Amplitude and Distribution	25 25	11 18
Feasibility of Control	10	4
Relative Maximum	10	40
Climatic Compari	son	10
I I I I I I I I	Collected in	CLIMEX
P	Alaska regions?	similarity?
South Coastal	Yes	_
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Capsella bursa-pastoris has been documen		
regions of Alaska (AKEPIC 2005, Hultér	n 1968, UAM 2	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)	1 . 1.1.	1
Shepherd's purse colonizes open ground		
establishment of native species (Rutledge		
Though this plant is only found in highly		
(Densmore et al. 2001, Welsh 1974) it has	*	to retard
succession after sites have been disturbed		2
Impact on Natural Community Structure		3
Shephard's purse is a pioneer of disturbed		
have a high percentage of cover initially. H		*
grasses enter the area, it declines in abund		1
disappears (Aksoy et al. 1998, I. Lapina p Impact on Natural Community Composit:		0
Shepherd's purse has not been observed i		e
Alaska and no perceived impacts on nativ		
documented (Densmore et al. 2001).	e populations	
Impact on Higher Trophic Levels (0–10)		3
Shepherd's purse is grazed by cattle, horse	es. sheep. and r	-
(Crawley 1990). Its leaves are also eaten b		
(Aksoy et al. 1998, Dirzo and Harper 198		0
Flowers are usually self-pollinated; howe		
particularly flies and small bees, visit the		
1998). Shepherd's purse is a host for a nur		
viruses (Royer and Dickinson 1999).	noer of nemate	Jues and
Total for Ecological Impact		7/40
Biological Characteristics and D	Dispersal	Score
Mode of Reproduction $(0-3)$	r	3
Shepherd's purse reproduces entirely by s	eeds. Stevens (-
recorded 38,500 seeds per plant. Hurka a		
conducted experiment in which they reco		
seeds and a maximum of 90,000 seeds pe		
seeds per plant varies mainly depending of	*	
Long-distance dispersal $(0-3)$	1110/1646s	3
Seeds are small and light, and carried by v	wind or rainwa	6
become sticky when moistened and can b		
of birds and mammals (Aksoy et al. 1998)		
	, + + + + + + + + + + + + + + + + +	

Spread by humans (0-3)3Seeds may be transported in mud sticking to human feet and to car tires (Aksoy et al. 1998, Densmore et al. 2001, Hurka and Haase 1982). Hodkinson and Thompson (1997) note that horticultural stock carried Shepherd's purse seeds as a contaminant.Allelopathic (0-2)0Shepherd's purse is not known to be allelopathic. Competitive Ability (0-3)1Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998).0Thicket-forming/Smothering growth form (0-2)0Shepherd's purse is capable of creating a dense stand of up to 300 plants per m² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2010).1Other invasive species in the genus (0-3)11In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).125Total for Biological Characteristics and Dispersal11/25Koony level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain	
to car tires (Aksoy et al. 1998, Densmore et al. 2001, Hurka and Haase 1982). Hodkinson and Thompson (1997) note that horticultural stock carried Shepherd's purse seeds as a contaminant. Allelopathic (0–2) 0 Shepherd's purse is not known to be allelopathic. Competitive Ability (0–3) 1 Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level ofimpact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et	
and Haase 1982). Hodkinson and Thompson (1997) note that horticultural stock carried Shepherd's purse seeds as a contaminant. Allelopathic (0–2) 0 Shepherd's purse is not known to be allelopathic. Competitive Ability (0–3) 1 Shephard's purse is not known to be allelopathic. Competitive Ability (0–3) 1 Shepherd's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is ecstablished in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not draw of agriculture (0–4) 4 Shepherd's purse is exablished in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's	
that horticultural stock carried Shepherd's purse seeds as a contaminant. Allelopathic (0–2) 0 Shepherd's purse is not known to be allelopathic. Competitive Ability (0–3) 1 Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Distribution Score Highly domesticated or a weed of apreserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed one of the dominant species in the weed fora (Aksoy et al. 1998). Known level ofimpact in natural areas (0–6) 1 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level ofimpact in matural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is established in Rocky Mountain National Park, Colorado,	
contaminant. Allelopathic (0–2) 0 Shephard's purse is not known to be allelopathic. Competitive Ability (0–3) 1 Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shephard's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of an	
Allelopathic (0-2)0Shepherd's purse is not known to be allelopathic.Competitive Ability (0-3)1Shephard's purse is a serious competitor with annual crops;however, it cannot compete with perennial grasses (Aksoy et al. 1998).Thicket-forming/Smothering growth form (0-2)0Shepherd's purse is capable of creating a dense stand of up to 300plants per m² (Harker et al. 2000); however, plants are small,up to 18 inches tall, and do not posses a climbing or smotheringgrowth habit (Douglas and Meidinger 1998, Royer andDickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance togerminate. Plants may appear on sites that have been redisturbedseveral decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006).Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dischison 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and DispersalT1/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of	A A
Shepherd's purse is not known to be allelopathic. 1 Competitive Ability (0–3) 1 Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). 0 Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). 0 Other invasive species in the genus (0–3) 0 The genus Capsella is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score 1 Shepherd's purs	
Competitive Ability (0-3)1Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998).Thicket-forming/Smothering growth form (0-2)0Shepherd's purse is capable of creating a dense stand of up to 300 plants per m² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal 11/2511/25Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0-4)4Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at	
Shephard's purse is a serious competitor with annual crops; however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for es	
however, it cannot compete with perennial grasses (Aksoy et al. 1998). Thicket-forming/Smothering growth form (0–2) 0 Shepherd's purse is capable of creating a dense stand of up to 300 plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Je	
1998).Thicket-forming/Smothering growth form (0-2)0Shepherd's purse is capable of creating a dense stand of up to 300plants per m² (Harker et al. 2000); however, plants are small,up to 18 inches tall, and do not posses a climbing or smotheringgrowth habit (Douglas and Meidinger 1998, Royer andDickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance togerminate. Plants may appear on sites that have been redisturbedseveral decades after the last human disturbance (Densmore etal. 2001).Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006).Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in theweed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain National <t< td=""><td></td></t<>	
Thicket-forming/Smothering growth form (0-2)0Shepherd's purse is capable of creating a dense stand of up to 300plants per m² (Harker et al. 2000); however, plants are small,up to 18 inches tall, and do not posses a climbing or smotheringgrowth habit (Douglas and Meidinger 1998, Royer andDickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance togerminate. Plants may appear on sites that have been redisturbedseveral decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006).Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore	
Shepherd's purse is capable of creating a dense stand of up to 300plants per m² (Harker et al. 2000); however, plants are small,up to 18 inches tall, and do not posses a climbing or smotheringgrowth habit (Douglas and Meidinger 1998, Royer andDickinson 1999, Whitson at al. 2000).Germination requirements (0-3)0Shepherd's purse requires open soil and disturbance togerminate. Plants may appear on sites that have been redisturbedseveral decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006).Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars at <t< td=""><td></td></t<>	
plants per m ² (Harker et al. 2000); however, plants are small, up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
up to 18 inches tall, and do not posses a climbing or smothering growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
growth habit (Douglas and Meidinger 1998, Royer and Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispresal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Dickinson 1999, Whitson at al. 2000). Germination requirements (0–3) 0 Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispresal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Germination requirements (0–3)0Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0–3)0The genus Capsella is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3)1In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and Distribution Meed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6)1Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in or establishment (0–5)3Shepherd's purse usually requires open soil and	
Shepherd's purse requires open soil and disturbance to germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001).Other invasive species in the genus (0–3)0The genus Capsella is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3)1In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal 11/2511/25Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4)4Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998).1Known level of impact in natural areas (0–6)1Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in or establishment (0–5)3Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
germinate. Plants may appear on sites that have been redisturbed several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
several decades after the last human disturbance (Densmore et al. 2001). Other invasive species in the genus (0–3) 0 The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Other invasive species in the genus (0-3)0The genus Capsella is monotypic (USDA, NRCS 2006).Aquatic, wetland or riparian species (0-3)In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in theweed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars atBrooks Camp, Katmai National Park and Preserve (J. Heys pers.obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
The genus <i>Capsella</i> is monotypic (USDA, NRCS 2006). Aquatic, wetland or riparian species (0–3) 1 In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	al. 2001).
Aquatic, wetland or riparian species (0-3)1In its native and introduced range, Shepherd's purse is a weedof cultivated crops, gardens, and waste areas (Alex and Switzer1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge andMcLendon 1996, Welsh 1974, Whitson at al. 2000). However,this weed has been observed invading gravel bars at BrooksCamp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in theweed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars atBrooks Camp, Katmai National Park and Preserve (J. Heys pers.obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	Other invasive species in the genus $(0-3)$ 0
In its native and introduced range, Shepherd's purse is a weed of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
of cultivated crops, gardens, and waste areas (Alex and Switzer 1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
1976, Aksoy et al. 1998, Royer and Dickinson 1999, Rutledge and McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in 6r establishment (0-5)3Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
McLendon 1996, Welsh 1974, Whitson at al. 2000). However, this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
this weed has been observed invading gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	, , , ,
Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Total for Biological Characteristics and Dispersal 11/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Total for Biological Characteristics and Dispersal11/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in theweed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars atBrooks Camp, Katmai National Park and Preserve (J. Heys pers.obs.).Role of anthropogenic and natural disturbance instablishment (0-5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in theweed flora (Aksoy et al. 1998).Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars atBrooks Camp, Katmai National Park and Preserve (J. Heys pers.obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
Highly domesticated or a weed of agriculture (0-4)4Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998).1Known level of impact in natural areas (0-6)1Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in setablishment (0-5)3Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Shepherd's purse is considered one of the dominant species in the weed flora (Aksoy et al. 1998).Known level of impact in natural areas (0–6)1Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.).Role of anthropogenic and natural disturbance in setablishment (0–5)3 establishment (0–5)Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
weed flora (Aksoy et al. 1998). Known level of impact in natural areas (0–6) 1 Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Known level of impact in natural areas (0–6)1Shepherd's purse is established in Rocky Mountain NationalPark, Colorado, where it may inhibit the establishment of nativespecies (Rutledge and McLendon 1996). Shepherd's purse is notknown to impact natural areas in Alaskan National Park Units(Densmore et al. 2001), with the exception of open gravel bars atBrooks Camp, Katmai National Park and Preserve (J. Heys pers.obs.).Role of anthropogenic and natural disturbance in3establishment (0–5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
Shepherd's purse is established in Rocky Mountain National Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Park, Colorado, where it may inhibit the establishment of native species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
species (Rutledge and McLendon 1996). Shepherd's purse is not known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
known to impact natural areas in Alaskan National Park Units (Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
(Densmore et al. 2001), with the exception of open gravel bars at Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
Brooks Camp, Katmai National Park and Preserve (J. Heys pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
Role of anthropogenic and natural disturbance in3establishment (0-5)3Shepherd's purse usually requires open soil and disturbancefor establishment (Densmore et al. 2001). However, Jeff Heysobserved infestation of Shepherd's purse on river erosion sites at	
establishment (0–5) Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	,
Shepherd's purse usually requires open soil and disturbance for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
for establishment (Densmore et al. 2001). However, Jeff Heys observed infestation of Shepherd's purse on river erosion sites at	
observed infestation of Shepherd's purse on river erosion sites at	
	Brooks Camp, Katmai National Park and Preserve.

Current global distribution (0–5) 5	Feasibility of Control Score
Shepherd's purse is native to Europe and West Asia. It has	Seed banks (0–3) 3
become cosmopolitan and is widely distributed throughout	Viable seeds were recorded after 35 years (Kivilaan and
Europe, Asia, North America, Australia, and Africa. It is	Bandurski 1981, Darlington and Steinbauer 1961), although a
introduced into South America, New Zealand, and Tasmania	decline in number of viable seeds was recorded after 3.5, 5, and
(Hultén 1968). It has also been recorded in arctic and subarctic	6 years in other studies (Chepil 1946, Duvel 1904, Roberts and
regions in Greenland, Spitsbergen, Iceland, Northland, and	Feast 1973). A seed viability experiment in Alaska showed a
Alaska (Hultén 1968, Polunin 1957, Tolmatchev 1975, UAM	dramatic decrease in viability between 6.7 and 9.7 years after
2004, AKEPIC 2005).	burial (Conn and Deck 1995).
Extent of the species U.S. range and/or occurrence of 5	Vegetative regeneration $(0-3)$ 0
formal state or provincial listing $(0-5)$	Shepherd's purse plants do not regenerate vegetatively (Aksoy et
Shepherd's purse has been recorded in nearly all American	al. 1998, Densmore et al. 2001).
states and Canadian provinces (USDA, NRCS 2006, Whitson	Level of effort required $(0-4)$ 1
at al. 2000). <i>Capsella bursa-pastoris</i> is listed as a noxious weed in	Shepherd's purse is a pioneer colonizer of disturbed areas and
Colorado, Alberta, and Manitoba (Royer and Dickinson 1999,	usually does not persist more than 2–5 years unless the site is
USDA, NRCS. 2006).	repeatedly disturbed. The plants can be easily pulled up by hand
Total for Ecological Amplitude and Distribution 18/25	(Densmore et al. 2001). It seems to persist in unshaded natural
Tour tor Deorogrout this fittude and Distribution 10/25	sites with disturbances in Alaska (J. Heys pers. obs.).
	Total for Feasibility of Control 4/10
	Total score for 4 sections 40/100

S

Caragana arborescens Lam

Ranking Summary		
Ecoregion known or expected to occu	ır in	
South Coastal		No
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	24
Biological Characteristics and Dispersal	25	14
Amplitude and Distribution	25	21
Feasibility of Control	7	5
Relative Maximum		66
Climatic Compa		CL LL LE V
	Collected in	CLIMEX
South Coastal	Alaska regions?	<i>similarity?</i>
Interior Boreal	Yes	INU
Arctic Alpine	No	Yes
Caragana arborescens has been collected	110	100
Kilbuck–Kuskokwim Mountains (UAN		
planted as an ornamental in Anchorage (Lapina pers. obs.) and		
towns in temperate regions of Alaska and Yukon (Welsh 1974).		
Using the CLIMEX matching program,		
low between the south coastal ecoregion		· ·
e		
species is known (CLIMEX 1999). This	-	
climates with long summers and cold, fa	, ,	
For A Future 2002). <i>Caragana arborescence</i> is unlikely to establish		
in the south coastal ecoregion. Climatic similarity between		
Nome (arctic alpine ecoregion) and areas where the species is		
documented is high. Native range of the species includes Tomsk		
and Irkutsk, Russia (USDA ARS 2004), which has a 64%,		
and 60% climatic match with Nome, respectively. The species		
successfully has been used as an ornamental in Anchorage, which		
has a 61% climatic match with Nome.		

common names: Siberian peashrub

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	7
Once it has established Siberian peashrub decreases light	
availability and reduces tree and shrub regeneration (I. La	apina
pers. obs., O. Baranova pers. com.). As a nitrogen-fixer, it	likely
alters soil conditions (USDA 2002).	
Impact on Natural Community Structure (0–10)	7
In a few locations in south-central Alaska, this species for	ms a
dense shrub layer in open meadows or forest edges (M.L.	Carlson
pers. obs., I. Lapina pers. obs.).	
Impact on Natural Community Composition (0–10)	5
Siberian peashrub appears to significantly reduce the nur	nber of
native shrubs in mixed Birch-Spruce forests in European	Russia
(O. Baranova pers. com.). Similar effects are likely occurr	ing in
Alaska.	
Impact on Higher Trophic Levels (0–10)	5
Siberian peashrub can be severely damaged by browsing	deer
(Duke 1983). Stipules of leaves often persist as spines (W	elsh
1974). Thick stands can effect movement of animals.	
Total for Ecological Impact	24/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Seeds are produced in great abundance; 4–6 seeds per po	d
and often hundreds of pods per plant. This plant may also	be
propagated by bare roots, root cuttings, and layering (Du	ke 1983,
USDA 2002).	
Long-distance dispersal (0–3)	0
The seeds are large and do not have any adaptations for lo	ng-
distance dispersal (USDA, NRCS 2002).	

Spread by humans (0–3) 3	Known level of impact in natural areas (0–6) 4
The Siberian peashrub is cultivated in the more temperate	Siberian peashrub is known as an invader of forests in Wisconsin
regions of Alaska and Yukon (Welsh 1974). It has escaped from	(WDNR 2003). It also invades forests in interior boreal ecoregion
cultivation. It is currently sold in nurseries (Duke 1983, I. Lapina	of European part of Russia (I. Lapina pers. obs.).
pers. obs., WDNR 2003).	Role of anthropogenic and natural disturbance in 4
Allelopathic (0–2) 0	establishment (0–5)
There is no known allelopathic potential (USDA 2002).	Siberian peashrub is generally restricted to road and trailside
Competitive Ability (0–3) 3 Siberian peashrub is reported to tolerate alkalinity, drought,	edges on disturbed and imported soils. Nevertheless, it has been
	found establishing in forested areas with no perceivable human or
cold, poor soils, and wind (Duke 1983). It also is a nitrogen-fixer	natural disturbances (I. Lapina pers. obs.).
(USDA 2002).	Current global distribution (0–5) 5
Thicket-forming/Smothering growth form $(0-2)$ 2	Siberian peashrub is native to Siberia, Kazakhstan, Mongolia, and
Plants can grow up to 12 feet tall (Welsh 1974) and form dense,	China. It now extends over Europe and North America, including
impenetrable thickets (I. Lapina pers. obs.).	arctic regions (Duke 1983, USDA, ARS 2004).
Germination requirements $(0-3)$ 3	Extent of the species U.S. range and/or occurrence of 4
Cold stratification required for germination. In horticulture,	formal state or provincial listing $(0-5)$
seeds need to be presoaked for about 24 hours in warm water	Siberian peashrub is found throughout Canada and the northern
and can then be sown in a cold period in the spring. Germination	American states. This species is not considered noxious in North
usually takes place within $2-3$ weeks (Plants for a future 2002). In	America (Invaders Database System 2003, USDA 2002).
south-central Alaska, plants appear to be recruiting in moderately	Total for Ecological Amplitude and Distribution 21/25
disturbed and partially native habitats (M.L. Carlson pers. obs.)	Feasibility of Control Score
Other invasive species in the genus $(0-3)$ 0	Seed banks (0–3) U
No other weedy <i>Caragana</i> species are present (USDA 2002).	Unknown
Aquatic, wetland or riparian species $(0-3)$ 0	Vegetative regeneration $(0-3)$ 2
This is a plant of roadsides and gardens (Montana Plant Life	Siberian peashrub can resprout after cutting (USDA 2002).
2004).	Level of effort required $(0-4)$ 3
Total for Biological Characteristics and Dispersal 14/25	Mechanical treatments can be used for control of Siberian
Ecological Amplitude and Distribution Score	peashrub. However, it is not very efficient, because shrub will
Highly domesticated or a weed of agriculture $(0-4)$ 4	resprout vigorously after cutting. Combination of mechanical and
Siberian peashrub is cultivated as ornamental and food plant. It is	chemical treatments may be more efficient (Heiligmann 2006).
widely planted in the United States and Canada for windbreaks,	Total for Feasibility of Control 5/7
hedges, and outdoor screening. Because of its nitrogen-fixing	Total score for 4 sections64/97
capacity, it is valued as a soil-improving plant. In the Arctic it	S
is a supplementary fodder for reindeer herds (Duke 1983). It is	<i>v</i>
currently sold at nurseries. Cultivars have been developed (MSU	
Extension 1999, USDA 2002).	

Carduus nutans L. C. acanthoides L. C. pycnocephalus L. C. tenuiflorus W. Curtis

D 1 . C		
Ranking Summary		
Ecoregion known or expected to occur in	L	V
South Coastal Interior Boreal		Yes Yes
		Yes
Arctic Alpine Pat	ential Max.	Score
Ecological Impact	40	22
Biological Characteristics and Dispersal	25	17
Amplitude and Distribution	25	14
Feasibility of Control	10	8
Relative Maximum		61
Climatic Compariso	n	
	ollected in	CLIMEX
Ala	ska regions?	similarity?
South Coastal	No	Yes
Interior Boreal	No	Yes
Arctic Alpine	No	Yes
No Carduus species have been recorded in A	Alaska (Hul	tén 1968,
AKEPIC 2004, UAM 2004). The CLIMEX	a matching p	program
shows that climatic similarity between June	eau and area	is where
the species are documented is high. Musk th	histle is natu	uralized
along the coastal region of Norway, includir	ng the area a	around
Bergen and Kristiansand (Lid and Lid 1994		
and 60% similarity with Juneau. The native		
includes Bogolovsk and Sverdlovsk, Russia		
1995), which has a 71% and 66% climatic m		
and 67% and 66% climatic match with Nom		
suggests that if introduced, establishment o	-	
	~	mune
Looping Canduus in couth coastal interior bor	and and	ic almina
genus <i>Carduus</i> in south coastal, interior bor	eal and arct	ic alpine
ecogeographic regions may be possible.	eal and arct	-
ecogeographic regions may be possible. Ecological Impact	eal and arct	Score
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10)		Score 5
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit	the establis	Score 5 Shment
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc	the establis cesses of sec	Score 5 Shment condary
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled	the establis cesses of sec lge and McI	Score 5 shment condary Lendon
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter,	the establis cesses of sec lge and McI , increasing	Score 5 shment condary Lendon
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198	the establis cesses of sec lge and McI , increasing 88).	Score 5 shment condary Lendon soil
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (0-	the establis cesses of sec lge and McI , increasing 88). – 10)	Score 5 shment condary Lendon soil 5
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (0- <i>Carduus</i> species are capable of forming a des	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her	Score 5 shment condary Lendon soil 5 baceous
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 198	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her	Score 5 shment condary Lendon soil 5 baceous
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1996) Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 1992 2000).	the establis cesses of sec lge and McI , increasing 88). – 10) nse, tall her 999, Whitsc	Score 5 shment condary Lendon soil 5 baceous on et al.
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 199 Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 19 2000). Impact on Natural Community Compositior	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10)	Score 5 shment condary Lendon soil 5 baceous on et al. 5
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 199 Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 19 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (O- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 19 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number eous plants	Score 5 Shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (0- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 192 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number eous plants	Score 5 Shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher
Ecological Impact Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 198 Impact on Natural Community Structure (0- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 192 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000).	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number eous plants	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al.
Ecological Impact Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1997) Impact on Natural Community Structure (0- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 1992) 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbacce and Russo 1988, Royer and Dickinson 1999) 2000). Impact on Higher Trophic Levels (0–10)	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number eous plants 9, Whitson e	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 199 Impact on Natural Community Structure (0- <i>Carduus</i> species are capable of forming a deal layer of vegetation (Royer and Dickinson 199 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands red	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitsc n (0–10) he number eous plants 9, Whitson e luce foragin	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1994) Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 19 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands rece hinder the movement of grazing animals (Hermiter)	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of duce foragir full and Eva	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and uns 1973,
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1993) Impact on Natural Community Structure (Ocarduus species are capable of forming a dealayer of vegetation (Royer and Dickinson 1992) 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce to individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands rece hinder the movement of grazing animals (H Royer and Dickinson 1999, Whitson et al. 2	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of luce foragin full and Eva 2000). Thist	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and uns 1973, le flowers
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural processes succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1993) Impact on Natural Community Structure (Ocarduus species are capable of forming a der 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce to individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands red hinder the movement of grazing animals (H Royer and Dickinson 1999, Whitson et al. 2 are usually very attractive to insect pollinate	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of luce foragin full and Eva 2000). Thist ors and can	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and ins 1973, le flowers alter the
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural processes (0–10) Succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1997) Impact on Natural Community Structure (0- Carduus species are capable of forming a der layer of vegetation (Royer and Dickinson 1992) 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands red hinder the movement of grazing animals (H Royer and Dickinson 1999, Whitson et al. 2 are usually very attractive t	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of luce foragir full and Eva 2000). Thist ors and can et al. 1988, 0	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and uns 1973, le flowers alter the Gubanov
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1997) Impact on Natural Community Structure (O- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 1992) 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands rech hinder the movement of grazing animals (H Royer and Dickinson 1999, Whitson et al. 2 are usually very attractive to insect pollinator behavior of native pollinators (Desrochers et et al. 2004). Hybridization between musk th	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of duce foragin full and Eva 2000). Thist ors and can et al. 1988, 0 histle and pl	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and uns 1973, le flowers alter the Gubanov
ecogeographic regions may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Overwintering rosettes can severely inhibit of other plants. This may retard natural proc succession (Pitcher and Russo 1988, Rutled 1996). Dead stands can trap snow in winter, moisture in the spring (Desrochers et al. 1997) Impact on Natural Community Structure (O- <i>Carduus</i> species are capable of forming a der layer of vegetation (Royer and Dickinson 1992) 2000). Impact on Natural Community Composition Thistle stands can outcompete and reduce t individuals and may displace native herbace and Russo 1988, Royer and Dickinson 1999) 2000). Impact on Higher Trophic Levels (0–10) Infestations in meadows and rangelands red hinder the movement of grazing animals (H Royer and Dickinson 1999, Whitson et al. 2 are usually very attractive to insect pollinators behavior of native pollinators (Desrochers et al. 2)	the establis cesses of sec lge and McI , increasing 88). –10) nse, tall her 999, Whitson (0–10) he number eous plants 9, Whitson of duce foragin full and Eva 2000). Thist ors and can et al. 1988, 0 histle and pl	Score 5 shment condary Lendon soil 5 baceous on et al. 5 of (Pitcher et al. 7 ng sites and uns 1973, le flowers alter the Gubanov

common names: musk thistle, plumeless thistle, Italian thistle, slender-flowered thistle

Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Carduus species reproduce by seed only. Seed product	ion can be
as great as 11,000 seeds per plant (Desrochers et al. 19	88).
Long-distance dispersal (0–3)	3
The majority of the seeds fall near the parent plant. Ex	-
studies in Virginia suggest that seeds do not travel far	
maternal plant, with over 80% of seeds deposited with	
the parent plant (Smith and Kok 1984). However, seed	ls can also
be dispersed by wind, small mammals, birds, and wate	er (Beck
2004, Butterfield et al. 1996, Rutledge and McLendon	1996).
Spread by humans (0–3)	3
Seeds may attach to animals, farm machinery, and veh	
may contaminate crops and hay (Rutledge and McLer	1don 1996,
Zouhar 2002).	
Allelopathic (0–2)	2
Aqueous extracts and dead plant material from musk t	
an inhibitory effect on germination and growth rate of	several
grass species (Wardle et al 1993).	
Competitive Ability (0–3)	1
Thistles are highly competitive plants; however, establ	
may be negatively affected by grasses (Butterfield et al	
Rutledge and McLendon 1996, Wardle et al. 1996). Co	
species are usually more productive in communities w	there levels
of competition are low (Austin et al. 1985).	
Thicket-forming/Smothering growth form $(0-2)$	2
Members of the genus <i>Carduus</i> are capable of forming	
stands, especially at highly disturbed sites where comp	
low. Plants can be as tall as 6 feet (Desrochers et al. 198 Germination requirements (0–3)	^{58).}
Sufficient light is required for germination (Rutledge a	-
McLendon 1996), therefore, more seeds germinate an	
establish on bare soils in open pastures and poorly veg	
sites (Beck 2004, Hamrick and Lee 1987). In greenhor	
experiments, optimum levels of germination and estal	
occurred in habitats with a light covering of litter that	
evapotranspiration. Thick litter layers reduced germin	
establishment by preventing seeds from reaching the s	
	onsurace
(Hamrick and Lee 1987). Other invasive species in the genus (0–3)	3
The <i>Carduus</i> genus is comprised of a number of noxiou	
and range weeds (Royer and Dickinson 1999, USDA 2	
Whitson et al. 2000).	,002,
Aquatic, wetland or riparian species (0–3)	0
<i>Carduus</i> species can be found in waste ground, old field	
pastures, and along roads and railroads. They can inva	
natural areas such as meadows, prairies, and grassland	
2004, Butterfield et al. 1996).	C (L'COR
Total for Biological Characteristics and Dispersal	17/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture (0–4)	2
Carduus species are not major agricultural pests; inste	ad they
are mostly weeds of pastures and ranges (Beck 2004, H	
Dickinson 1999, Whitson et al. 2000).	
· · · · · · · · · · · · · · · · · · ·	

Known level of impact in natural areas (0–6)1Musk thistle invades natural communities in the Midwest, especially in Nebraska and Kansas. Infestations of musk thistle have been observed in areas of tallgrass prairie (Heidel 1987).This species is common in open grassy meadows and spreads into sagebrush, pinyon juniper, and mountain brush communities in Rocky Mountain National Park, Colorado (Rutledge and McLendon 1996). Musk thistle invades mid-successional sites that were disturbed in the last 11–50 years in Pipestone National Monument, Minnesota (Butterfield et al. 1996). It has been observed in fir–spruce habitats in Wyoming (Hull and Evans 1973). Musk thistle infests thousands of hectares of pastures in New Zealand (Jessep 1990). Italian thistle invades chaparral and oak savanna in California (Bossard and Lichti 2000). Role of anthropogenic and natural disturbance in aestablishment (0–5)Thistles colonize anthropogenically disturbed areas, but can colonize areas subject to natural disturbances such as landslides or frequent flooding (Remaley 2004). Fire or heavy grazing are favorable to thistle establishment and development (Zouhar 2002). In Minnesota, prairie thistle populations decreased rapidly after grazing was removed and natural succession began to take place (Heidel 1987).Current global distribution (0–5) Members of the genus Carduus are native to Europe, western Siberia, Asia Minor, and North Africa (Desrochers et al. 1988). They have been introduced to North and South America, Australia, and New Zealand.	Extent of the species U.S. range and/or occurrence of 5 formal state or provincial listing (0–5) Occurs in 45 American states and all Canadian provinces. Species of genus <i>Carduus</i> are classified as noxious, restricted, or prohibited weeds in 22 American states and 5 Canadian provinces (Royer and Dickinson 1999, USDA 2002). Total for Ecological Amplitude and Distribution 14/25 Feasibility of Control Score Seed banks (0–3) 3 Seeds have been reported to remain viable in the soil for 10–15 years (Butterfield et al. 1996, Burnside et al. 1981, Desrochers et al. 1988, Rutledge and McLendon 1996). Vegetative regeneration (0–3) 2 Plants can regrow from the root buds, then flower and set seed (Butterfield et al. 1996, Heidel 1987). Level of effort required (0–4) 3 Cultural, mechanical, biological, and chemical control methods have all been used on thistles with varying degrees of success. Hand-cutting or mowing can provide control if repeated over a period of years (Beck 2004, Heidel 1987, Remaley 2004). Total for Feasibility of Control 8/10 Total score for 4 sections 61/100
--	---

Centaurea biebersteinii DC

Ranking Sumn	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
n 1 - 1	Potential Max.	Score
Ecological Impact	40	34
Biological Characteristics and Dispersal Amplitude and Distribution	25 25	22 21
Feasibility of Control	10	21 9
Relative Maximum	10	86
Climatic Compa	rison	
-	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	No	No
Spotted knapweed has been recorded in	0 1	
Prince of Wales Island (south coastal) a		
(interior boreal) (AKEPIC 2004, J. Sny	* '	0
CLIMEX matching program, climatics	,	
and areas where the species is documen		
suggests that establishment in arctic an	d alpine Alaska	may be not
possible.		C
Ecological Impact Impact on Ecosystem Processes (0–10)		Score 8
Erosion of topsoil has been shown to in		e
	crease after spot	ted
knapweed invasions. Surface runoff had	l approximately	three
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i>	l approximately <i>versteinii</i> domina	three ated sites
knapweed invasions. Surface runoff hac times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgi	l approximately <i>persteinii</i> domina rass sites (Rice e	three ated sites
knapweed invasions. Surface runoff hac times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur	l approximately <i>persteinii</i> domina rass sites (Rice e re (0–10)	three ated sites et al. 1997). 7
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg I mpact on Natural Community Structur Spotted knapweed is capable of forming	l approximately <i>persteinii</i> domina rass sites (Rice e e (0–10) g dense stands in	three ated sites et al. 1997). 7
knapweed invasions. Surface runoff hac times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur	l approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity.	three ated sites et al. 1997) 7
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg I mpact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div	l approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10)	three ated sites et al. 1997). 7 n natural 9
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos	l approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10) population size	three ated sites et al. 1997). 7 n natural 9
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10)	I approximately persteinii domina rass sites (Rice e e (0-10) g dense stands in ersity. sition $(0-10)$ population size nd habitats.	three ated sites et al. 1997)) 7 n natural 9 , decreases 10
knapweed invasions. Surface runoff hac times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgi Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning	l approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH	d approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr ³). Winter-rangi	three ated sites at al. 1997). n natural 9 , decreases 10 easing ng elk may
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by	l approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr c). Winter-rangi v Centaurea bieb	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i>
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgr Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAF avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelo	d approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr ³). Winter-rangi <i>v Centaurea bieb</i> ppathic, inhibitin	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelc establishment and growth of surroundi	d approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr ³). Winter-rangi <i>v Centaurea bieb</i> ppathic, inhibitin	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelc establishment and growth of surroundi al. 2000).	d approximately persteinii domina rass sites (Rice e re (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr ³). Winter-rangi <i>v Centaurea bieb</i> ppathic, inhibitin	three ated sites et al. 1997)) 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelo establishment and growth of surroundi al. 2000). Total for Ecological Impact	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangi or <i>Centaurea bieb</i> ppathic, inhibitin ng vegetation (1	three ated sites t al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u>
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangi or <i>Centaurea bieb</i> ppathic, inhibitin ng vegetation (1	three ated sites of al. 1997) 7 a natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchg Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangi <i>centaurea bieb</i> opathic, inhibitin ng vegetation (1 Dispersal	three ated sites at al. 1997)) 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgr Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are alleld establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s	d approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr ²). Winter-rangi <i>v Centaurea bieb</i> ppathic, inhibitin ng vegetation (1 Dispersal seed. However, I	three ated sites et al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compose Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats. habitats by incr a). Winter-rangi <i>Centaurea bieb</i> pathic, inhibitin ng vegetation (1 Dispersal seed. However, I 203, Mauer et al	three ated sites at al. 1997). 7 a natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAF avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,0	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. Sition (0–10) population size nd habitats. habitats by incr F). Winter-rangi <i>centaurea bieb</i> pathic, inhibitin ng vegetation (N Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgr Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compose Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1, Zollinger 1992, Mauer et al. 1987, Wisc	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. bition (0–10) population size nd habitats by incr a). Winter-rangi or <i>Centaurea bieb</i> opathic, inhibitin ng vegetation (N Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 200	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and)4), but
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgr Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compose Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelo establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,1 Zollinger 1992, Mauer et al. 1987, Wisc large individuals may produce over 20,0	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. bition (0–10) population size nd habitats by incr a). Winter-rangi or <i>Centaurea bieb</i> opathic, inhibitin ng vegetation (N Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 200	three ated sites at al. 1997) 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and)4), but
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgr Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compose Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allelo establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,1 Zollinger 1992, Mauer et al. 1987, Wisc large individuals may produce over 20,6 Dickinson 1999).	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. bition (0–10) population size nd habitats by incr a). Winter-rangi or <i>Centaurea bieb</i> opathic, inhibitin ng vegetation (N Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 200	three ated sites at al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and 04), but er and
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,0 Zollinger 1992, Mauer et al. 1987, Wisc large individuals may produce over 20,0 Dickinson 1999). Long-distance dispersal (0–3)	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangi <i>c Centaurea bieb</i> pathic, inhibitin ng vegetation (1 Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 2000 000 seeds (Roye	three ated sites at al. 1997) 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and 04), but er and 2
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,0 Zollinger 1992, Mauer et al. 1987, Wisc large individuals may produce over 20,0 Dickinson 1999). Long-distance dispersal (0–3) Seeds lack pappus; however, dispersal b	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangin <i>Centaurea bieb</i> opathic, inhibitin ng vegetation (1) Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 200) 000 seeds (Roye	three ated sites of al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and 04), but er and 2 s
knapweed invasions. Surface runoff had times more sediments in <i>Centaurea biel</i> compared with adjacent native bunchgy Impact on Natural Community Structur Spotted knapweed is capable of forming communities, reducing native plant div Impact on Natural Community Compos Spotted knapweed reduces native plant plant diversity, reduces forage quality, a Impact on Higher Trophic Levels (0–10) This species may likely affect spawning surface runoff and sedimentation (UAH avoid foraging in habitats dominated by (Rice et al. 1997). Knapweeds are allele establishment and growth of surroundi al. 2000). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Spotted knapweed reproduces only by s root sprouting is possible (Carpinelli 20 1987). Average plants produce about 1,0 Zollinger 1992, Mauer et al. 1987, Wisc large individuals may produce over 20,0 Dickinson 1999). Long-distance dispersal (0–3)	approximately persteinii domina rass sites (Rice e e (0–10) g dense stands in ersity. sition (0–10) population size nd habitats by incr a). Winter-rangin <i>Centaurea bieb</i> opathic, inhibitin ng vegetation (1) Dispersal seed. However, I 003, Mauer et al 000 seeds (Lym onsin DNR 200) 000 seeds (Roye	three ated sites of al. 1997). 7 n natural 9 , decreases 10 easing ng elk may <i>ersteinii</i> ng the Whitson et <u>34/40</u> Score 3 ateral and 04), but er and 2 s

common names: spotted knapweed

	Spread by humans (0–3)	3
	Humans are the primary factor for spotted knapweed mover	nent.
	Seeds are dispersed by vehicles, heavy machinery, and even	
	light aircraft. It also is widely dispersed as a contaminant in h	
_	commercial seed, and floral arrangements (Lym and Zolling	er
	1992, Mauer et al. 1987).	
	Allelopathic (0–2)	2
	Knapweeds are allelopathic, inhibiting the growth of	
	surrounding plants (Lym and Zollinger 1992, Royer and	
	Dickinson 1999, Whitson et al. 2000).	
	Competitive Ability (0–3)	3
X	Knapweed is able to outcompete neighboring plants for	т
y?	moisture and nutrients due to its early spring growth (Royer	and
	Dickinson 1999). The factor $(2 - 2)$	2
	Thicket-forming/Smothering growth form (0–2)	2
	Spotted knapweed often forms dense stand up to 6 feet tall	
	(Royer and Dickinson 1999). Germination requirements (0–3)	3
1	Spotted knapweed seeds germinate over a wide range of soil	5
	conditions and temperatures regimes (Schirman 1981).	
2	Other invasive species in the genus $(0-3)$	3
	Centaurea cyanus L., C. diffusa Lam., C. iberica Trev. Ex Spren	-
ot	<i>C. pratensis</i> Thuill., <i>C. solstitialis</i> L., and <i>C. virgata</i> Lam.	-8-)
	var. squarrosa (Willd.) Boiss (Whitson et al. 2000).	
:	Aquatic, wetland or riparian species $(0-3)$	1
	It typically invades along highways, waterways, railroad way	s,
	pipelines, grasslands, and open forests (Lym and Zollinger 1	
	Rice et al. 1997). Spotted knapweed establishes primarily in	ŕ
7)	nonwetland or riparian sites, however, it can invade streamb	anks
7).	and nearby meadows (Snyder and Shephard 2004).	
		/25
	Ecological Amplitude and Distribution Sc	ore
	Highly domesticated or a weed of agriculture $(0-4)$	
		4
es	Spotted knapweed generally is not a problem in cultivated fie	elds.
es	However, it is one of the most problematic weeds in rangelan	elds. Ids
es	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200	elds. Ids 00).
es	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas $(0-6)$	elds. ids 00). 6
	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an	elds. ids 00). 6 id
es	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N	elds. ads 00). 6 ad Iorth
	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli	elds. nds 00). 6 nd Iorth nger
	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespres	elds. nds 00). 6 nd Iorth nger
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004).	elds. ads 00). 6 ad Iorth nger ad in
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in	elds. nds 00). 6 nd Iorth nger
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5)	elds. ads 00). 6 ad North nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha	elds. ads 00). 6 ad Jorth nger ad in 3 nnical
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both	elds. ads 00). 6 ad Jorth nger ad in 3 nnical
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small	elds. ads 00). 6 ad Jorth nger ad in 3 nnical
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native	elds. ids 00). 6 id Iorth nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Tys	elds. ids 00). 6 id Iorth nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Tys and Kye 1988). Once a stand is established, it may invade	elds. ids 00). 6 id Iorth nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Ty- and Kye 1988). Once a stand is established, it may invade relatively undisturbed adjacent areas (Mauer et al. 1987).	elds. ids ids id lorth nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Ty- and Kye 1988). Once a stand is established, it may invade relatively undisturbed adjacent areas (Mauer et al. 1987). Current global distribution (0–5)	elds. ids ids id) id lorth nger ad in 3 inical ser 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Tys and Kye 1988). Once a stand is established, it may invade relatively undisturbed adjacent areas (Mauer et al. 1987). Current global distribution (0–5) Spotted knapweed is native to Central and Southeastern Eur	elds. ids 00). 6 id Iorth nger ad in 3
ay	However, it is one of the most problematic weeds in rangelan and pastures (Royer and Dickinson 1999, Whitson et al. 200 Known level of impact in natural areas (0–6) Spotted knapweed invades nearly undisturbed grasslands an open forests in Montana, Idaho, Colorado, Massachusetts, N Dakota, and Wisconsin (K. Boggs pers. com., Lym and Zolli 1992, Rice et al. 1997, Wisconsin DNR 2004). It is widespre- wildland in British Columbia (Canada) (MAFF 2004). Role of anthropogenic and natural disturbance in establishment (0–5) Anthropogenic disturbances such as overgrazing and mecha soil disturbance accelerate its invasion in natural areas. Both biotic and abiotic soil disturbances (e.g., frost heave, small mammal burrowing, and trampling and grazing by native ungulates) can facilitate <i>Centaurea biebersteinii</i> invasion (Ty- and Kye 1988). Once a stand is established, it may invade relatively undisturbed adjacent areas (Mauer et al. 1987). Current global distribution (0–5)	elds. ids 00). 6 id Iorth nger ad in 3

Extent of the species U.S. range and/or occurrence of	5	Level of effort required (0–4)	4	
formal state or provincial listing $(0-5)$		Long-term control requires a combination of manage	ement	
It occurs in nearly all states of the United States (USDA	A 2002).	techniques. Several years of monitoring are required to exhaust		
It is listed as noxious in 15 American states and in 4 Car	nadian	the seed bank. Most knapweed control has been conducted in		
provinces (Invaders Database System 2003, USDA 200	02).	agricultural settings and little information is available	e for the use	
Total for Ecological Amplitude and Distribution	21/25	of herbicides in native communities (Lym and Zolling	ger 1992,	
Feasibility of Control	Score	Rice et al. 1997). A number of biological control agen	ts have been	
Seed banks (0–3)	3	moderately successful in Montana and other western		
Seeds remain viable in the soil up to 5 years (Lym and 2	Zollinger	et al. 1989, Story et al. 1991).		
1992). After 8 years about 30% of seeds may be viable (2	Mauer et	Total for Feasibility of Control	9/10	
al. 1987).		Total score for 4 sections	86/100	
Vegetative regeneration (0–3)	2	0		
Lateral root-sprouting is possible for Centaurea bieberst	einii	J J		
(Carpinelli 2003, M. Shephard pers. com.).				

Cerastium fontanumcommon names: common mouse-ear chickweed,
ssp. vulgare (Hartman) Greuter & Burdetbig chickweedCerastium glomeratum Thuill.,sticky chickweed

Ranking Summary			Ecological Impact Score
Ecoregion known or expected to occur in			Impact on Ecosystem Processes (0–10) 1
South Coastal		Yes	Common mouse-ear chickweed and sticky chickweed do not
Interior Boreal		Yes	appear to occur in high densities in natural areas in Alaska.
Arctic Alpine		Yes	The impact of these species on ecosystem processes is nearly
	tial Max.	Score	negligible (J. Conn pers. obs., M. Carlson pers. obs.).
Ecological Impact	40	6	Impact on Natural Community Structure (0–10) 3
Biological Characteristics and Dispersal	25	8	Common mouse-ear chickweed and sticky chickweed likely alter
Amplitude and Distribution	19	15	the density of the layer of vegetation (Ohio perennial and biennial
Feasibility of Control	10	5	weed guide 2006).
Relative Maximum		36	Impact on Natural Community Composition (0–10) 1
Climatic Comparison		01 I) (T) (T)	On disturbed ground common mouse-ear chickweed and sticky
	ected in	CLIMEX	chickweed can form a mat that excludes other plants (Ohio
		similarity?	perennial and biennial weed guide 2006). However, these species
South Coastal Interior Boreal	Yes Yes	Yes	have not been observed in undisturbed plant communities
Arctic Alpine	No	Yes	in Alaska (M. Carslon pers. obs.) and its impact on native
Cerastium fontanum ssp. vulgare has been docu			community composition is not documented.
interior boreal and south coastal ecogeographi			Impact on Higher Trophic Levels (0–10) 1
Alaska (AKEPIC 2005, Hultén 1968, UAM 20			Flowers of common mouse-ear chickweed are self-pollinated and
<i>Cerastium glomeratum</i> is known from many dis			rarely visited by insects (Mulligan 1972). Both species are host for
in south coastal, interior boreal and arctic alpin			some nematodes (Townshend and Davidson 1962).
regions in Alaska and Yukon (Hultén 1968, UA	0	U 1	Total for Ecological Impact 6/40
1974). Cerastium fontanum ssp. vulgare has a co			Biological Characteristics and Dispersal Score
distribution with introduction into a variety of			Mode of Reproduction (0–3) 3
including arctic and subarctic (Hultén 1968).			Common mouse-ear chickweed and sticky chickweed reproduce
matching program, the climatic similarity betw	0		by seeds and stems rooting at the nodes (Ohio perennial and
			biennial weed guide 2006).
other areas where the species is documented is			Long-distance dispersal (0–3) 2
range of the species includes Chirka-Kem', Ark	0		Seabirds probably have some role in transport of seeds. Viable
Zlatoust, Russia (Gubanov et al. 2003, Hultén			seeds of Cerastium species were found in pellets of sea gulls
a 77%, 76%, and 71% of climatic match with N	-		(Gillham 1956).
This suggests that establishment of common m			Spread by humans (0–3) 2
chickweed in Alaska arctic and alpine ecoregic	ons may b	e possible.	Common mouse-ear chickweed and sticky chickweed are weeds
			of gardens and lawns. Seeds can be transported with horticultural
			stock (Hodkinson and Thompson 1997).
			Allelopathic (0–2) 0
			Common mouse-ear chickweed and sticky chickweed are not
			known to be allelopathic.

Competitive Ability (0-3)0Role of anthropogenic and natural disturbance in3Common mouse-ear chickweed and sticky chickweed cannot compete with established vegetation (Bonis et al. 1997, Jesson et al. 2000). In an experiment common mouse-ear chickweed hadRole of anthropogenic and natural disturbance in establishment (0-5) Common mouse-ear chickweed requires either anthropogenic or natural disturbance for establishment (Broughton and McAdam
compete with established vegetation (Bonis et al. 1997, Jesson et Common mouse-ear chickweed requires either anthropogenic or
low survival of transplants and no germination in undisturbed 2002, Ryan et al. 2002). This species has been recorded on sites
environments due to competition from the surrounding characterized by intense disturbance by seals and seabirds. It
vegetation (Jesson et al. 2000). Growth rate of common mouse- also occurs on dry slopes or erosion scars (Ryan et al. 2003). The
ear chickweed plants can be decrease by competition with grasses survey of exotic species distribution in Arthur's Pass National
(Bonis et al. 1997). Park, New Zealand found common mouse-ear chickweed to be
Thicket-forming/Smothering growth form $(0-2)$ 0 a species primarily associated with sites frequently disturbed by
Common mouse-ear chickweed and sticky chickweed do not flooding rivers (Jesson et al. 2000).
form dense patches in Alaska (M. Carslon pers. obs.). Both Current global distribution (0–5) 5
species do not possess climbing or smothering growth habit <i>Cerastium fontanum</i> ssp. <i>vulgare</i> is native to Europe, Asia, and
(Douglas and MacKinnon 1998, Hultén 1968, Welsh 1974). Northern Africa. It is now found across the world, including arcti
Germination requirements (0–3) 0 and subarctic regions. It has been introduced into North and
Common mouse-ear chickweed requires open soil for South America, Central and South Africa, India, Australia, and
germination and establishment (Jesson et al. 2000). No New Zealand (Hultén 1968, Walton 1975).
germination and establishment of seedlings were recorded in Extent of the species U.S. range and/or occurrence of 5
undisturbed environments in an experiment in New Zealand formal state or provincial listing (0–5)
(Jesson et al. 2000). Common mouse-ear chickweed is found throughout the United
Other invasive species in the genus (0–3) 0 States and Canada (USDA, NRCS 2006). <i>Cerastium fontanum</i>
A number of <i>Cerastium</i> species has been introduced into United ssp. <i>vulgarum</i> is listed as a noxious weed in Alberta and Manitoba
States but none of them listed as a noxious weed (USDA, NRCS (Rice 2006).
2006). Total for Ecological Amplitude and Distribution 15/19
Aquatic, wetland or riparian species (0-3) 1 Feasibility of Control Score
This species is a weed of roadsides, waste places, gardens and Seed banks (0-3) 3
fields (Douglas and MacKinnon 1998, Welsh 1974). It can Seeds of common mouse-ear chickweed germinated after 8
invade grasslands, dwarf shrub heath, fern beds, and sand months of dry storage (Williams 1983). In another study most
dunes (Broughton and McAdam 2002). However, a survey of seeds germinated within 2 years (Brenchley and Warington
exotic species distributions in Arthur's Pass National Park, New 1930). Seeds may be viable in arable fields for 16 years
Zealand found common mouse-ear chickweed to be a species (Chancellor 1985).
primarily associated with rivers (Jesson et al. 2000). It also is Vegetative regeneration (0–3)
frequent in grass swards beside rivers in number of islands around Fragments of stems are likely able to reroot (Ohio perennial and
Antarctica (Walton 1975).
Total for Biological Characteristics and Dispersal8/25Level of effort required (0-4)1Ecological Amplitude and DistributionScoreSmall population of common mouse-ear chickweed can be
∂ \mathbf{I}
Highly domesticated or a weed of agriculture (0-4)2controlled by hand pulling. Herbicides can be effective when applied during active growth (AKEPIC 2005).
horticultural lands (Broughton and McAdam 2002, Douglas and Total for Feasibility of Control 5/10
MacKinnon 1998).
Known level of impact in natural areas (0–6) U
Common mouse-ear chickweed is widespread in grasslands,
dwarf shrub heath, fern beds, and sand dunes in the Falkland
Islands (Broughton and McAdam 2002). This species colonizes
animal-disturbed areas in Prince Edward Island and in many
islands around Antarctica (Ryan et al. 2003, Walton 1975). In
Arthur's Pass National Park, New Zealand, common mouse-ear
chickweed was found exclusively in riverbeds (Jesson et al. 2000).
However, ecological impact of this exotic species on natural
community has not been recorded.

Centaurea solstitialis L.

common names: yellow starthistle

Ranking S	ummary	Ecological Impact	Score
Ecoregion known or expected to	o occur in	Impact on Ecosystem Processes (0–10)	
South Coastal	No	Impact on Natural Community Structure (0–10)	
Interior Boreal	No	Impact on Natural Community Composition (0–10)	
Arctic Alpine	No	Impact on Higher Trophic Levels (0–10)	
	Potential Max. Score	Total for Ecological Impact	/
Ecological Impact		Biological Characteristics and Dispersal	Score
Biological Characteristics and Disp	persal	Mode of Reproduction (0–3)	
Amplitude and Distribution		Long-distance dispersal (0–3)	
Feasibility of Control		Spread by humans $(0-3)$	
Relative Maximum		Allelopathic $(0-2)$	
Rejected from consideration		Competitive Ability (0–3)	
Climatic Co	omparison	Thicket-forming/Smothering growth form $(0-2)$	
	Collected in CLIMEX	Germination requirements $(0-3)$	
	Alaska regions? similarity?	Other invasive species in the genus $(0-3)$	
South Coastal	No	Aquatic, wetland or riparian species $(0-3)$	
Interior Boreal	No	Total for Biological Characteristics and Dispersal	/
Arctic Alpine	No	Ecological Amplitude and Distribution	Score
Centaurea solstitialis has not been		Highly domesticated or a weed of agriculture $(0-4)$	
1968, AKEPIC 2004, UAM 2004). Yellow starthistle is believed	Known level of impact in natural areas $(0-6)$	
to be native of the Mediterranean	region. Today, it can be found	Role of anthropogenic and natural disturbance in	
in most temperate areas of Europ		establishment (0–5)	
but not in the Arctic (Lid and Lid		Current global distribution (0–5)	
Elven Reidar pers. com., USDA 2		Extent of the species U.S. range and/or occurrence of	
nearly every American state, with		formal state or provincial listing $(0-5)$	
California, Idaho, Oregon, and W		Total for Ecological Amplitude and Distribution	/
	0	Feasibility of Control	Score
into Canada from British Columb		Seed banks (0–3)	
climate matching program indica		Vegetative regeneration (0–3)	
between Juneau, Fairbanks, and M		Level of effort required $(0-4)$	
species is documented is low. Thu		Total for Feasibility of Control	/
solstitialis in Alaska is unlikely. Th	e species is rejected from	Total score for 4 sections	/
consideration for ranking.		§	

Chenopodium album L. common names: lambsquarters, white goosefoot

Ranking Summa			Spread by humans (0–3) 2
Ecoregion known or expected to occur	in	3.7	The seeds can be a contaminant in grass and cereal seed. It has
South Coastal		Yes	been reported to spread as a contaminant of the topsoil and
Interior Boreal		Yes	horticultural stock. It appears to spread along off-road vehicle
Arctic Alpine	13.6	Yes	trails and road edges in Alaska (M.L. Carlson pers. obs.)
	otential Max.	Score	Allelopathic (0–2) 2
Ecological Impact	40	5	Leachates from Chenopodium album significantly reduce
Biological Characteristics and Dispersal Amplitude and Distribution	25 25	12 15	tomato shoot biomass and accumulation of N, P, K, Ca, and Mg
Feasibility of Control	23 10	5	(Qasem et al. 1989). The allelopathic effects were separated from
Relative Maximum	10	37	competitive effects
Climatic Compari	son		Competitive Ability (0–3) 0
	Collected in	CLIMEX	Lambsquarters is moderately competitive for moisture and
A	laska regions?		nutrient in cultivated fields. However, it competes poorly with
South Coastal	Yes	_	native species (Densmore et al. 2001, Royer and Dickinson 1999,
Interior Boreal	Yes	_	Rutledge and McLendon 1996).
Arctic Alpine	Yes	_	Thicket-forming/Smothering growth form $(0-2)$ 0
<i>Chenopodium album</i> has been collected fr		n	Lambsquarters can grow up to 3.5 feet tall (Royer and Dickinson
ecoregions: south coastal (Afognak, Kodi			1999), but usually does not form dense stands in Alaska (I.
and Skagway), interior boreal (Anchorage			Lapina pers. obs.).
Circle, Fairbanks, Gulkana, and Ophir), a			Germination requirements (0–3) 0
(Nulato) (Hultén 1968, Welsh 1974, Den			Seeds must be in the top 3 cm of soil to germinate. Light has been
	sinore et al. 20		reported as necessary for germination. Germination is inhibited
2003).		Carrie	in areas shaded by other plants (Densmore et al. 2001, Royer and
Ecological Impact		Score	Dickinson 1999, Rutledge and McLendon 1996).
Impact on Ecosystem Processes (0–10) <i>Chenopodium album</i> has not been observed	d in un dictur	-	Other invasive species in the genus (0–3) 3
-			Chenopodium murale L. is considered invasive (USDA, NRCS
in Alaska (Densmore et al. 2001, Hultén I			2002).
unlikely that measurable impacts to ecosy	stem process	es occur	Aquatic, wetland or riparian species (0–3) 0
due to its presence.	(0.10)	1	Lambsquarters is found in cultivated fields, roadsides, and waste
Impact on Natural Community Structure (1	areas (Densmore et al. 2001, Gubanov et al. 2003).
Lambsquarters establishes in a sparsely vo	-		Total for Biological Characteristics and Dispersal 12/25
layer, increasing the density of the layer in	south-centra	I Alaska	Ecological Amplitude and Distribution Score
(I. Lapina and M.L. Carlson pers obs.).	-10^{-10}	0	Highly domesticated or a weed of agriculture $(0-4)$ 4
Impact on Natural Community Compositi			Lambsquarters is a cosmopolitan weed of cultivated areas (Royer
Lambsquarters has not been observed in			and Dickinson 1999).
Alaska, no perceived impact on native pop	pulations has l	been	Known level of impact in natural areas (0–6) 1
documented (Densmore et al. 2001).		2	<i>Chenopodium album</i> is found in river bottoms and eroded areas
Impact on Higher Trophic Levels (0–10)	1.1.1	3	associated with overgrazing, burns, or logging in the desert
Plants are reported to be poisonous to she	* * •		or desert grassland, pinyon juniper, and yellow pine forests in
is present regarding its toxicity to native h			Arizona (Parker 1990).
2004). It is an alternate host for a number			Role of anthropogenic and natural disturbance in 0
barley, beet, potato, turnip, and tobacco–		~	establishment (0–5)
grown commercially in Alaska (Royer and	d Dickinson 1	999). All	Lambsquarters is a short-lived colonizer of disturbed areas and
parts of the plants contain nitrate.			will be present for only $1-3$ years unless the site is repeatedly
Total for Ecological Impact		5/40	disturbed (Densmore et al. 2001, Royer and Dickinson 1999).
Biological Characteristics and D	ispersal	Score	Current global distribution (0–5) 5
Mode of Reproduction $(0-3)$	1 77 1 1	3	Introduced from Europe, its current distribution is worldwide,
Lambsquarters reproduces entirely by see			including Africa, North and South America, Australia, Hawaii,
produce over 500,000 seeds (Royer and I	Dickinson 199		Greenland, and New Zealand (Hultén 1968).
Long-distance dispersal $(0-3)$	1 1	2	Extent of the species U.S. range and/or occurrence of 5
Chenopodium album lacks any seed disper			formal state or provincial listing $(0-5)$
most seeds are deposited near the parenta			<i>Chenopodium album</i> is listed as "noxious" in Minnesota and as a
washed into ditches and can be moved lor	-	-	"weed" in Kentucky, Nebraska, Florida, Manitoba, and Quebec
lacking buoyancy. Also, seeds remain vial	ole after passir	ng through	
the digestive tract of animals (Rutledge as	nd McLendon	1996).	(Invaders Database System 2003, Royer and Dickinson 1999,
			USDA, NRCS 2002).
			Total for Ecological Amplitude and Distribution15/25

Feasibility of Control Score	Vegetative regeneration (0–3) 0
Seed banks (0–3) 3	Lambsquarters does not resprout after removal of aboveground
Viability of seeds was 35% after 4.7 years, and 4% after 9.7 years	growth (Densmore et al. 2001).
in a seed viability experiment conducted in Fairbanks (Conn and	Level of effort required (0–4) 2
Deck 1995). Seeds have been reported to remain viable for at least	The plants are easily pulled up by hand. However, because of
6 years in cultivated soil (Chepil 1946). Other authors suggested	a long-lived seed bank several weedings may be necessary to
survival of seeds for 17, 20, and 24 years (Burnside et al. 1996,	eliminate plants germinating from buried seeds (Densmore et al.
Lewis 1973, Chippindale and Milton 1934). One hundred and	2001).
forty-three-years old viable seeds of lambsquarters were extracted	Total for Feasibility of Control 5/10
from adobe bricks of historic buildings in California and northern	Total score for 4 sections37/100
Mexico (Spira and Wagner 1983).	S

Cirsium arvense (L.) Scop.

Ranking Summ			Impact on Na
Ecoregion known or expected to occu	r in		Canada thist
South Coastal		Yes	quite quickly
Interior Boreal		Yes	displaces nat
Arctic Alpine		Yes	and allelopat
m 1 + 1x -	Potential Max.	Score	2001). It prod
Ecological Impact	40	26	competing p
Biological Characteristics and Dispersal	25	19	growth habit
Amplitude and Distribution	25 10	21	Impact on Hi
Feasibility of Control Relative Maximum	10	<u>10</u> 76	Cirsium arvei
Climatic Compa	rison	/0	cause poison
	Collected in	CLIMEX	skin, causing
	Alaska regions?		chemicals an
South Coastal	Yes		sod-web wor
Interior Boreal	Yes	_	appear to be
Arctic Alpine	No	Yes	(Zouhar 200
Cirsium arvense has been collected in sor	uth coastal [Afo	gnak,	Total for Ec
Sitka, and Juneau (UAM 2004) and Col			Biologi
interior boreal [Yukon–Tanana Uplands			Mode of Rep
Wasilla (AKEPIC 2005)] ecoregions in			It reproduces
documented in the arctic alpine ecoregi			fragments (B
have been collected from the northern S	*		1997). An in
Norrbotten (Natur Historiska Riksmus	eet Database, 20	004). This	year (Evans
region has roughly 135 frost-free days, c			various local
average of 80 frost-free days. This sugges	*		Long-distanc
arctic and alpine regions of Alaska is unl			The pappus b
CLIMEX matching program, climatic s		0	near the pare
and other areas where the species is doct			(0.2%) can d
of the species includes Kirov, Russia (Hi	0	0	and Benton 1
66% climatic match with Nome.	ancen 1700), wii	teri nus u	of C. arvense
Ecological Impact		Score	from the nea
Impact on Ecosystem Processes (0–10)		5	be distribute
Canada thistle can increase fire frequen	cy and severity of	e	1997). There
abundant and readily ignited litter (Zou	har 2001).		agents of dist
Impact on Natural Community Structure		7	Spread by hu
The spread of Canada thistle can change		fnatural	It spreads as
areas by the reduction or elimination of	other plant and	animals	material (Ha
species (Zouhar 2001).	_		by water (Bo
			mud attached
			Allelopathic (
			It produces a

common names: Canada thistle

	Impact on Natural Community Composition (0–10) 7
	Canada thistle has the potential to form dense infestations
	quite quickly by vegetative reproduction, which crowds out and
	displaces native grasses and forbs through shading, competition,
	and allelopathy (Bossard et al. 2000, Hitchison 1992, Zouhar
	2001). It produces allelopathic chemicals that assist in displacing
	competing plant species as well as producing a phalanx-like
	growth habit.
	Impact on Higher Trophic Levels (0–10) 7
_	<i>Cirsium arvense</i> has been reported to accumulate nitrates that
	cause poisoning in animals. The spiny leaves scratch animal
-	skin, causing infection, at a minimum. It produces allelopathic
,	chemicals and it is a host for bean aphid and stalk borer, and for
	sod-web worm (Bossard et al. 2000). Last, pollinating insects
	appear to be drawn away from native plants to visit <i>C. arvense</i>
	(Zouhar 2001).
	Total for Ecological Impact 26/40
	Biological Characteristics and Dispersal Score
	Mode of Reproduction (0–3) 3
	It reproduces by seeds, but mostly spreads by stem and root
	fragments (Bostock and Benton 1979, Hayden 1934, Nuzzo
	1997). An individual plant may produce up to 5,300 seeds in a
	year (Evans 1984). A count of 600 to 1,500 seeds per plant for
	various localities in northern Iowa was made (Hayden 1934).
	Long-distance dispersal (0–3) 3
	The pappus breaks off easily from the seed and most seeds land
	near the parent plant. However, a small proportion of seeds
	(0.2%) can disperse 1 km or more from the parent plant (Bostock
	and Benton 1979, Nuzzo 1997). Platt (1975) observed achenes
	of <i>C. arvense</i> windborne on the prairie several hundred meters
-	from the nearest source population. The seeds float and can also
	be distributed by water. It can also be dispersed in dung (Nuzzo
	1997). There is a belief that ducks and other waterfowls are the
	agents of distribution of Canada thistle seeds (Hayden 1934).
	Spread by humans (0–3) 3
	It spreads as a contaminant in crop seed, hay, and packing
	material (Hayden 1934). The seeds float and are easily distributed
	by water (Bossard et al. 2000). Additionally, it can be spread in
_	mud attached to vehicle and farm equipment (Nuzzo 1997).
	Allelopathic $(0-2)$ 2
	It produces allelopathic chemicals that inhibit adjacent plants
	(Evans 1984, Hayden 1934).

Competitive Ability (0–3) 1	Role of anthropogenic and natural disturbance in 3
Canada thistle is shade intolerant and grows best when no	establishment (0–5)
competing vegetation is present. Its growth may be inhibited in	Canada thistle has been observed on natural areas around ponds
disturbed natural areas if suitable native species are dense enough	and wetlands where water levels fluctuate, areas of soil erosion,
to provide sufficient competition. Seedlings are significantly	and gopher mounds. It apparently cannot become established
less competitive than mature plants (Zouhar 2001). It is quite	or spread in undisturbed or good/excellent condition pastures
competitive for water and nutrients in cultivated fields (Bossard et	(Bossard et al. 2000, Evans 1984, Zouhar 2001). Cultivation
al. 2000, Nuzzo 1997).	stimulates the growth of horizontal roots, thereby increasing the
Thicket-forming/Smothering growth form $(0-2)$ 2	number of new upright shoots borne by the horizontal runners
Canada thistle can form dense colonies 1–4 feet tall, but on	(Hayden 1934).
occasion may grow more than 6 feet tall and branch freely	Current global distribution (0–5) 5
(Bossard et al. 2000, Royer and Dickinson 1999). The vegetative	Native to Southeastern Europe, Western Asia, and Northern
growth can produce very dense stands (I. Lapina pers. obs.).	Africa, it now has a near global distribution, exclusive of
Germination requirements (0–3) 2	Antarctica. Canada thistle occurs throughout Europe, Western
Seeds germinate best in the top 0.2 to 0.6 inch of soil in bright	and Central Asia, Northern and South Africa, India, Japan,
light (they do not appear to germinate or establish without access	China, North and South America, New Zealand, Tasmania, and
to mineral soil) (Nuzzo 1997, Zouhar 2001). Canada thistle has	Australia (Hayden 1934, Hultén 1968, Nuzzo 1997).
been observed germinating along the road in vegetated areas	Extent of the species U.S. range and/or occurrence of 5
(M. Shephard pers. com., P. Spencer pers.com.).	formal state or provincial listing $(0-5)$
Other invasive species in the genus $(0-3)$ 3	Canada thistle has been declared noxious in 35 states and 6
Cirsium vulgare (Savi) Ten. is declared a noxious weed in a	Canadian provinces (Invaders Database System 2003). It is a
number of American states and Canadian provinces (Invaders	prohibited noxious weed in Alaska (Alaska Administrative Code
Database System 2003, USDA, NRCS 2002).	1987).
Aquatic, wetland or riparian species (0–3) 0	Total for Ecological Amplitude and Distribution21/25
Canada thistle is common on roadsides, railway embankments,	Feasibility of Control Score
lawns, gardens, abandoned fields, agricultural fields, and pastures.	Seed banks (0–3) 3
It has been observed on exposed substrates following drawdown	Approximately 90% of seeds germinate within one year. Some
in wetlands, but is not common in saturated soils (Bossard et al.	seeds remain dormant in the soil for up to 20 years (Hutchison
2000, Nuzzo 1997, Zouhar 2001).	1992, Roberts and Chancellor 1979).
Total for Biological Characteristics and Dispersal 19/25	Vegetative regeneration (0–3) 3
Ecological Amplitude and Distribution Score	It readily propagates from stem and root fragments (Hayden
Highly domesticated or a weed of agriculture (0–4) 4 Canada thistle is one of the worst weeds in agriculture (Bossard et	1934, Nuzzo 1997).
_	Level of effort required (0–4) 4
al. 2000, Royer and Dickinson 1999). Known level of impact in natural areas (0–6) 4	Management of Canada thistle may be achieved through hand-
Natural areas invaded include prairies and wet grasslands	cutting, mowing, controlled burning, chemical poisoning, or
(Canada and Dakota), sedge meadows (Wisconsin and Illinois).	some combination of these treatments. It takes at least two
In eastern North America, it occurs in sand dunes, streambanks,	growing season to determine whether a particular control method
lakeshores, swamps, and ditches (Nuzzo 1997). Woodland areas	is effective. Degree of control is influenced by clonal structure,
and creek banks are documented habitats in Iowa (Hayden 1934).	growth stage, season of treatment, weather conditions, ecotype,
It is a major pest in grasslands and moist prairies from the Pacific	soil type, and control methods used (Zouhar 2001).Total for Feasibility of Control10/10
Northwest eastward to the plains (Bossard et al. 2000). Canada	Total for Feasibility of Control10/10Total score for 4 sections76/100
thistle has contributed to the elimination of endangered and	
endemic plant species such as the Colorado butterfly plant in	S
Wyoming (Zouhar 2001).	

Cirsium vulgare (Savi) Ten

ensium vargare (Savi) i			
Ranking Summa			Long-distance dispersal (0–3)
Ecoregion known or expected to occur	in		Seeds possess a hairy pappus and are well suited for wind
South Coastal		Yes	dispersal (Rutledge and McLendon 1996).
Interior Boreal		Yes	Spread by humans $(0-3)$
Arctic Alpine		Yes	Extensive and rapid migration of bull thistle are likely results
1	Potential Max.	Score	from the movement of livestock, vehicles, farm machines,
Ecological Impact	40	20	and plant products such as seed and hay (Bossard et al. 2000
Biological Characteristics and Dispersal	23	19	
Amplitude and Distribution	25	18	Rutledge and McLendon 1996, Zouhar 2002). Allelopathic (0–2)
Feasibility of Control	10	3	
Relative Maximum		61	Not known to be allelopathic.
Climatic Compari	ison		Competitive Ability (0–3)
I I	Collected in	CLIMEX	Bull thistle outcompetes native plant species for water, nutrie
	Alaska regions?		and space (Bossard et al. 2000) and has been termed a "high
South Coastal	Yes	_	competitive weed" (Rutledge and McLendon 1996).
Interior Boreal	Yes	_	Thicket-forming/Smothering growth form $(0-2)$
Arctic Alpine	No	Yes	The plant stem is 2–5 feet tall, bearing many spreading brand
Bull thistle has been collected in the sout			In areas of introduction, with some grazing, densities can be
Haines airport (University of Alaska Mus	0		high as 570 seedlings/m ² (Forcella and Wood 1986, Whitson
			al. 2000).
of Wales Island (AKEPIC 2003), and in F			Germination requirements (0–3)
1968); and in interior boreal region, in Ar	0		Bull thistle germination is not inhibited by dense cover; how
(AKEPIC 2003, University of Alaska Mu	ıseum 2003). I	Using the	subsequent seedling survival is reduced. It cannot tolerate de
CLIMEX matching program, climatic sin	nilarity betwe	een Nome	
and areas where the species is documente	d is high. Nati	ive range	shade (Klinkhamer and de Jong 1993, Rutledge and McLend
of the species includes Røros, Norway an	0	<u> </u>	1996).
Russia (Hultén 1968), which has a 76%, 6		~	Other invasive species in the genus $(0-3)$
			<i>Cirsium arvense</i> (L.) Scop. is declared noxious in nearly all
match with Nome, respectively. Thus esta			American states and Canadian provinces (Invaders Databas
in arctic alpine ecogeographic region in A	laska is likely		System 2003).
Ecological Impact		Score	Aquatic, wetland or riparian species $(0-3)$
Impact on Ecosystem Processes (0–10)	1 . 1	3	Bull thistle is most common in recently or repeatedly disturl
Bull thistle is known to retard the establis	0		areas such as pastures, rangelands, and along roads and ditch
conifers following timber harvest, thus in	npeding succe	ession	(Bossard et al. 2000).
(Randall and Rejmáneck 1993), but it is g	generally assoc	ciated only	Total for Biological Characteristics and Dispersal 19
with highly degraded habitats.			Ecological Amplitude and Distribution Sc
Impact on Natural Community Structure	(0–10)	3	Highly domesticated or a weed of agriculture (0–4)
Bull thistle can maintain high population		learcuts	It is a serious weed of pastures and rangelands as well as clear
and areas of high grazing disturbance (Zo			It is known as a seed contaminant (Bossard et al. 2000, Rutle
Impact on Natural Community Composit		7	and McLendon 1996).
Bull thistle competes with and displaces 1		(Bossard	
et al. 2000).	1	`	Known level of impact in natural areas $(0-6)$
Impact on Higher Trophic Levels (0–10)		7	In the Pacific Northwest, bull thistle invades foothills and dr
Bull thistle displaces native species, inclu	ding forage sp		meadows (Hitchcock and Cronquist 1973). It occurs in ripar
			areas, clearcuts, and alder flats in the western hemlock-Sitka
favored by native ungulates such as deer a			spruce zones in Washington, in riparian areas and ponderosa
et al. 2000). Phenolic acids found in <i>C. vu</i>	e ,		pine communities in Oregon (Zouhar 2002). Bull thistle ofte
defensive or allelopathic agents. Flavonoi			dominates clearcuts in redwood and mixed evergreen forests
may be toxic to insects and mammals. It i			California (Bossard et al. 2000, Zouhar 2002). It is found in
pathogenic fungi and viruses (Klinkham	er and De Jonş	g 1993).	meadows and ponderosa pine savanna in Colorado (Rutledg
Total for Ecological Impact		20/40	McLendon 1996).
Biological Characteristics and D)ispersal 🗌	Score	
Mode of Reproduction (0–3)	_	3	Role of anthropogenic and natural disturbance in
Average seed production is nearly 4,000 p	per plant (Rutl	ledge	establishment (0–5)
and McLendon 1996). Successful individ		-	Disturbance of soil and vegetation greatly increases seedling
8,000 seeds (Klinlhamer et al. 1988). The		-	emergence and establishment of bull thistle. Even small-scal
stage are severe as a result of herbivory or			disturbances such as gopher mounds promote bull thistle
			establishment and survival (Klinkhamer and De Jong 1988).
seed predation and number of seedlings p	_	-	Spread of bull thistle is favored by trampling and soil disturb
individual is usually low (Klinkhamer an	a De Jong 199	3).	(Rutledge and McLendon 1996). It can also colonize areas in
Reproduction is entirely by seed.			relatively undisturbed grasslands, meadows, and forest open
			(Bossard et al. 2000)
			LEDOSSATO PT AL ZUUUL

common names: bull thistle

Long-distance dispersal (0–3)	3
Seeds possess a hairy pappus and are well suited for wind	
dispersal (Rutledge and McLendon 1996).	
Spread by humans (0–3)	3
Extensive and rapid migration of bull thistle are likely results	
from the movement of livestock, vehicles, farm machines,	
and plant products such as seed and hay (Bossard et al. 2000,	
Rutledge and McLendon 1996, Zouhar 2002).	
Allelopathic (0–2)	U
Not known to be allelopathic.	
Competitive Ability (0–3)	3
Bull thistle outcompetes native plant species for water, nutrien	
and space (Bossard et al. 2000) and has been termed a "highly	r
competitive weed" (Rutledge and McLendon 1996).	
Thicket-forming/Smothering growth form $(0-2)$	2
The plant stem is 2–5 feet tall, bearing many spreading branch	
In areas of introduction, with some grazing, densities can be as	
high as 570 seedlings/m ² (Forcella and Wood 1986, Whitson of	et
al. 2000).	
Germination requirements (0–3)	2
Bull thistle germination is not inhibited by dense cover; howe	ver,
subsequent seedling survival is reduced. It cannot tolerate den	ise
shade (Klinkhamer and de Jong 1993, Rutledge and McLendo	on
1996).	
Other invasive species in the genus $(0-3)$	3
Cirsium arvense (L.) Scop. is declared noxious in nearly all	
American states and Canadian provinces (Invaders Database	
System 2003).	
Aquatic, wetland or riparian species (0–3)	-
require, we fund of ripural species (0-5)	0
Bull thistle is most common in recently or repeatedly disturbe	° I
	d
Bull thistle is most common in recently or repeatedly disturbe	d
Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche	ed s
Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000).	ed s 23
Bull thistle is most common in recently or repeatedly disturbeareas such as pastures, rangelands, and along roads and ditche(Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionHighly domesticated or a weed of agriculture (0–4)	ed s 23 re 2
Bull thistle is most common in recently or repeatedly disturbeareas such as pastures, rangelands, and along roads and ditche(Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionHighly domesticated or a weed of agriculture (0–4)It is a serious weed of pastures and rangelands as well as clearce	ed s 23 re 2 uts.
Bull thistle is most common in recently or repeatedly disturbeareas such as pastures, rangelands, and along roads and ditche(Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionHighly domesticated or a weed of agriculture (0–4)	ed s 23 re 2 uts.
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0-4)It is a serious weed of pastures and rangelands as well as clearceIt is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996).	ed s 23 re 2 uts.
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996).Known level of impact in natural areas (0–6)	ed s 23 re 2 uts. lge 3
Bull thistle is most common in recently or repeatedly disturbleareas such as pastures, rangelands, and along roads and ditche(Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious weed of pastures and rangelands as well as clearcIt is known as a seed contaminant (Bossard et al. 2000, Rutledand McLendon 1996).Known level of impact in natural areas (0–6)In the Pacific Northwest, bull thistle invades foothills and dry	ed s 23 re 2 uts. lge 3
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearc It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia	ed s 23 re 2 uts. lge 3
Bull thistle is most common in recently or repeatedly disturbleareas such as pastures, rangelands, and along roads and ditche(Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious weed of pastures and rangelands as well as clearcIt is known as a seed contaminant (Bossard et al. 2000, Rutledand McLendon 1996).Known level of impact in natural areas (0–6)In the Pacific Northwest, bull thistle invades foothills and dry	ed s 23 re 2 uts. lge 3
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearc It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia	ed s 23 re 2 uts. lge 3
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000).Total for Biological Characteristics and Dispersal19/2Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious weed of pastures and rangelands as well as clearceIt is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996).Known level of impact in natural areas (0–6)In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka	ad s 23 re 2 uts. lge 3 an
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter	d s 223 re 2 uts. lge 3 nn
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i	d s 223 re 2 uts. lge 3 an n n
 Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in optimized and in the set of the	d s 223 re 2 uts. lge 3 an n n pen
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge	d s 223 re 2 uts. lge 3 an n n pen
Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996).	d s 223 re 2 uts. lge 3 an n n pen
 Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in opmeadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in 	and s s 223 re 2 uts. lge 3 an n n pen and
 Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in opmeadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) 	and s s 223 re 2 uts. lge 3 an n n pen and
 Bull thistle is most common in recently or repeatedly disturble areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in opmeadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) Disturbance of soil and vegetation greatly increases seedling 	and s s 223 re 2 uts. lge 3 an n n pen and
 Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) Disturbance of soil and vegetation greatly increases seedling emergence and establishment of bull thistle. Even small-scale 	and s s 223 re 2 uts. lge 3 an n n pen and
 Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) Disturbance of soil and vegetation greatly increases seedling emergence and establishment of bull thistle. Even small-scale disturbances such as gopher mounds promote bull thistle 	and s s 223 re 2 uts. lge 3 an n n pen and
 Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) Disturbance of soil and vegetation greatly increases seedling emergence and establishment of bull thistle. Even small-scale disturbances such as gopher mounds promote bull thistle establishment and survival (Klinkhamer and De Jong 1988). 	and 3
 Bull thistle is most common in recently or repeatedly disturbe areas such as pastures, rangelands, and along roads and ditche (Bossard et al. 2000). Total for Biological Characteristics and Dispersal 19/2 Ecological Amplitude and Distribution Sco Highly domesticated or a weed of agriculture (0–4) It is a serious weed of pastures and rangelands as well as clearce It is known as a seed contaminant (Bossard et al. 2000, Rutled and McLendon 1996). Known level of impact in natural areas (0–6) In the Pacific Northwest, bull thistle invades foothills and dry meadows (Hitchcock and Cronquist 1973). It occurs in riparia areas, clearcuts, and alder flats in the western hemlock–Sitka spruce zones in Washington, in riparian areas and ponderosa pine communities in Oregon (Zouhar 2002). Bull thistle ofter dominates clearcuts in redwood and mixed evergreen forests i California (Bossard et al. 2000, Zouhar 2002). It is found in op meadows and ponderosa pine savanna in Colorado (Rutledge McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) Disturbance of soil and vegetation greatly increases seedling emergence and establishment of bull thistle. Even small-scale disturbances such as gopher mounds promote bull thistle 	and 3

(Bossard et al. 2000).

Current global distribution (0–5)	5	Vegetative regeneration (0–3)	0
	3		0
Bull thistle is native to Europe, from Britain and Iberia north	ward	Bull thistle propagates only by seed (Bossard et al. 2000).	
to Scandinavia, eastward to Western Asia, and southward to		Level of effort required $(0-4)$	3
Northern Africa. It is found on every continent except Antard	ctica	Bull thistle will not withstand cultivation. Mechanically cut	tting
(Zouhar 2002).		the thistles at the soil surface is an effective method of contr	ol. A
Extent of the species U.S. range and/or occurrence of	5	program that involves cutting should be maintained for at le	east
formal state or provincial listing $(0-5)$		4 years. Chemicals can be used to control bull thistle as well	l
Bull thistle has been reported in all 50 states and most Canad	ian	(Rutledge and McLendon 1996).	
provinces (Zouhar 2002). It is considered noxious in 10 state	s		3/10
and 2 Canadian provinces (Invaders Database System 2003).		Total score for 4 sections60	0/98
Total for Ecological Amplitude and Distribution 18/	25	S	
Feasibility of Control Sco	ore	Ũ	
Seed banks (0–3)	0		
Cirsium vulgare does not accumulate a persistent seed bank (I	De		
Jong and Klinkhamer 1988, Klinkhamer and De Jong 1988). Seed			
dry-stored, at room temperature, for more than 3 years did no	t		
germinate (Klinkhamer and De Jong 1993).			

Convolvulus arvensis L. common names: field bindweed, morning glory

Ranking SummaryImpact on Natural Community Structure (0–10)Ecoregion known or expected to occur in South CoastalField bindweed can twine and may climb over forbs and sh or form dense tangled mats on the ground, but it does not complete the structure of	uu la c
	rubs,
	reate a
Interior Boreal Yes new layer (Gubanov et al. 2004, Zouhar 2004).	
Arctic Alpine Yes Impact on Natural Community Composition (0–10)	5
Potential Max. Score Field bindweed reportedly reduces cover of native grasses a	ind
Ecological Impact 40 18 forbs thereby decreasing biodiversity (Lyons 1982).	
Biological Characteristics and Dispersal 25 14 Impact on Higher Trophic Levels (0–10)	5
Amplitude and Distribution 25 16 This plant attracts various pollinators including bees, hone	ybees,
Feasibility of Control 10 8 bumblebees, butterflies, and moths (Zouhar 2004). Field	
Relative Maximum 56 bindweed may be mildly toxic to some grazing animals (I x	ons
Climatic Comparison	
Collected in CLIMEX	
Alaska regions? similarity? South Coastal Yes	
100 ICO	18/40
	Score
Convolvulus arvensis has been reported from Haines and Mode of Reproduction (0–3)	2
Ketchikan (AKEPIC 2004). The CLIMEX matching program	per of
indicates that climatic similarity between Nome and areas where seeds per plant varies between 12 and 500 (Royer and Dick	
the species is documented is high. The native range of the species [1999, Weaver and Riley 1982].	
includes Røros, Norway (Lid and Lid 1994) and Zlatoust and	2
Includes Rolos, Nol way (Eld and Eld 1994) and Ziacoust and	er by
bogolovsk, Russia (Gubanov et al. 2004), which have 70%, 71%,	
and 0/% climatic similarity with Nome, respectively. There is	
also climatic similarity between Fairbanks and areas within the $ $ Spread by humans (0-3)	3
native range of held bindweed. Chita, Irkutsk, and Kirensk, Russia Seeds can be dispersed by vehicles and machinery, and in	
have 79%, 78%, and 77% climatic similarity with Fairbanks, contaminated farm and garden seed, as well as root balls. F	ield
respectively. We conclude <i>Convovlulus arvensis</i> could potentially bindweed is planted as an ornamental ground cover and in	
establish in the interior boreal and arctic alpine ecoregions of hanging baskets (Zouhar 2004).	
Alaska. Allelopathic (0–2)	2
Ecological Impact Score Field bindweed is highly allelopathic to other species (Rey	nders
Impact on Ecosystem Processes (0–10) 3 and Ducke 1979 cited in Weaver and Riley 1982).	
Field bindweed tends to occupy bare ground under open	
conditions. It is unclear how long this species may persist in	
native plant communities, but it can affect successional processes	
(Rutledge and McLendon 1996). The extensive root system of	
field bindweed reduces the soil moisture and nutrients available to	
other plants (Zouhar 2004).	

Competitive Ability (0–3) 3	Role of anthropogenic and natural disturbance in 0
Due to its extensive root system, field bindweed is extremely	establishment (0–5)
competitive (Elmore and Cudney 2003, Rutledge and McLendon	Field bindweed is an early successional species that establishes
1996) and is able to outcompete native grasses for moisture and	well on bare ground or in disturbed natural communities.
nutrients (Lyons 1982). Field bindweed is tolerant of a variety of	Germination is better on bare ground than on sites with litter or
environmental conditions allowing it to effectively compete for	vegetation (Zouhar 2004).
resources (Rutledge and McLendon 1996, Whitson et al. 2000).	Current global distribution (0–5) 5
Thicket-forming/Smothering growth form $(0-2)$ 2	Field bindweed is native to Europe and Asia, but is now
Field bindweed can twine, climb ,and form dense, tangled mats	cosmopolitan between 60°N and 45°S latitudes, growing in
over other forbs and shrubs (Gubanov et al. 2004, Zouhar 2004,	temperate, tropical, and Mediterranean climates (Gubanov et al.
Weaver and Riley 1982).	2004, Weaver and Riley 1982).
Germination requirements (0–3) 0	Extent of the species U.S. range and/or occurrence of 5
Field bindweed establishes and germinates better on bare ground	formal state or provincial listing $(0-5)$
than on sites with vegetation or litter (Zouhar 2004).	Field bindweed is common in the United States, except in
Other invasive species in the genus $(0-3)$ 0	the extreme Southeast, New Mexico, and Arizona. It is found
No other weedy <i>Convolvulus</i> species are known (USDA 2002).	in agricultural regions of all Canadian provinces, except
Aquatic, wetland or riparian species (0–3) 0	Newfoundland and Prince Edward Island (Weaver and Riley
Field bindweed is especially common in cereal crops, orchards,	1982). Field bindweed is a noxious weed in 35 American states
and vineyards. It can also be found on ditch banks, along	and 5 Canadian provinces (Invaders Database System 2003,
roadsides, streambanks, and lakeshores (Lyons 1998, SAFRR	USDA 2002) and is a prohibited noxious weed in Alaska (Alaska
2005). It is found on dry or moderately moist soils and it is not	Administrative Code 1987).
normally a weed of wetlands (Weaver and Riley 1982).	Total for Ecological Amplitude and Distribution 16/25
Total for Biological Characteristics and Dispersal 14/25	Feasibility of Control Score
Ecological Amplitude and Distribution Score	Seed banks (0-3) 3
Highly domesticated or a weed of agriculture (0–4) 4	The seed bank of field bindweed is extremely persistent. Seeds
Field bindweed has had a reputation as a weed in European	may lie dormant in the soil more than 50 years (Elmore and
gardens since the 17 th century. In the late 19 th century this pest	Cudney 2003, Lyons 1998, Timmons 1949, Whitson et al. 2000).
became a problem in North America (Austin 2000) and now	Vegetative regeneration (0–3) 2
it is considered to be the worst agricultural weed in many areas	
it is considered to be the worst agricultural weed in many areas	Field bindweed resprouts repeatedly following removal of
(Hitchcock et al. 1959). It is particularly troublesome in white	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and	Field bindweed resprouts repeatedly following removal of
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999).	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com).	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998).
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4) 3
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3Herbicides are generally the most effective control of field3
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats.	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because3
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3 Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996). Total for Feasibility of Control8/10
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed aspen stands, riparian areas, and mountain shrublands and	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4) 3 Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996).
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996).8/10Total for Feasibility of Control8/10
(Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed aspen stands, riparian areas, and mountain shrublands and	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3 Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996). Total for Feasibility of Control8/10
 (Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed aspen stands, riparian areas, and mountain shrublands and grasslands in Colorado (Lyons 1982, Zouhar 2004). It occurs in 	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996).8/10Total for Feasibility of Control8/10
 (Hitchcock et al. 1959). It is particularly troublesome in white bean, cereal, and corn crops and is abundant in vineyards and orchards and in sugar beet and vegetable crops. Field bindweed can reduce crop yields by 50% (Royer and Dickinson 1999). This species has not been recorded in agricultural field of Alaska however, (J. Conn pers. com). Known level of impact in natural areas (0–6) 2 Field bindweed occurs in open annual grassland and oak savanna sites in California where it threatens endangered native grasses and forbs. In Idaho field bindweed outcompetes native grasses and threatens bunchgrass and forb-dominated habitats. Field bindweed dominates the understory in tree and shrub communities in Wyoming and has invaded remote, undisturbed aspen stands, riparian areas, and mountain shrublands and grasslands in Colorado (Lyons 1982, Zouhar 2004). It occurs in the understory in cottonwood stands along the Missouri River 	Field bindweed resprouts repeatedly following removal of aboveground growth. Root fragments 2.5 inches or more in length are able to produce new shoots under conditions of sufficient moisture (Lyons 1998, Sherwood 1945, Swan and Chancellor 1976). Roots and rhizomes of field bindweed store carbohydrates and proteins that provide the resources necessary for resprouting (Lyons 1998). Level of effort required (0–4)3 Herbicides are generally the most effective control of field bindweed. Mechanical control is not a likely option because plants are able to reproduce from roots. Currently, no biological control agents are available (Elmore and Cudney 2003, Whitson et al. 2000, Rutledge and McLendon 1996).8/10Total for Feasibility of Control8/10

Cotula coronopofolia L.

Cotata coronopojotta L.		CO	
Ranking Summary			
Ecoregion known or expected to occur in			
South Coastal		Yes	
Interior Boreal		No	
Arctic Alpine		No	
	Potential Max.	Score	
Ecological Impact	40	14	
Biological Characteristics and Dispersal	23	11	
Amplitude and Distribution	25	9	
Feasibility of Control	10	7	
Relative Maximum	-	42	
Climatic Compa			
	Collected in	CLIMEX	
	Alaska regions?	similarity?	
South Coastal	Yes	-	
Interior Boreal	No		
Arctic Alpine	No		
Cotula coronopifolia has been document			
ecoregion of Alaska (Hultén 1968, Wels	,		
Petersburg and Gambier Bay (M. Sheph	A	0	
the CLIMEX matching program, clima			
Fairbanks and Nome and areas where the	*		
is relatively low. It is unlikely to establis	h in the arctic al	pine	
or interior boreal ecogeographic region	s of Alaska. Clin	natic	
similarity between Anchorage and area	s where the spec	cies is	
documented is relatively high. Cotula co	oronopifolia has l	been	
reported from Lærdal, Norway (Lid and			
climatic similarity with Anchorage (CL			
Cotula coronopifolia germinates in late a	,	-	
high seedlings mortality due to winter f		0	
ten Hove 1982). Thus establishment in			
unlikely.			
Ecological Impact		Score	

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	3
In northwestern Europe common brassbuttons is a pione	er
colonist of bare, wet soils (van der Toorn 1980, van der To	oorn and
ten Hove 1982); therefore, it can likely hinder natural colo	onization
by native species in areas where it is introduced.	
Impact on Natural Community Structure (0–10)	5
It can form large monospecific stands along upper coastal	habitats
and mudflats and it can integrate into densely vegetated w	vetland
sites in California (Bixby 2004).	
Impact on Natural Community Composition (0–10)	3
This species appears to often establish in areas with few of	ther
plant species, but likely reduces the density and number o	of species
present in upper coastal habitats (M. Shephard pers. com	.).
Impact on Higher Trophic Levels (0–10)	3
Brassbuttons is pollinated by insects; therefore, may alter	
pollinator's behavior (Plants for a future 2002, van der To	orn
1980).	
Total for Ecological Impact	14/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Common brassbuttons propagates by seed and pieces of s	
root at the nodes (Plants for a future 2002). The number of	of seeds
produced per plant can range from 13,300 to 50,200 (van	der
Toorn 1980).	

common names: common brassbuttons

~		
	Long-distance dispersal (0–3)	2
	Seeds are dispersed by water. Dispersal distance was about	
	350–450 m per year in the study of van der Toorn (1980). Se	reds
	dispersal by birds is possible, but it rarely occurs (van der To	
-	1980). The viability of seeds passing through intestine of gee	ese was
	high in study of van der Toorn and ten Hove (1982).	
	Spread by humans $(0-3)$	1
	Movement by humans is not likely, because it generally grow	vs
	in inaccessible areas (van der Toorn 1980). However, comm	
	brassbuttons is occasionally grown in gardens (Plants for a f	uture
	2002).	
	Allelopathic (0–2)	U
	Unknown	
	Competitive Ability (0–3)	0
	Common brassbutton is not a completely successful colonis	t. It
	can maintain itself only in particular habitats (van der Toori	
	van der Toorn and ten Hove 1982). Survival of seedlings is v	
	low (van der Toorn and ten Hove 1982). Common brassbutt	on has
	been in decline or has become locally extinct on some estua	ries in
	Europe (Lid and Lid 1984, van der Toorn and Hove 1982).	
	Thicket-forming/Smothering growth form $(0-2)$	0
		0
	Common brassbuttons does not form dense thickets. $(0, 2)$	2
	Germination requirements (0–3)	2
	Common brassbuttons has been observed germinating and	
	establishing in vegetated grassy area in California (Bixby 20	04).
	Other invasive species in the genus $(0-3)$	0
	Cotula australis (Sieber) Hook. is a common weed in urban	
	coastal areas in California, but is not listed as an invasive spe	ecies
r	(McClintock 1993, USDA 2002).	
,		2
	Aquatic, wetland or riparian species $(0-3)$	
		3
;	The species is widely distributed along the beaches, tidal flat	s, and
;		s, and
	The species is widely distributed along the beaches, tidal flat	s, and
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).	s, and ck
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClinto 1993, Welsh 1974). Total for Biological Characteristics and Dispersal	s, and ck 1/23
;	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintor 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and Distribution	s, and ck
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4)	s, and ck 1/23 core
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed.	s, and ck <u>1/23</u> core 0
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and DistributionSetHighly domesticated or a weed of agriculture (0-4)Common brassbuttons is not an agricultural weed.Known level of impact in natural areas (0-6)	s, and ck <u>1/23</u> core 0 1
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and Distribution Biological Characteristics and DispersalHighly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed.Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marsher	s, and ck <u>1/23</u> core 0 1 es
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and DistributionSetHighly domesticated or a weed of agriculture (0-4)Common brassbuttons is not an agricultural weed.Known level of impact in natural areas (0-6)	s, and ck <u>1/23</u> core 0 1 es
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974).Total for Biological Characteristics and Dispersal1Ecological Amplitude and Distribution Biological Characteristics and DispersalHighly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed.Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marsher	s, and ck 1/23 core 0 1 es 3). It
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintor 1993, Welsh 1974). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution So Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To	s, and ck 1/23 core 0 1 es 3). It porn
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon	s, and ck 1/23 core 0 1 es 3). It porn
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution So Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953).	s, and ck 1/23 core 0 1 es 3). It sorn and
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in	s, and ck 1/23 core 0 1 es 3). It porn
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5)	s, and ck <u>1/23</u> core 0 1 es 3). It porn and 3
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der Tc 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze	s, and ck <u>1/23</u> core 0 1 es 3). It porn and 3 d by
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5)	s, and ck <u>1/23</u> core 0 1 es 3). It porn and 3 d by
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site	s, and ck <u>1/23</u> core 0 1 es 3). It oorn and 3 d by es,
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn	s, and ck <u>1/23</u> core 0 1 es 3). It oorn and 3 d by es,
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorm 1980).	s, and ck 1/23 core 0 1 es 8). It sorn and 3 d by es,
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5)	s, and ck <u>1/23</u> core 0 1 es 8). It sorn and 3 d by es, 3
L	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa.	s, and ck 1/23 core 0 1 es 3). It sorn and 3 d by es, 4 3 It
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It urope,
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland situ mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It urope,
;;	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It urope,
;;	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland situ mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002).	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It urope,
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It irope, ltén
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution So Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5)	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It irope, ltén 2
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common brassbuttons has been reported from Alaska, Ariz	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It irope, iltén 2 ona,
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common brassbuttons has been reported from Alaska, Ariz California, Massachusetts, Nevada, Oregon, and Washington	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It irope, iltén 2 ona,
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common brassbuttons has been reported from Alaska, Ariz California, Massachusetts, Nevada, Oregon, and Washingto (USDA 2002).	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It urope, ltén 2 ona, on
	The species is widely distributed along the beaches, tidal flat estuaries of the world (Bixby 2004, Hultén 1968, McClintoo 1993, Welsh 1974). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Common brassbuttons is not an agricultural weed. Known level of impact in natural areas (0–6) Common brassbuttons colonizes salt and freshwater marshe along the coast in California (Bixby 2004, McClintock 1993) has been reported from river estuaries in Britain (van der To 1980), New Zealand, and Australia (Calder 1961, Congdon McComb 1981, Evans 1953). Role of anthropogenic and natural disturbance in establishment (0–5) Common brassbuttons inhabit bare, wet mud or areas graze geese in estuaries or along rivers. It also occurs on inland site mostly in anthropogenically disturbed areas (van der Toorn 1980). Current global distribution (0–5) <i>Cotula coronopifolia</i> probably originated from South Africa. now occurs in all west coast states of the United States, in Eu South America, New Zealand, Australia, and Tasmania (Hu 1968, USDA 2002). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common brassbuttons has been reported from Alaska, Ariz California, Massachusetts, Nevada, Oregon, and Washington	s, and ck 1/23 core 0 1 es 3). It oorn and 3 d by es, 3 It irope, iltén 2 ona,

Feasibility of Control	Score	Level of effort required (0–4)	3
Seed banks (0–3)	2	Common brassbuttons can grow on very sof	ft, deep mud, making
Seeds buried in soil and permanently submerged in w	ater lost	infestations nearly inaccessible by foot or bo	at. No herbicides are
viability after 23 months (van der Toorn and ten Hove	e 1982).	selective enough to be used in wetlands with	nout the potential for
Vegetative regeneration $(0-3)$	2	injuring native species.	*
The species is documented as regenerating from piece	s of stem	Total for Feasibility of Control	7/10
(Plants for a future 2002).		Total score for 4 sections	41/98
		Ś	

Crepis tectorum L.

Ranking Summary				
Ecoregion known or expected to occur in				
South Coastal		Yes		
Interior Boreal		Yes		
Arctic Alpine		Yes		
F	Potential Max.	Score		
Ecological Impact	30	9		
Biological Characteristics and Dispersal	25	17		
Amplitude and Distribution	25	18		
Feasibility of Control	7	3		
Relative Maximum				
Climatic Compa	rison			
Ĩ	Collected in	CLIMEX		
	Alaska regions?	similarity?		
South Coastal	Yes	_		
Interior Boreal	Yes	-		
Arctic Alpine	Yes	-		
Crepis tectorum has been collected in so	uth coastal [Sew	vard,		
Skagway, Lake Clark, and Unalaska (U				
boreal [Anchorage and Fairbanks (Hult				
Wasilla (AKNHP 2003), and Denali Na				
(Densmore et al. 2001)], and arctic alpin		I		
2004)] ecoregions in Alaska. The range				
Dillingham, of the arctic alpine ecoregi				
it withstands winter temperatures to -53				
frost-free days (WRCC 2004). It is uncl				
establish in arctic sites with shorter grow	wing seasons (e.	g., Nome		
has similar extreme winter temperature	s, but averages 3	30 fewer		
frost-free days (WRCC 2004).				
Ecological Impact		Score		
Impact on Ecosystem Processes $(0-10)$		3		
Narrowleaf hawksbeard likely reduces v	vater availability	y. It may		
delay the establishment of native specie				
soil (J. Conn pers. com.) including follo				
interior Alaska (K. Villano 2007).				
Impact on Natural Community Structur	e(0-10)	3		
Narrowleaf hawksbeard has established		-		
	0			
where it changes the density of other species (M. Shephard pers.				
com.).				
Impact on Natural Community Composition (0–10) 3 Dense stands of narrowleaf hawksbeard in Denali National Park				
and Healy have displaced native coloniz	ers (R. Densmo	ore pers.		
com.).				
Impact on Higher Trophic Levels (0–10)		U		
No information was found identifying i	mpacts on high	er trophic		
levels. Total for Ecological Impact				
		9/30		

common names: narrowleaf hawksbeard

Dislaster Channel at the Driver 1 0
Biological Characteristics and Dispersal Score
Mode of Reproduction (0–3) 3 Narrowleaf hawksbeard reproduces by seeds. Each plant is
capable of producing over 49,000 seeds (Royer and Dickinson
1999).
Long-distance dispersal (0–3) 3
The small seeds have long pappus hairs that aid in wind dispersal
(SAFRR 1984, Royer and Dickinson 1999).
Spread by humans (0–3) 3
Narrowleaf hawksbeard is often a contaminant in agricultural
seed (MAFRI 2004). It spreads along roadsides in Alaska
(Densmore et al. 2001).
Allelopathic $(0-2)$ 0
None
Competitive Ability (0–3) 3
Narrowleaf hawksbeard competes with native species for soil
moisture (J. Snyder pers. com.). It competes successfully with hay
crops (J. Conn pers. com.).
Thicket-forming/Smothering growth form $(0-2)$ 0
Narrowleaf hawksbeard does not form dense thickets (Lapina
pers. obs.).
Germination requirements (0–3) 1
Narrowleaf hawksbeard has been observed germinating in areas
with anthropogenic and natural disturbances (M. Shephard
pers. obs.). It can germinate in established hayfields (Royer and
Dickinson 1999, J. Conn pers. obs.).
Other invasive species in the genus $(0-3)$ 3
<i>Crepis capillaris</i> (L.) Wallr. is declared noxious in Minnesota
(Invaders Database System 2003). Aquatic, wetland or riparian species (0–3) 1
Narrowleaf hawksbeard can be found on cultivated fields,
pastures, forage stands, fallow land, roadsides, and railroads
(Royer and Dickinson 1999, SAFRR 1984). It is established along
the Knik River (M. Shephard pers. com.).
Total for Biological Characteristics and Dispersal17/25
Ecological Amplitude and Distribution Score
Highly domesticated or a weed of agriculture $(0-4)$ 4
Narrowleaf hawksbeard is a weed of agricultural fields (MAFRI
2004, Royer and Dickinson 1999).
Known level of impact in natural areas (0–6) 1
Narrowleaf hawksbeard is not considered as an invader of natural
areas (Densmore et al. 2001). However, this taxon degrades a
number of habitat types in the Pacific Northwest; it persists in
disperse populations in disturbed headlands, grasslands, and
clearcuts (M.L. Carlson pers. obs.), additionally it is known
to invade and persist following forest fires in interior Alaska
(Villano 2007).

Role of anthropogenic and natural disturbance in 3	Feasibility of Control Score
establishment (0–5)	Seed banks (0-3) U
Narrowleaf hawksbeard readily colonizes disturbed sites and	Longevity of seed bank is not documented. Densmore (2001)
open areas (Densmore et al. 2001, I. Lapina pers obs). However,	suggested seed viability of 1 year or less.
it has established on river bars in southeast Alaska (M. Shephard	Vegetative regeneration (0–3) 0
pers. obs.) and following forest fires (Villano 2007).	Narrowleaf hawksbeard does not resprout after aboveground
Current global distribution (0–5) 5	growth is removed (Densmore et al. 2001).
The present world distribution of narrowleaf hawksbeard includes	Level of effort required (0–4) 3
most of Europe, Asia, and North America to the subarctic–arctic	Narrowleaf hawksbeard does not persist without repeated
zone (Hultén, 1968).	anthropogenic disturbance in Alaska. It is likely that control
Extent of the species U.S. range and/or occurrence of 5	can be accomplished with repeated mechanical or chemical
formal state or provincial listing $(0-5)$	treatments. Future monitoring after site eradication is important
Narrowleaf hawksbeard is widespread in the northeastern United	as this plant is likely to be reintroduced after it is eradicated
States and Canada (Royer and Dickinson 1999, USDA 2002). It is	(Densmore et al. 2001).
listed as noxious in Minnesota, Alberta, and Manitoba (Invaders	Total for Feasibility of Control 3/7
Database System 2003).	Total score for 4 sections47/87
Total for Ecological Amplitude and Distribution 18/25	S

Crupina vulgaris Cass. common names: common crupina, bearded creeper

Ranking Summary	Ecological Impact	Score
Ecoregion known or expected to occur in	Impact on Ecosystem Processes (0–10)	
South Coastal No	Impact on Natural Community Structure (0–10)	
Interior Boreal No	Impact on Natural Community Composition (0–10)	
Arctic Alpine No	Impact on Higher Trophic Levels (0–10)	
Potential Max. Score	Total for Ecological Impact	/
Ecological Impact	Biological Characteristics and Dispersal	Score
Biological Characteristics and Dispersal	Mode of Reproduction (0–3)	
Amplitude and Distribution	Long-distance dispersal $(0-3)$	
Feasibility of Control	Spread by humans $(0-3)$	
Relative Maximum	Allelopathic $(0-2)$	
Rejected from consideration	Competitive Ability (0–3)	
Climatic Comparison	Thicket-forming/Smothering growth form $(0-2)$	
Collected in CLIMEX	Germination requirements $(0-3)$	
Alaska regions? similarity? South Coastal	Other invasive species in the genus $(0-3)$	
Interior Boreal	Aquatic, wetland or riparian species (0–3)	/
Arctic Alpine	Total for Biological Characteristics and Dispersal	Score
Crupina vulgaris has not been collected in Alaska (Hultén 1968,	Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4)	Score
Welsh 1974, AKEPIC 2004, UAM 2004). The native population	Known level of impact in natural areas $(0-6)$	
of <i>Crupina vulgaris</i> is distributed around the Mediterranean	Role of anthropogenic and natural disturbance in	
1 0	establishment (0–5)	
region. Western limits are the Iberian Peninsula and Morocco.	Current global distribution $(0-5)$	
Northern limits include southern Europe, northern Greece, and	Extent of the species U.S. range and/or occurrence of	
Turkey. The range extends south to northern Iran and Iraq and	formal state or provincial listing $(0-5)$	
east to the Caucasus region, Uzbekistan, Turkmenistan, and	Total for Ecological Amplitude and Distribution	/
northeastern Afghanistan. This species has been introduced	Feasibility of Control	Score
in Idaho, California, Washington, and Oregon (Garnatje et al.	Seed banks (0–3)	Score
2002, USDA 2002, USDA, ARS 2005). The CLIMEX climate	Vegetative regeneration (0–3)	
matching program indicates the climatic similarity between	Level of effort required $(0-4)$	
Juneau, Fairbanks, and Nome and areas where the species is	Total for Feasibility of Control	/
documented is low. Similarity between Juneau, Fairbanks, and	Total score for 4 sections	/
Nome and Soria and Cuenca, Spain and Braganca, Portugal is	L	/
25% to 30%. Similarity between Alaska climate with areas of	S	
<i>Crupina</i> introduced range in Oregon and Idaho is 21% to 40%.		
Thus establishment of <i>Crupina vulgaris</i> in Alaska is unlikely. This		
species is rejected from consideration for ranking.		
opeoles is rejected from consideration for ranking.		

Cytisus scoparius (L.) Link common names: English broom, Scotch broom

Ranking Summ				Lon	Long-distance dispersal (0–3)
Ecoregion known or expected to occu			-		Scotch broom fruits open explosively, seeds may be sc
South Coastal		Yes			many meters (Hoshovsky 1986, Prasad 2002) and sec
Interior Boreal		No			
Arctic Alpine		No			dispersed by ants (Parker 2000). The seed is also distr
Trictic Tuplic	Potential Max.	Score	۲		water, birds, and other animals (Bossard et al. 2000, H
Ecological Impact	40				1986).
Ecological Impact		26		Spre	Spread by humans (0–3)
Biological Characteristics and Dispersal Amplitude and Distribution	25 25	17 18		Scot	Scotch broom is frequently planted in gardens and as a
	23 10			alon	along highway cuts and fills. It spreads rapidly along th
Feasibility of Control	10	<u> </u>	-		due to passing vehicles and in gravel hauled from river
Relative Maximum		69	۲		(Bossard et al. 2000, Hoshovsky 1986).
Climatic Compa			_		Allelopathic (0–2)
	Collected in	CLIMEX	- I		Scotch broom is not listed as allelopathic (USDA 2002
	Alaska regions?	similarity?	1		Competitive Ability (0–3)
South Coastal	Yes				<i>Cytisus scoparius</i> is strong competitor and can domina
Interior Boreal	No	No		-	community, forming a dense monospecific stand (Bos
Arctic Alpine	No	No			
Cytisus scoparius has been collected from					2000, Parker 2000). This plant can fix nitrogen throug
and it is reported from Ketchikan and Pi					year in regions with mild winters (Wheeler et al. 1979
(M. Shephard pers. com.). The range of t	the species inclu	des			Thicket-forming/Smothering growth form $(0-2)$
the British Isles, central and southern Eu	urope (Hoshovs)	ky			Within the first year broom plants can grow over 3 fee
1986). Its northern limits are probably c	ontrolled by low	<i>w</i> inter		0	grows very densely and is often impenetrable, prevent
temperatures. It withstands winter temp	,	1		estal	establishment of the native plants (Hoshovsky 1986, I
requires 150 frost-free days (USDA 200				2002	2002).
has 140 frost-free days, but winter tempe		~ ·		Gerr	Germination requirements (0–3)
				Ger	Germination requires scarification and soaking. Gern
Nome has approximately 80 frost-free da				is gr	is greatest when seeds are buried less than 1 inch deep
temperatures -54 °F (WRCC 2001). Cyt	*	· · · ·		0	textured substrate; no germination occurs when seeds
to establish in the interior boreal and arc	ctic alpine ecore		4		4 inches deep (Hoshovsky 1986).
Ecological Impact		Score			Other invasive species in the genus $(0-3)$
Impact on Ecosystem Processes (0–10)		7			<i>Cytisus multiflorus</i> (L'Heritier) Sweet and <i>C. striatus</i> (I
Scotch broom stands prevent reforestati	on and create a l	high			Rothm. are weedy species that are found on the Pacific
fire hazard. Additionally, this species pro	oduces a sparse,	readily			
decomposable litter. There is concern th	at its vigorous g	rowth			(McClintock 1993, USDA 2002).
inhibits establishment of other species (Aquatic, wetland or riparian species (0–3)
Hoshovsky 1986). This species also fixes		/			Scotch broom invades pastures, cultivated fields, road
Impact on Natural Community Structure		7			dry scrubland, native grasslands, glacial outwash prain
Scotch broom can grow so dense that it i				river	riverbeds, and occasionally along other waterways (H
prevents the establishment of the native				1986	1986, Parker 2000, Whitson et al. 2000).
				Tota	Total for Biological Characteristics and Dispersal
Prasad 2002). There is generally a much					Ecological Amplitude and Distribution
layer under scotch broom canopy (M.L.				Higl	Highly domesticated or a weed of agriculture $(0-4)$
Impact on Natural Community Composi		7		Scot	Scotch broom is frequently planted in gardens and as a
Scotch broom can form pure stands and		of native			binder along highway cuts and fills (Coombs and Turi
species in the community (Hoshovsky 1	.986).				Hoshovsky 1986). It appears for sale as a nursery prod
Impact on Higher Trophic Levels (0–10)		5			
When scotch broom's growth becomes t	too dense it elim	inates			2002).
forage sites for deer. It is slightly toxic an					Known level of impact in natural areas $(0-6)$
browsing animals (Hoshovsky 1986). Bu			2		Scotch broom invades native grasslands, glacial outwa
pollinators find <i>Cytisus scoparius</i> highly					dry riverbeds, other waterways, and clearcuts in states
				Paci	Pacific Northwest. In California, scotch broom has be
draw pollination services away from nat	ive plants (M.L.	Carlson		exte	extensively naturalized in grassland areas (Hoshovsky
pers. obs.)		0.411-			may be threatening Garry oak woodlands in British C
Total for Ecological Impact		26/40			(Prasad 2002).
Biological Characteristics and	Dispersal	Score			Role of anthropogenic and natural disturbance in
Mode of Reproduction $(0-3)$		3			
Scotch broom may reproduce vegetative					establishment $(0-5)$
produce anywhere from 700 to 60,000 s	eeds per plant (J	Bossard et	č		Bare soil caused by disturbance is very conducive for s
al. 2000, Waloff and Richards 1977).	`				establishment (Hoshovsky 1986, Prasad 2002). Scotc
,			_	can	can regenerate only where the canopy is disturbed by
					substrate instability, logging ,or grazing (Hoshovsky 1

Current global distribution (0-5)

Scotch broom is native to the British Isles as well as Central and Southern Europe to the Canary Islands (USDA, ARS 2004). It has become widely naturalized in North America (Hoshovsky 1986) as well as India, Iran, New Zealand, Australia, and South Africa (Prasad 2002). Extent of the species U.S. range and/or occurrence of 5

3

formal state or provincial listing (0–5) In western North America, scotch broom has now become established along the inland valleys of the Pacific Northwest, from British Columbia to central California (Hitchcock and Cronquist 1990). It is found in 25 states (USDA 2002) and is listed as noxious in California, Hawaii, Idaho, Oregon, and Washington (Invaders Database System 2003). **Total for Ecological Amplitude and Distribution** 18/25

Dactylis glomerata L.

nary	
	Yes
	Yes
	Yes
Potential Max.	Score
40	16
	10
	22
10	5
-	53
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	CLIMEX
	similarity?
100	-
	Yes
	Yes
atic matches wit	h Nome,
n Fairbanks, resj	pectively.
<i>nerata</i> to becom	e
1 0	0 1
	Score
	5
ress the growth	of
, ,	
	ieiu oruuy
etal 1994)	1
et al. 1994). e (0–10)	
e (0–10)	3
e (0–10) m a dense layer	3 , but when
e (0–10) m a dense layer an grass such as	3 , but when <i>Festuca</i>
e (0–10) m a dense layer	3 , but when <i>Festuca</i> apable of
	Potential Max. 40 25 25 10 rison Collected in Alaska regions? Yes No No the south coast 1968, Welsh 19 omerata is know nented as far no rk) at 70°N (Lid ludes Røros and atic matches with n Fairbanks, resp nerata to becom ctic alpine ecoge ress the growth 175) and trees (Frivial and grow s increased in a figure for the second ress the growth

Feasibility of Control	Score
Seed banks (0–3)	3
Seeds remain viable for over 80 years (Bossard et al. 200	00,
Coombs and Turner 1995, Hoshovsky 1986, Prasad 20	02).
Vegetative regeneration $(0-3)$	2
Plants can resprout after burning or cutting, particularl	y during
the rainy season (Bossard et al. 2000, Hoshovsky 1986)).
Level of effort required (0–4)	3
Hand pulling, cutting, or mowing can be effective. How	vever,
broom easily resprouts and seeds are long-lived. Therefore	ore, long-
term monitoring is needed (Hoshovsky 1986).	-
Total for Feasibility of Control	8/10
Total score for 4 sections	69/100
\$	

common names: orchardgrass

Impact on Natural Community Composition (0–10)	3
As a codominant with other exotic perennial grasses,	
orchardgrass is capable of causing reduction and extirpat	ion of
native perennial grasses (Cobrin et al. 2004, Cal-IPC 200	05).
Impact on Higher Trophic Levels (0–10)	5
Orchardgrass is moderately nutritious and highly palatab	le to
grazing animals. Orchardgrass also provides food and cov	ver for
a number of small mammals, birds, and insects (Sullivan	1992).
However, suppressed development of native shrubs migh	t be
detrimental to native wildlife habitat (Anderson and Bro	oks
1975).	
Total for Ecological Impact	16/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	1
Orchardgrass reproduces by seeds (Beddows 1957). Beca	use
orchardgrass breeders have traditionally focused on forag	ge traits,
most cultivars are not necessarily good seed producers (C	Casler et
al. 2003).	
Long-distance dispersal (0–3)	2
Most seeds fall directly to the soil below the parent plant.	Some
seeds attach to animals and travel long distances (Beddow	ws 1957).
Spread by humans (0–3)	3
Orchardgrass is widely used as a forage crop and is recom	
as part of a mix for erosion control and pasture rehabilitat	tion
(Anderson and Brooks 1975, McLean and Clark 1980). If	t is a
common commercial seed contaminant (Bush et al. 2005	5).
Allelopathic (0–2)	0
Orchardgrass is not listed as an allelopathic (USDA, NRO	
2006). In experimental studies orchardgrass did not show	
significant inhibition of germination, root, and shoot grow	wth
(Grant and Sallens 1964, Larson et al. 1995).	
Competitive Ability (0–3)	1
Orchardgrass is able to compete with native perennials an	nd
annual species (Corbin et al. 2004).	
Thicket-forming/Smothering growth form $(0-2)$	0
Orchardgrass rarely forms dense layers, but it is capable o	f
creating a dense stand when grown with other perennial	
European grasses (Corbin et al. 2004, Cal-IPC 2005).	

Germination requirements (0–3) 3	Current global distribution (0–5) 5
Orchardgrass is widely used for pasture improvements and is	Orchardgrass was introduced from Europe and it is now present
commonly broadcast seeded (Sullivan 1992). Thus, orchardgrass	throughout temperate Asia and North America. It was also
presumably can germinate on vegetated sites.	introduced into South America, Australia, and New Zealand, and
Other invasive species in the genus $(0-3)$ 0	can be found in the Arctic (Hultén 1968, Tolmachev et al. 1995).
None (USDA, NRCS 2006).	Extent of the species U.S. range and/or occurrence of 5
Aquatic, wetland or riparian species (0–3) 0	formal state or provincial listing (0–5)
Orchardgrass prefers dry soils in waste places, fields, yards, and	Orchardgrass is present throughout the United States and
roadsides (Hultén 1968, Welsh 1974).	Canada (USDA, NRCS 2006). It is declared noxious in New
Total for Biological Characteristics and Dispersal10/25	Jersey and Virginia (Rice 2006).
Ecological Amplitude and Distribution Score	Total for Ecological Amplitude and Distribution 22/25
Highly domesticated or a weed of agriculture $(0-4)$ 4	Feasibility of Control Score
Orchardgrass is widely used as a forage crop. A number of	Seed banks $(0-3)$ 0
cultivars have been developed (Anderson and Brooks 1975,	Orchardgrass does not have long-lived seeds. Most seeds
McLean and Clark 1980).	germinate in the fall or following spring (Dorph-Petersen 1925,
Known level of impact in natural areas (0–6) 3	Beddows 1959).
Orchardgrass has invaded oak woodlands and perennial	Vegetative regeneration (0–3) 2
grasslands in California (Williamson and Harrison 2002, Corbin	Vegetative regeneration of orchardgrass occurs through tilling.
et al. 2004). However, its impact on natural communities is	When plants are cut or plowed, rooting stems may develop new
considered to be low (Cal-IPC 2005). Orchardgrass appears	plants (Beddows 1957).
to have potential for invading and modifying existing plant	Level of effort required (0–4) 3
communities in Rocky Mountain National Park (Rutledge and	Generally, mechanical methods are not effective in control of
McLendon 1996). Orchardgrass invades open woodlands and	orchardgrass. Numerous herbicides are available for this species
prairies in western Oregon (M. Carlson pers. obs.)	(Rutledge and McLendon 1996).
Role of anthropogenic and natural disturbance in 5	Total for Feasibility of Control 5/10
establishment (0–5)	Total score for 4 sections5/10
Orchardgrass is usually associated with human disturbances	
(Hultén 1968, Welsh 1974, Williamson and Harrison 2002),	S
but it is known to invade undisturbed coastal prairie grasslands	
(Corbin et al. 2004).	

Descurainia sophia (L.) Webb ex Prantl.

Ranking Summ	lary	
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	8
Biological Characteristics and Dispersal	25	13
Amplitude and Distribution	25	18
Feasibility of Control	10	2
Relative Maximum		41
Climatic Compa	rison	
_	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Descurainia sophia has been collected fr	om the south co	astal,
interior boreal, and arctic alpine ecoreg	ions of Alaska (1	Hultén
1968, UAM 2004).		

common names: flixweed, herb sophia

Ecological ImpactScoreImpact on Ecosystem Processes (0–10)0Flixweed is a pioneer species of disturbed soils, facilitating the establishment of other weedy species. It can form dense stands that become dried, creating a fire hazard. If flixweed stands
establishment of other weedy species. It can form dense stands
that become dried, creating a fire hazard. If flixweed stands
do not burn, dried plants facilitate cheatgrass establishment
(Howard 2003). Nevertheless in Alaska, this species does not
tend to invade natural plant communities (M. Carlson pers. obs
I. Lapina pers. obs.).
Impact on Natural Community Structure (0–10) 0
Flixweed establishes in an existing layer and changes the density
of the layer on disturbed sites (I. Lapina pers. obs., WSSA
2003). No impact on the natural community structure has been
documented. Increases total percent cover in open, disturbed
sites.
Impact on Natural Community Composition (0–10) 1
Flixweed has not been observed in undisturbed areas in Alaska;
no perceived impact on native populations has been documente
(Densmore et al. 2001).

Impact on Higher Trophic Levels (0–10) 7	Ecological Amplitude and Distribution Score
All parts of the plant are poisonous, causing blindness,	Highly domesticated or a weed of agriculture $(0-4)$ 4
staggering, and loss of ability to swallow. Flixweed is a larval	Flixweed is a serious weed of crops. It has been reported to
food for pierid butterflies. It is an alternate host for several viruses	
(Howard 2003, MAFRI 2004).	Royer and Dickinson 1999).
Total for Ecological Impact8/40	Known level of impact in natural areas $(0-6)$ 3
Biological Characteristics and Dispersal Score	Flixweed occurs in sagebrush, pinyon, and juniper communities
Mode of Reproduction (0–3) 3	of Washington, Oregon, Nevada, Utah, and California
Flixweed reproduces entirely by seed. It generally produces 75–	(Howard 2003). This weed, therefore, may invade Alaska's
650 seeds per plant. Some plants can produce over 700,000 seeds	sagebrush-steppe communities of the interior ecogeographic
(Howard 2003, Rutledge and McLendon 1996).	region. Flixweed appears to have little impact on native plant
Long-distance dispersal (0–3) 3	communities and succession processes in Rocky Mountain
Seeds of flixweed can be dispersed by multiple vectors: wind,	National Park, Colorado (Rutledge and McLendon 1996).
water, and animals. It has a mucilaginous seedcoat that sticks to	Role of anthropogenic and natural disturbance in 1
feathers or fur (Howard 2003, WSSA 2003). However, most seed	establishment (0–5)
falls near the parent plant (Howard 2003).	Flixweed appears to establish only in areas with non-natural
Spread by humans $(0-3)$ 2	soil disturbance and an open canopy. Intensive grazing makes
Flixweed is spread by vehicles and machinery (Howard 2003).	rangelands vulnerable to flixweed invasion (Howard 2003).
It also is known as a contaminant in cereal and forage seed	Current global distribution $(0-5)$ 5
(MAFRI 2004, Rutledge and McLendon 1996).	Flixweed is native to Southern Europe and Northern Africa.
Allelopathic (0–2) 0	Its current distribution includes all Nordic countries to 70°N,
No known documentation of allelopathy.	Siberia, East Asia, South Africa, North and South America, and
Competitive Ability (0–3) 1	New Zealand (Howard 2003, Hultén 1968).
Flixweed can be quite competitive with crops for moisture	Extent of the species U.S. range and/or occurrence of 5
and nutrients, severely reducing crop yields (MAFRI 2004).	formal state or provincial listing $(0-5)$
However, in natural late-seral communities of perennial grasses	Flixweed now occurs in 48 states and throughout Canada. It is
and forbs, flixweed is a poor competitor (Baker et al. 2003,	classified as a noxious weed in Colorado and Minnesota (USDA
SAFRR 1984).	2002).
Thicket-forming/Smothering growth form $(0-2)$ 1	Total for Ecological Amplitude and Distribution 18/25
Flixweed tends to form dense and crowded stands up to 3 feet	Feasibility of ControlScore
tall (Howard 2003, WSSA 2003). Populations in Alaska are	Seed banks (0–3) 2
generally dispersed (I. Lapina pers. obs.).	The seed bank of flixweed can be large. Buried seeds remained
Germination requirements (0–3) 0	viable 4 years or more in interior Alaska (Conn 1990, Densmore
Flixweed requires open soil and disturbance for germination	et al. 2001).
(Densmore et al. 2001).	Vegetative regeneration $(0-3)$ 0
Other invasive species in the genus $(0-3)$ 3	Flixweed does not resprout after removal of aboveground growth
Descurainia pinnata (Walt.) Britt. is considered an invasive weed	(Densmore et al. 2001).
(USDA 2002).	Level of effort required (0–4) 0
Aquatic, wetland or riparian species $(0-3)$ 0	Flixweed is not maintained in late-seral communities. It may
Flixweed has not been observed in undisturbed areas in Alaska;	not require directed control measures (Densmore et al. 2001.
no perceived impact on native populations has been documented	Howard 2003). Control can be achieved with mechanical
(Densmore et al. 2001). It is common in dry, well-drained	treatment. Seedlings are very sensitive to most herbicides, even at
anthropogenically disturbed areas (e.g., roadsides, railroads,	low dosages.
pastures, cultivated areas, old fields) where the native vegetation	Total for Feasibility of Control2/10
has been damaged or destroyed (Baker et al. 2003, Howard	Total score for 4 sections2/10
2003, MAFRI 2004).	
Total for Biological Characteristics and Dispersal 13/25	\$
Total for Diological Unaracteristics and Dispersal 13/25	

Digitalis purpurea L.

Ranking Summ	ary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	16
Biological Characteristics and Dispersal	25	11
Amplitude and Distribution	25	19
Feasibility of Control	10	5
Relative Maximum		51
Climatic Compar	ison	
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	No	No
<i>Digitalis purpurea</i> has been reported fror		
and Sitka (Hultén 1968, UAM 2004, AK		
commonly grown in Juneau and Anchor	age (J. Riley pe	ers.
obs.). Using the CLIMEX matching prog	gram, there is a	high
climatic match between Nome and areas	where the spe	cies is
documented such as Røros, Norway (76	%). In Norway,	Digitalis
<i>purpurea</i> occurs along the coast as far no		0
Lid 1994). However, it appears to reach i		
around Anchorage as it not able to overw		
R. Densmore pers. obs.). Therefore, it is u		
R. Densmore pers. 005.). Increatione, it is t	initikely to esta	011511111
the eretic elpine ecorogien		
		Score
Ecological Impact		Score
Ecological Impact Impact on Ecosystem Processes (0–10)	valove likely hi	3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for		3 nders
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca	rlson pers. obs.	3 nders).
Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure	rlson pers. obs. (0–10)	3 nders). 3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch	rlson pers. obs. (0–10) es, increasing t	3 nders). 3 he density
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul	rlson pers. obs. (0–10) es, increasing t o layers (Harris	3 nders). 3 he density 5 2000).
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composit	rlson pers. obs. (0–10) es, increasing t b layers (Harris tion (0–10)	3 nders). 3 he density 5 2000). 3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composite Purple foxglove is capable of forming dent	rlson pers. obs. (0–10) es, increasing t b layers (Harris tion (0–10)	3 nders). 3 he density 5 2000). 3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000).	rlson pers. obs. (0–10) es, increasing t b layers (Harris tion (0–10)	3 nders). 3 he density ; 2000). 3 splacing
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis	3 nders). 3 he density ; 2000). 3 splacing 7
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI	3 nders). 3 he density ; 2000). 3 pplacing 7 D 2004,
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) ase patches, dis imals (CUPPI . 2000). Rabbit	3 nders). 3 he density ; 2000). 3 pplacing 7 D 2004,
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) ase patches, dis imals (CUPPI . 2000). Rabbit	3 nders). 3 he density ; 2000). 3 splacing 7 D 2004, ; s and deer
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002).	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, cs and deer <u>16/40</u>
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact Biological Characteristics and I	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002).	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, 55 and deer <u>16/40</u> Score
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 <u>Total for Ecological Impact</u> Biological Characteristics and I Mode of Reproduction (0–3)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, cs and deer <u>16/40</u> Score 1
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composit Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by se	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 102). Dispersal eed, but produc	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, 55 and deer <u>16/40</u> Score 1 ces many
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composit Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by schundreds of seeds/plant (Floridata 2002	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 102). Dispersal eed, but produc	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, s and deer <u>16/40</u> Score 1 tees many
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composit Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by schundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 102). Dispersal eed, but produc ., Harris 2000)	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, s and deer <u>16/40</u> Score 1 ces many 3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 200 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by sc hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, s and deer <u>16/40</u> Score 1 ces many 3 However,
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 200 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by sc hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H	3 nders). 3 he density 5 2000). 3 splacing 7 D 2004, s and deer <u>16/40</u> Score 1 ces many 3 However,
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 20 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by sc hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1) the seeds lack apparent adaptations for lo Spread by humans (0–3)	rlson pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H ong-distance di	3 nders). 3 he density 52000). 3 splacing 7 D 2004, s and deer 16/40 Score 1 ces many 3 However, spersal. 3
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 2007 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by se hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1) the seeds lack apparent adaptations for to Spread by humans (0–3) Purple foxglove is cultivated as an ornan	rison pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) nse patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H arris 2000). H ong-distance di nental plant and	3 nders). 3 he density 52000). 3 splacing 7 D 2004, ts and deer 16/40 Score 1 tees many 3 However, spersal. 3 d grown
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 200 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by se hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1) the seeds lack apparent adaptations for lo Spread by humans (0–3) Purple foxglove is cultivated as an ornan commercially as a heart stimulant source	rison pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) ase patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H ong-distance di nental plant and e(Floridata 200	3 nders). 3 he density 52000). 3 splacing 7 D 2004, ts and deer 16/40 Score 1 tees many 3 However, spersal. 3 d grown
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 200 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by se hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1) the seeds lack apparent adaptations for lo Spread by humans (0–3) Purple foxglove is cultivated as an ornan commercially as a heart stimulant source	rison pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) ase patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H ong-distance di nental plant and e(Floridata 200	3 nders). 3 he density 52000). 3 splacing 7 D 2004, ts and deer 16/40 Score 1 tees many 3 However, spersal. 3 d grown
Ecological Impact Impact on Ecosystem Processes (0–10) As a pioneer of disturbed sites, purple for natural successional processes (M.L. Ca Impact on Natural Community Structure Purple foxglove often forms dense patch of the herbaceous and herbaceous–shrul Impact on Natural Community Composi Purple foxglove is capable of forming den natural vegetation (Harris 2000). Impact on Higher Trophic Levels (0–10) Purple foxglove is toxic to human and an Harris 2000, USDA 2002, Whitson et al avoid the leaves of foxglove (Floridata 2007 Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Purple foxglove reproduces entirely by se hundreds of seeds/plant (Floridata 2002 Long-distance dispersal (0–3) Seeds are dispersed by wind and water (1) the seeds lack apparent adaptations for to Spread by humans (0–3) Purple foxglove is cultivated as an ornan	rison pers. obs. (0–10) es, increasing t o layers (Harris tion (0–10) ase patches, dis imals (CUPPI . 2000). Rabbit 002). Dispersal eed, but produc ., Harris 2000). H ong-distance di nental plant and e(Floridata 200	3 nders). 3 he density 52000). 3 splacing 7 D 2004, ts and deer 16/40 Score 1 tees many 3 However, spersal. 3 d grown

common names: purple foxglove

1 1 8	,
Competitive Ability (0–3)	0
Purple foxglove species does not compete with establish	ed native
vegetation, especially under the canopy (Harris 2000). This last forming (Superthering a super the form $(0, 2)$	1
Thicket-forming/Smothering growth form $(0-2)$ Foxglove can form dense and tall patches (Harris 2000).	1
Germination requirements (0–3)	0
Roots of young plants are not able to penetrate turf or lit	-
Successful establishment requires disturbance of soil, ve	
and litter (Harris 2000, Vazquez-Yanes et al. 1990).	50000000
Other invasive species in the genus $(0-3)$	3
Digitalis lanata Ehrh. is known as an invader of grassland	-
woodlands in Wisconsin (WDNR 2004).	
Aquatic, wetland or riparian species $(0-3)$	0
Purple foxglove can be found on roadsides, fields, forest	edges,
wet ditches, moist meadows, open woodland, and pastur	-
(Harris 2000, Pojar and MacKinnon 1994).	
Total for Biological Characteristics and Dispersal	11/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	4
Foxglove is cultivated as an ornamental plant and is grov	vn
commercially for medical reasons. Many cultivars have b	been
developed (Floridata 2002).	
Known level of impact in natural areas $(0-6)$	3
It readily colonizes disturbed areas, forming dense patch	nes that
displace natural vegetation in California (Harris 2000).	
Role of anthropogenic and natural disturbance in	3
establishment (0–5)	
Young plants are not able to penetrate turf or litter. Soil	,
disturbance greatly increases establishment of seedlings	
2000, Vazquez-Yanes et al. 1990). In Oregon and Washin	0
foxglove commonly establishes on natural slides and wir	ndfalls
(M.L. Carlson pers. obs.)	
Current global distribution (0–5)	5
Foxglove is native to Western Europe, the Mediterranea	
Northwest Africa. It has become naturalized in other pa	
Europe (including arctic and subarctic Scandinavia), Asi	
South America, New Zealand, Canada, and much of the	United
States (Hultén 1968, USDA 2002, Wilson 1992).	4
Extent of the species U.S. range and/or occurrence of $(0, 1)$	4
formal state or provincial listing (0–5) Foxglove is widely naturalized in northwestern and nort	h o o otomo
0	
states (USDA 2002). <i>Digitalis purpurea</i> is on the Colorad	10
Invasive Weed Species List (BLM Colorado 2004). Total for Ecological Amplitude and Distribution	19/25
Feasibility of Control	Score
Seed banks (0–3)	2
Seeds remain viable in the soil for at least 5 years (Harris	_
Vegetative regeneration (0–3)	0
Purple foxglove has no ability to resprout (USDA 2002).	
Level of effort required (0–4)	3
Hand pulling is an effective control of foxglove. Herbicic	
effective in large infestations. Control efforts generally re	
at least 5 years. Sites must be monitored for 5–10 years at	fter
treatment due to the long-lived seed bank. Biological con	ntrol has
not been pursued because of plant's value in horticulture	e (Harris
2000).	
Total for Feasibility of Control	5/10
Total score for 4 sections	51/100
ß	

Elymus repens (L.) Gould.

Ranking Summ	ary	
Ecoregion known or expected to occur		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	20
Biological Characteristics and Dispersal	25	15
Amplitude and Distribution	25	19
Feasibility of Control	10	5
Relative Maximum		59
Climatic Compar	rison	
*	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	_
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
<i>Elymus repens</i> has been reported from all	ecoregions of	Alaska
(Hultén 1968, Densmore et al. 2001, AK		
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		7
Quackgrass consumes soil moisture and	limiting nutrie	,
(Batcher 2002). It may alter secondary su		
where its cover can dramatically increase		0
Impact on Natural Community Structure		5
Quackgrass establishes in an existing lay		-
		- actioncy
of the lawer and often forms a new lawer	n disturbed or	hotrotoc
of the layer, and often forms a new layer of	on disturbed su	ıbstrates
(Irina Lapina pers. obs.).		
(Irina Lapina pers. obs.). Impact on Natural Community Composit	tion (0–10)	5
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege	tion (0–10) tation, resultin	5 ng in an
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima	tion (0–10) tation, resultin tes (Batcher 20	5 ng in an 002).
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed	tion (0–10) tation, resultin tes (Batcher 20 l plant commu	5 ng in an 002). Inities in
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima	tion (0–10) tation, resultin tes (Batcher 20 l plant commu	5 ng in an 002). Inities in
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed	tion (0–10) tation, resultin tes (Batcher 20 l plant commu uminent threat	5 ng in an 002). nities in t to natural
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 1. Shephard pe	5 ng in an 002). anities in t to natural ers. com.,
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe I cool-season g	5 ng in an 002). nities in t to natural ers. com., rass that
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe cool-season g rly spring. It ca	5 ng in an 002). nities in t to natural ers. com., rass that
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe cool-season g rly spring. It ca	5 ng in an 002). nities in t to natural ers. com., rass that an suppress
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bata Impact on Higher Trophic Levels (0–10)	tion (0–10) tation, resultin tes (Batcher 20 I plant commu nminent threat I. Shephard pe a cool-season g rly spring. It ca cher 2002).	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero	tion (0–10) tation, resultin tes (Batcher 20 l plant commu nminent threat I. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds,
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe I cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B	5 ng in an 2002). nities in t to natural ers. com., rass that an suppress 3 uts, birds, Batcher
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe I cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B	5 ng in an 2002). nities in t to natural ers. com., rass that an suppress 3 uts, birds, Batcher
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002).	tion (0–10) tation, resultin tes (Batcher 20 I plant commu uminent threat I. Shephard pe I cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B	5 ng in an 2002). enities in et to natural ers. com., rass that an suppress 3 ets, birds, Batcher (USDA
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3)	tion (0–10) tation, resultin tes (Batcher 20 d plant commu nminent threat A. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial rep	tion (0–10) tation, resultin tes (Batcher 20 l plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 seed and
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial rep spreading by a shallow mass of rhizomes	tion (0–10) tation, resultin tes (Batcher 20 l plant commu nminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 seed and
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bata Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more	tion (0–10) tation, resultin tes (Batcher 20 l plant commu nminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 seed and
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3)	tion (0–10) tation, resultin tes (Batcher 20 d plant commu minent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem car	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 weed and n produce 2
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bata Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more	tion (0–10) tation, resultin tes (Batcher 20 d plant commu minent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem car	5 ng in an 002). nities in t to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 weed and n produce 2
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3)	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can common.	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 its, birds, batcher (USDA 20/40 Score 2 seed and n produce 2 eds remain
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3) Seed dispersal mechanisms are unknown viable after passing through the digestive	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can common.	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 its, birds, batcher (USDA 20/40 Score 2 seed and n produce 2 eds remain
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial rej spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3) Seed dispersal mechanisms are unknown viable after passing through the digestive domestic animals (Batcher 2002).	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can common.	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 its, birds, batcher (USDA 20/40 Score 2 seed and n produce 2 eds remain
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial re- spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3) Seed dispersal mechanisms are unknown viable after passing through the digestive domestic animals (Batcher 2002). Spread by humans (0–3)	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B razing animals Dispersal producing by s . Each stem can common.	5 ng in an 2002). Inities in t to natural ers. com., rass that an suppress 3 dts, birds, Batcher (USDA 20/40 Score 2 seed and n produce 2 eds remain any 3
(Irina Lapina pers. obs.). Impact on Natural Community Composit The species is able to exclude native vege overall loss of biodiversity in other clima This plant is not observed in undisturbed Alaska and does not appear to pose an im community composition (J. Conn and M Densmore et al. 2000). <i>Elymus repens</i> is a can photosynthesize and grow during ea species that grow in warmer season (Bate Impact on Higher Trophic Levels (0–10) <i>Elymus repens</i> provides cover for numero and waterfowl in grassland systems. It is 2002). This grass is highly palatable to gr 2002). Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Quackgrass is an aggressive perennial rej spreading by a shallow mass of rhizomes up to 400 seeds, although 20–40 is more Long-distance dispersal (0–3) Seed dispersal mechanisms are unknown viable after passing through the digestive domestic animals (Batcher 2002).	tion (0–10) tation, resultin tes (Batcher 20 d plant commu uminent threat 4. Shephard pe a cool-season g rly spring. It ca cher 2002). us small roden allelopathic (B azing animals Dispersal producing by s . Each stem can a common. n, although see e systems of ma	5 ng in an 2002). Inities in it to natural ers. com., rass that an suppress 3 ats, birds, Batcher (USDA 20/40 Score 2 eeed and n produce 2 eds remain any 3 revegetate

common names: quackgrass

	Allelopathic (0–2)	2
	This grass is allelopathic. It produces ethylacetate, cyclic	
	hydroxamic acids, and several other phytotoxins from its	
	shoots and roots. These compounds can suppress the growth	or
	reproductive vigor of competing plants (Batcher 2002).	
Ł	Competitive Ability (0–3)	2
	Quackgrass competes strongly with cultivated crops. Its	
	production of allelopathic toxins contributes to its high level of	
L	competitiveness (Batcher 2002). Without soil disturbance, th	
1	plant does not appear to compete strongly with native grasses	and
	forbs in Alaska (J. Conn pers. com.).	
	Thicket-forming/Smothering growth form $(0-2)$	1
	<i>Elymus repens</i> can form dense stands (Batcher 2002), but is	
	generally not significantly taller than other grasses and forbs. $(0, 2)$	0
	Germination requirements (0–3)	0
	The species requires open soil and disturbance to germinate	
	(Densmore et al. 2001). Seeds germinate either in the fall or	
	spring. Alternating temperatures are required for germination	1
	(15-25 °C diurnal fluctuations) (Batcher 2002).	2
	Other invasive species in the genus $(0-3)$ Elymus sibiricus L.	3
	Aquatic, wetland or riparian species (0–3)	0
	This grass can invade gardens, yards, crop fields, roadsides,	Ũ
	ditches, and other disturbed, moist areas. It can also colonize	
	mixed-grass prairies and open woodlands (Batcher 2002). It is	\$
	often a serious pest in alkaline wetlands in arid regions of Ore	
		0
	and California (M.L. Carlson pers. obs.)	
	and California (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 15/	25
	Total for Biological Characteristics and Dispersal 15/	
	Total for Biological Characteristics and Dispersal 15/	
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0-4)It is a serious threat in crops and gardens (Batcher 2002,	re
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0-4)Sco	re
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0-4)It is a serious threat in crops and gardens (Batcher 2002,	4
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0-4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).	4
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)	re 4 d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant	re 4 d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This	re 4 d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher	d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6) 	d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6) 	re 4 d for 2 d vder
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in	d for 2
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant 	re 4 d for 2 d vder 3
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)This plant in not observed in undisturbed plant communities	re 4 d for 2 d vder 3 in
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplan habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed	re 4 d for 2 d vder 3 in 1
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplan habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batcher	re 4 d for 2 d vder 3 in 1
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplan habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)Sny In undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).	re 4 d for 2 d d vder 3 in 1 r
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6) Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sm 1992).Role of anthropogenic and natural disturbance in establishment (0–5)This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).Current global distribution (0–5)	re 4 d for 2 d vder 3 in 1
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sm 1992).Role of anthropogenic and natural disturbance in establishment (0–5)Sm This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).Current global distribution (0–5)It is native to Eurasia (temperate Europe and Central Asia:	re 4 d for 2 d d vder 3 in 1 r 5
-	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)Snyder 1992).This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).Current global distribution (0–5)It is native to Eurasia (temperate Europe and Central Asia: Afghanistan, India, Pakistan). It is now found in South Ameri	re 4 4 d for 2 d d vder 3 in 1 r 5 ca
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sm 1992).Role of anthropogenic and natural disturbance in establishment (0–5)Smuthat in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).Current global distribution (0–5)It is native to Eurasia (temperate Europe and Central Asia: Afghanistan, India, Pakistan). It is now found in South Ameri (Argentina and Chile), North Africa, Australia, New Zealand	re 4 d for 2 d d vder 3 in 4 r 5 ca ,
	Total for Biological Characteristics and Dispersal15/Ecological Amplitude and DistributionScoHighly domesticated or a weed of agriculture (0–4)It is a serious threat in crops and gardens (Batcher 2002, Densmore et al. 2001). Many palatable hybrid crosses of quackgrass and other species have been developed and plante livestock (Snyder 1992).Known level of impact in natural areas (0–6)Elymus repens is invading the land between riparian and uplant habitats in Selver Creek Preserve, Idaho (Batcher 2002). This grass has invaded natural areas in Oregon and Ohio (Batcher 2002). It invades Wisconsin oak–hickory forest openings (Sny 1992).Role of anthropogenic and natural disturbance in establishment (0–5)Snyder 1992).This plant in not observed in undisturbed plant communities Alaska (Densmore et al. 2001). Once established on disturbed sites it can easily colonize adjacent undisturbed areas (Batche 2002, Snyder 1992).Current global distribution (0–5)It is native to Eurasia (temperate Europe and Central Asia: Afghanistan, India, Pakistan). It is now found in South Ameri	re 4 d for 2 d d vder 3 in 4 r 5 ca ,

Extent of the species U.S. range and/or occurrence of	5	Vegetative regeneration (0–3)	2
formal state or provincial listing $(0-5)$		It has vigorous vegetative regeneration from rhizomes (Batch	her
It has now been reported from every state in the United	l States and	2002).	
throughout Canada. Quackgrass is listed as noxious in	27 states	Level of effort required (0–4)	3
and 5 Canadian provinces (Invaders Database System		Successful control measures currently include applying	
SDA 2002). It is classified as a noxious weed in Alaska (Alaska herbicides, burning, tilling, and combinations of these three		<u>,</u>	
dministrative Code 1987). It is economically detrimental in		methods. Monitoring for 2 years after treatment is recommended	
agricultural fields and rarely invades undisturbed soils		(Batcher 2002). Unfortunately, most current control techniques	
(J. Conn pers. com.).		are not effective in natural communities (J. Conn pers. com.).	
Total for Ecological Amplitude and Distribution	19/25		5/10
Feasibility of Control	Score	Total score for 4 sections59	/100
Seed banks (0–3)	0	S	
Studies in Alaska showed that seed viability is reduced		, i i i i i i i i i i i i i i i i i i i	
significantly after burial for 21 months (Conn and Farr	is 1987,		

Euphorbia esula L.

Batcher 2002).

Ranking Sumn	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	31
Biological Characteristics and Dispersal	25	21
Amplitude and Distribution	25	23
Feasibility of Control	10	9
Relative Maximum	•	84
Climatic Compa	rison Collected in	CUMEY
	Alaska regions?	CLIMEX similarity?
South Coastal	Yes	Yes
Interior Boreal	No	Yes
Arctic Alpine	No	No
Euphorbium esula has not been docume	nted in Alaska (
Alaska Database 2004, Hultén 1968, UA		
The CLIMEX matching program indica		
between Anchorage and areas where the		
is high. Leafy spurge is well established	~	
and Oslo, Norway (Lid and Lid 1994), v		
53% climatic matches with Anchorage.		
between Fairbanks and Nome with the		•
of leafy spurge is low. Temperature and		0
days may be a limiting factor for seed ge		
, , , , , , , , , , , , , , , , , , , ,		0
establishment in interior or arctic alpine		
(Selleck et al. 1962). However, a well est		
recently been documented near Dawson		,
(Bennett 2007), which has a climate ver		
It should also be noted that once establi		
capable of maintaining itself vegetativel	*	0
environmental conditions (Butterfield e	· .	
Selleck et al. 1962). The establishment c	*	
south coastal and interior boreal ecoreg	ions may be pos	sible.

common names: leafy spurge

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	5
Leafy spurge infestations may promote the establishment	t of
other weeds, particularly smooth brome and Kentucky bl	uegrass
(Belcher and Wilson 1989). It likely has soil impact due to)
allelopathy (Butterfield et al. 1996, Royer and Dickinson	1999,
Steenhagen and Zimdahl 1979).	
Impact on Natural Community Structure (0–10)	7
Leafy spurge is capable of forming dense stands in natura	1
communities and reducing native plant diversity. Almost	
complete exclusion of native forbs and grasses may result	from the
allelopathic chemicals (Kreps 2000, Butterfield and Stub	bendieck
1999, Selleck et al. 1962).	
Impact on Natural Community Composition (0–10)	9
Leafy spurge can reduce species richness and even exclud	le native
forbs and grasses. Displacement of native species in undis	sturbed
areas can occur in a few years if the infestation is uncheck	ed
(Biesboer 1996, Kreps 2000). Leafy spurge reduced nativ	re plant
species by 51% in woodland, 36% in grassland, 28% in flo	od plain,
and 21% in shrubland (Butler and Cogan 2004). In experi	iments
in Saskatchewan, all annual species disappeared at all stu-	dy sites
(Selleck et al. 1962). In Manitoba the frequency of five con	mmon
native species decreased significantly with introduction of	ofleafy
spurge. The only species that were positively correlated w	ith leafy
spurge establishment were smooth brome and Kentucky	•
(Belcher and Wilson 1989).	0

Impact on Higher Trophic Levels (0–10) 10	Thicket-forming/Smothering growth form $(0-2)$ 1
Leafy spurge is unpalatable and often toxic to herbivores such	Leafy spurge is capable of creating dense monocultures. A density
as deer, elk, and antelope. Infestations of leafy spurge reduce	of 200 shoots per square meter was recorded in Saskatchewan
the availably of forage for these species (Kreps 2000, Masters	(Selleck et al. 1962). Stem densities of 1,000 per square yard are
and Kappler 2002). Most North American insects avoid leafy	not uncommon (Kreps 2000).
spurge. Alteration of grassland vegetation structure by leafy	Germination requirements (0–3) 2
spurge may degrade nesting habitat of breeding birds. In a North	Leafy spurge requires anthropogenic or natural disturbances for
Dakota study, densities, breeding, nest-site selection, and nest	germination (Belcher and Wilson 1989, Selleck et al. 1962).
success of Savanna sparrow was lower on sites infested by leafy	Other invasive species in the genus $(0-3)$ 3
spurge (Scheiman et al. 2003).The milky sap contained in leafy	Euphorbia cyparissias, E. myrsinites, E. oblongata, E. serrata, and
spurge tissue may cause severe skin rashes in humans (Royer and	<i>E. terracina</i> have state noxious status in various American states
Dickinson 1999). Bees, flies, ants, and mosquitoes feed on the	(USDA 2002).
nectar of leafy spurge flowers (Messersmith et al. 1985, Fowler	Aquatic, wetland or riparian species $(0-3)$ 1
1983, Selleck et al. 1962). Over 60 species of insects have been	Although leafy spurge prefers dry sandy soils, it is able to establish
recorded visiting leafy spurge flowers (Butterfield et al. 1999).	in irrigated meadows and along riparian areas (Masters and Kennler 2002) Leafurgurge is herever from single only in Control
Decomposing plant tissues release allelopathic chemicals that	Kappler 2002). Leafy spurge is known from riverbanks in Central
suppress the growth of other plant species (Steenhagen and	Europe, Sweden, and Western Asia. In Saskatchewan infestations often follow drain channel contours (Selleck et al. 1962).
Zimdahl 1979, Royer and Dickinson 1999).	
Total for Ecological Impact 31/40	Total for Biological Characteristics and Dispersal21/25Ecological Amplitude and DistributionScore
Biological Characteristics and Dispersal Score	Highly domesticated or a weed of agriculture (0–4) 4
Mode of Reproduction $(0-3)$ 3	Leafy spurge is a successful weed in untilled fields (Kreps 2000).
Leafy spurge can spread by seed, rhizome, or root fragment.	Known level of impact in natural areas $(0-6)$ 6
Root buds can regenerate new shoots if the stems are destroyed.	Leafy spurge has invaded prairies, pine savannas, and riparian
Each stem of leafy spurge can produce up to 250 seeds and dense	areas in Minnesota, North and South Dakota, Idaho, Oregon,
infestations can produce over 8,000 seeds per square meter	Colorado, and California (Kreps 2000, Dunn 1979). It is known
(Royer and Dickinson 1999, Selleck et al. 1962).	to invade native grassland in Ontario, Quebec, and Saskatchewan
Long-distance dispersal (0–3) 3	(Selleck et al. 1962). Leafy spurge is spreading rapidly into native
Fruits open explosively and can scatter seeds up to 15 feet from	rangeland in Western Canada (Frankton and Mulligan 1970).
the parent plant. Long-distance dispersal by animals is also	Role of anthropogenic and natural disturbance in 3
suspected (Best et al. 1980, Butterfield et al. 1996) and the seeds	establishment (0–5)
can float and geminate in water (Masters and Kappler 2002).	Leafy spurge requires anthropogenic or natural disturbances
Leafy spurge seeds contain fat and protein which make them a desirable food source for ants who act as dispersal agents	for initial establishment. It has been found to spread in native
(Remberton 1988).	grassland, presumably after establishment from seed in a gopher
Spread by humans (0–3) 3	mound (Selleck et al. 1962). Almost all (95%) of leafy spurge
It is likely that the first introduction of leafy spurge to North	infestations are associated with anthropogenic disturbances such
America was in contaminated oats from Russia. Leafy spurge	as vehicle tracks, road construction, and fire lines (Belcher and
is known to contaminate commercial seed, grain, and hay.	Wilson 1989).
Fragments of roots and rhizomes can be carried on road	Current global distribution (0–5) 5 Leafy spurge is native to Eurasia. It is presently found worldwide
maintenance or farm equipment (Kreps 2000, Butterfield et	(including the boreal zone), except for Australia (Biesboer 1996,
al.1996, Dunn 1985, Selleck et al. 1962).	Butterfield et al. 1996).
Allelopathic (0–2) 2	Extent of the species U.S. range and/or occurrence of 5
Decomposing plant tissues release allelopathic chemicals	formal state or provincial listing $(0-5)$
that inhibit the growth or development of other plant species	Leafy spurge has spread into 30 states and every Canadian
(Butterfield et al. 1996, Royer and Dickinson 1999, Steenhagen	province, except Newfoundland (Best et al. 1980, Butterfield et
and Zimdahl 1979). In greenhouse experiments the growth of	al. 1996, USDA 2002). All indications are that it will continue to
tomato seedlings was inhibited 60% when leafy spurge litter was	expand its range in Canada (White et al. 1993). Leafy spurge is
present in soil (Steenhagen and Zimdahl 1979). A reduction in	a noxious weed in 22 American states and 6 Canadian provinces
frequency and density of quackgrass and common ragweed was	(Invaders Database System 2003, Royer and Dickinson 1999).
also reported.	Leafy spurge is a prohibited noxious weed in Alaska (Alaska
Competitive Ability (0–3) 3	Administrative Code 1987).
Leafy spurge outcompetes native forbs and grasses (Masters	Total for Ecological Amplitude and Distribution 23/25
and Kappler 2002), and is alleopathic toward associated species	
(Steenhagen and Zindahl 1979). Leafy spurge has extensive	
vegetative reproduction, effective seed dispersal, high seed	
viability, and very rapid development of seedlings (Masters and	
Kappler 2002). In a detailed study of <i>Euphorbia esula</i> growing	
with smooth brome and crested wheatgrass neither species was	
successful in competition with leafy spurge (Selleck at al. 1962).	

Feasibility of Control	Score	Level of effort required (0–4)	4
Seed banks (0–3)	3	Leafy spurge is extremely difficult to control, and	d the best
Ninety-nine percent of viable seeds will germinate i	in the first	approach is the early detection and elimination of	of new infestation.
2-years. The rest of the seeds may be viable in the so	oil for up to	Mechanical, chemical, cultural, and biological co	ontrol methods
8 years. However, viability deceases by about 13% e	ach year	have all been used on leafy spurge with varying l	evels of success.
(Butterfield et al. 1996, Whitson et al. 2000). Sellec	k et al. (1962)	Most control methods have a detrimental effect	on other plant
reported seeds remain viable no longer than 5 years		species, and they all constitute a disturbance tha	t will promote
Vegetative regeneration (0–3)	2	the establishment of leafy spurge or other exotic	species (Masters
Root buds give rise to new shoots after removal of a	0	and Kappler 2002, Biesboer 1996, Lym 1998, Se	lleck et al. 1962).
parts. Root fragments buried 9 feet deep can produc	ce new plants	Treated sites require monitoring for 10 years after	,
(Royer and Dickinson 1999). An experiment showe	ed that tilling	Total for Feasibility of Control	9/10
increased the density of leafy spurge from 134 shoo	ts/m ² in	Total score for 4 sections	84/100
untilled area to 316 shoots/m^2 (Selleck et al. 1962).		0	

Fallopia convolvulus (Linnaeus) Á. Löve (Polygonum convolvulus L.)

common names: black bindweed

		-		
Ranking Summar			Impact on Higher Trophic Levels (0–10)	3
Ecoregion known or expected to occur i	n		The seeds and leaves of black bindweed are an important foods	
South Coastal		Yes	granivorous birds (Wilson et al. 1999). It also is an alternate ho	st
Interior Boreal		Yes	for a number of fungi, viruses, and nematode species (Cooper	
Arctic Alpine		Yes	and Harrison 1973, Royer and Dickinson 1999, Townshend an	ıd
	otential Max.	Score	Davidson 1962)	
Ecological Impact	40	12	Total for Ecological Impact 12/4	10
Biological Characteristics and Dispersal	25	16	Biological Characteristics and Dispersal Score	re
Amplitude and Distribution	25	17	Mode of Reproduction (0–3)	3
Feasibility of Control	10	5	Black bindweed reproduces by seed only. A single plant is capal	ble
Relative Maximum		50	of producing up to 11,900 to even 30,000 seeds (Stevens 1932,	
Climatic Comparis			Forsberg and Best 1964).	
	Collected in	CLIMEX	Long-distance dispersal (0–3)	1
A South Coastal	laska regions? Yes	similarity?	The seeds have no adaptation for long-distance dispersal, but	
Interior Boreal	res Yes	_	apparently they can be transported by water (Hume et al. 1983	
	Yes	-	Rutledge and McLendon 1996).	,
Arctic Alpine Polygonum convolvulus has been document		-		2
			The seeds of black bindweed are commonly dispersed by farm	2
regions of Alaska (Hultén 1968, Welsh 197	4, UAM 200	4,	machinery. This plant is also a frequent cereal crop contaminar	nt
AKEPIC 2005).		0	(Gooch 1963, Rutledge and McLendon 1996, J. Conn pers. obs	
Ecological Impact		Score	Black bindweed seeds remain viable after digestion by ruminar	
Impact on Ecosystem Processes (0–10)	(1 10	3		
Black bindweed quickly covers bare soil (H			therefore, it may be transported by animals (Blackshaw and Ro	ae
Rutledge and McLendon 1996). It may pre	vent native sj	pecies	1991).	0
from establishing.				0
Impact on Natural Community Structure (0		3	Black bindweed is not known to be allelopathic.	2
Black bindweed is able to create a dense car		0	Competitive Ability (0–3)	2
herbaceous plants (Friesen and Shebeski 1			Black bindweed is able to compete with cultivated crops and ot	ner
Dickinson 1999). However, dense stands o			weeds for moisture, nutrients, and light (Friesen and Shebeski	
not been observed in native communities i	n Alaska (J. O	Conn pers.	1960, Welbank 1963, Fabricius and Nalewaja 1968, Royer and	
obs.).			Dickinson 1999). In experimental studies black bindweed appe	
Impact on Natural Community Compositio	n (0–10)	3	to be a stronger competitor than Chenopodium album, Polygonu	ım
Black bindweed is a strong competitor (Fal	pricius and N	alewaja	aviculare, P. persicaria, Stellaria media, and Capsella bursa-pasto	oris
1968, Friesen and Shebeski 1960, Pavlyche			(Pavlychenko and Harrington 1934, Welbank 1963).	
1934, Welbank 1963) and it likely reduces			Thicket-forming/Smothering growth form (0–2)	2
individuals in the native species community			Black bindweed climbs and smothers other plants and can form	a
	<u>/</u> ·		dense thickets (Rutledge and McLendon 1996). A density of	
			56 to 215 plants per m^2 has been observed in number of studies	5
			(Friesen and Shebeski 1960)	

Germination requirements (0–3) 2	Current global distribution (0–5) 5
The germination of black bindweed seeds is greater on disturbed	Black bindweed originated from Eurasia. It has now been
sites. The disturbance of soils apparently reactivates dormant	introduced into Africa, South America, Australia, New Zealand,
seeds (Milton et al. 1997). However, germination in undisturbed	and Oceania (Hultén 1968, USDA, ARS 2003). It has been
soil was also recorded (Roberts and Feast 1973).	collected from arctic regions in Alaska (Hultén 1068, UAM
Other invasive species in the genus $(0-3)$ 3	2006).
Polygonum cuspidatum Sieb. & Zucc., P. perfoliatum L.,	Extent of the species U.S. range and/or occurrence of 5
P. polystachyum Wallich ex Meisn., and P. sachalinense F. Schmidt	formal state or provincial listing $(0-5)$
ex Maxim. are declared noxious weeds in number of American	Black bindweed is found throughout Canada and the United
states (USDA, NRSC 2006). Also <i>Polygonum arenastrum</i> Jord.	States. It is declared noxious in Alaska, Alberta, Manitoba,
ex Boreau, P. caespitosum Blume, P. aviculare L., P. orientale	Minnesota, Oklahoma, Quebec, and Saskatchewan (Alaska
L., P. persicaria L., and P. lapathifolium L. are listed as a weeds	Administrative Code 1987, Rice 2006, Royer and Dickinson
in PLANTS Database (USDA, NRSC 2006). A number of	1999).
Polygonum species native to North America have a weedy habit	Total for Ecological Amplitude and Distribution 17/25
and are listed as noxious weeds in some of the American states.	Feasibility of Control Score
Although some of the recent taxonomic treatments considers	Seed banks (0–3) 3
these as a species of three different genera: Polygonum, Fallopia,	Most seeds of black bindweed germinate in their first year (Chepil
and <i>Persicaria</i> (FNA 1993+), they are closely related taxa and can	1946). However, seeds remain viable in the soil for up to 40 years
be considered as congeneric weeds.	(Chippendale and Milton 1934). Viability of seeds was 5% after
Aquatic, wetland or riparian species (0–3) 1	4.7 years, and <1% after 9.7 years in seed viability experiment
Black bindweed is a common weed in cultivated fields, gardens,	conducted in Fairbanks (Conn and Deck 1995).
roadsides, and waste areas. It may be occasionally found on river	Vegetative regeneration (0–3) 0
gravel bars (Hume et al. 1983).	Black bindweed does not regenerate vegetatively (Hume et al.
Total for Biological Characteristics and Dispersal 16/24	1983).
Ecological Amplitude and Distribution Score	Level of effort required (0–4) 2
Highly domesticated or a weed of agriculture (0–4) 4	Mechanical methods have only limited success in controlling
Black bindweed is a serious weed in crops (Friesen and Shabeski	black bindweed. A number of chemicals are recommended for
1960, Forsberg and Best 1964).	control of this weed. Several pathogenic fungi have been studied
Known level of impact in natural areas $(0-6)$ 1	as a potential biocontrol agent for this weed (Dal-Bello and
Black bindweed has invaded natural communities in Rocky	Carranza 1995, Mortensen and Molloy 1993).
Mountain National Park (J. Conn pers. obs.).	Total for Feasibility of Control 5/10 Tetal serve for Associations 50/100
Role of anthropogenic and natural disturbance in 2	Total score for 4 sections 50/100
establishment (0–5)	\$
Black bindweed readily established on cultivated fields and	
disturbed grounds (Royer and Dickinson 1999, Welsh 1974).	
However, it is recorded to establish in grasslands with small-scale	
animal disturbances in Germany (Milton et al. 1997).	

Galeopsis bifida Boenn. and *G. tetrahit* L. common name: splitlip hempnettle and brittlestem hempnettle

Ranking Summary		Thicket-forming/Smothering growth form $(0-2)$ 0
Ecoregion known or expected to occur in		Plants grow to 3 feet tall, but to not overtop most vegetation, nor
South Coastal	Yes	form extremely dense thickets (Royer and Dickinson 1999, Welsh
Interior Boreal	Yes	1974).
Arctic Alpine	Yes	Germination requirements (0–3) 0
	Score	Established vegetation can suppress hempnettle germination.
Ecological Impact 40	14	Germination is better at high temperatures (SAFRR 1984), and
Biological Characteristics and Dispersal 25	9	occurs at soil depths of 0.5 to 1.5 inches (Royer and Dickinson
Amplitude and Distribution 19	12	1999).
Feasibility of Control 10	3	Other invasive species in the genus $(0-3)$ 3
Relative Maximum	40	Galeopsis speciosa Mill. (Royer and Dickinson 1999).
Climatic Comparison Collected in CI	MEY	Aquatic, wetland or riparian species $(0-3)$ 0
	IMEX	Hempnettle is a plant of waste places, roadsides, gardens, and
	ilarity?	agricultural land (Hultén 1968, Welsh 1974). It also is can be
South Coastal Yes Interior Boreal Yes	-	found in open woods (SAFRR 1984).
	-	Total for Biological Characteristics and Dispersal 9/25
	_	Ecological Amplitude and Distribution Score
Hempnettle has been collected in the south coastal (Kodial		Highly domesticated or a weed of agriculture (0–4) 4
Afognak, Ketchikan, Yakutat, Skagway, Sitka, Seldovia, Ker		Hempnettle is a serious weed in crops (Royer and Dickinson
Seward, Admiralty Island); interior boreal (Anchorage, Fai		1999).
Ophir, Matanuska–Susitna Valley); and arctic alpine (Unal	· · ·	Known level of impact in natural areas (0–6) U
ecoregions in Alaska (Hultén 1968, AKEPIC 2004, UAM 2	2004).	Unknown
0 1	core	Role of anthropogenic and natural disturbance in 0
Impact on Ecosystem Processes (0–10)	1	establishment (0–5)
Hempnettle consumes soil moisture and limiting nutrients.	It is	This species is tied to areas with anthropogenic disturbances
likely to delay establishment of native species in disturbed s	ites	(I. Lapina pers. obs., Royer and Dickinson 1999, Welsh 1974).
(I. Lapina pers. obs.).		
Impact on Natural Community Structure (0–10)	5	Tillage may encourage germination (SAFRR 1984).
In Alaska, hempnettle has been observed established in dist	urbed	Current global distribution $(0-5)$ 3 Calconic tatrahit and C hifd are notive to Europe and Asia New
areas, creating a dense mid-forb layer and reducing the cove	er of	<i>Galeopsis tetrahit</i> and <i>G. bifida</i> are native to Europe and Asia. Now
graminoids and low forbs (I. Lapina pers obs.). Plant densit		they are found throughout Canada and northeastern quarter of
reach up to 400 plants per square yard (MAFRI 2004).		the United States. These plants were introduced into New Zealand
Impact on Natural Community Composition (0–10)	5	and Canary Islands (Hultén 1968, Royer and Dickinson 1999,
After soil disturbance and the establishment of hempnettle,		USDA 2002).
populations likely inhibit numerous species of native grasse		Extent of the species U.S. range and/or occurrence of 5
and forbs from establishing (M.L. Carlson pers. obs.). In Ju-		formal state or provincial listing $(0-5)$
hempnettle is very competitive in open woodlands (M. She		The two species, Galeopsis bifida and Galeopsis tetrahit, are
	pilatu	declared noxious in Alberta, Manitoba, and Quebec. They are
pers. com.).	2	prohibited noxious weeds in Alaska (Alaska Administrative Code
Impact on Higher Trophic Levels (0–10)	3	1987, Invaders Database System 2003, Royer and Dickinson
The bristly hairs along the stems and spiny flower clusters at		1999).
strong enough to penetrate the skin (Pojar and MacKinnon		Total for Ecological Amplitude and Distribution 12/19
	14/40	Feasibility of Control Score
	core	Seed banks (0–3)
Mode of Reproduction (0–3)	3	The seeds can remain dormant in soil for several years (MAFRI
Hempnettle reproduces entirely by seeds. Each plant is capa	iole of	2004, Royer and Dickinson 1999). However, seed bank
producing up to 2,800 seeds (Royer and Dickinson 1999).		study showed very little germination after 2 years (J. Conn
Long-distance dispersal (0–3)	0	unpublished).
The seeds are large and do not have any apparent adaptation	is for	Vegetative regeneration $(0-3)$ 0
long-distance dispersal (I. Lapina pers. obs.).	_	Hempnettle is annual plant, reproducing by seed only and has no
Spread by humans (0–3)	2	ability to resprout (Royer and Dickinson 1999).
Hempnettle is a common grain contaminant (MAFRI 200-	4,	Level of effort required (0–4) 2
USDA, ARS 2004).		The seeds remain dormant for long periods of time, making it hard
Allelopathic (0–2)	0	to manage this weed once it becomes established. Cultivation and
There is no recorded allelopathy in this species.	1	
Competitive Ability (0–3)	1	crop rotation can control the two species on agricultural lands.
Hempnettle is a serious competitor with crops for moisture		Herbicides are also available for hempnettle's control (MAFRI
and soil nutrients (Royer and Dickinson 1999). Without so		2004, SAFRR 1984).
disturbance, this plant does not appear to compete strongly	with	Total for Feasibility of Control 3/10
native grasses and forbs in Alaska (I. Lapina pers. com.).		Total score for 4 sections38/94
		S
	B-4	

Ranking Summ	nary	
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	14
Biological Characteristics and Dispersal	25	12
Amplitude and Distribution	25	14
Feasibility of Control	10	8
Relative Maximum	-	48
Climatic Compa		CT TI (T
	Collected in	CLIME
	Alaska regions?	sımılarıty
South Coastal	Yes	-
Interior Boreal	Yes No	Yes
Arctic Alpine		
<i>Glechoma hederacea</i> has been collected f	0	/
Juneau (Hultén 1968, UAM 2004). It ha		
established in Earthquake Park in Anch		
obs.). Using the CLIMEX matching pro	0	
between Fairbanks and areas where the	*	
high. Native range of the species include	es Sverdlovsk an	nd Zlatous
in Russia and Regina, Saskatchewan in (Canada (Guban	ov et al.
1995, Hultén 1968), which has a 66%, 6	4%, and 53% cli	matic
match with Fairbanks. The range of the	species includes	s Røros,
Norway and Vytegra and Kirov, Russia	*	
Lid 1994), which has a 76%, 67%, and 60		
Nome, respectively. Thus establishment		
in interior boreal and arctic alpine ecoge		
possible.	lographic region	iis iiiay be
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		3
The impact of ground ivy to ecosystem [processes is larg	0
unknown. However, this species likely c		
species for soil nutrients, water, and ligh		
	t ill partially the	stuibeu
communities (I. Lapina pers. obs.).	(0, 10)	2
Impact on Natural Community Structure	e(0-10)	3 % in forb
Ground ivy can reach ground cover valu	-	70 111 101 D
		r
Impact on Natural Community Compos		3 ala dua ta
Impact on Natural Community Compos Ground ivy likely reduces the number o	f grass individu	-
Impact on Natural Community Compos Ground ivy likely reduces the number o its allelopathic effects (Price and Hutch	f grass individu	als due to
Impact on Natural Community Compose Ground ivy likely reduces the number of its allelopathic effects (Price and Hutch Impact on Higher Trophic Levels (0–10)	f grass individu ings 1996).	als due to 5
communities (Hutchings and Price 199 Impact on Natural Community Compose Ground ivy likely reduces the number o its allelopathic effects (Price and Hutch Impact on Higher Trophic Levels (0–10) Ground ivy is toxic to many vertebrates,	f grass individu ings 1996). although many	als due to 5 vinsects
Impact on Natural Community Compose Ground ivy likely reduces the number of its allelopathic effects (Price and Hutch Impact on Higher Trophic Levels (0–10) Ground ivy is toxic to many vertebrates, are known to feed on it. Studies suggest	f grass individu ings 1996). although many strong allelopat	als due to 5 vinsects hic effect
Impact on Natural Community Compos Ground ivy likely reduces the number o its allelopathic effects (Price and Hutch Impact on Higher Trophic Levels (0–10) Ground ivy is toxic to many vertebrates, are known to feed on it. Studies suggest of ground ivy on other species. Ground	f grass individu ings 1996). although many strong allelopat ivy is insect-pol	als due to 5 vinsects hic effect
Impact on Natural Community Compose Ground ivy likely reduces the number of its allelopathic effects (Price and Hutch Impact on Higher Trophic Levels (0–10) Ground ivy is toxic to many vertebrates,	f grass individu ings 1996). although many strong allelopat ivy is insect-pol	als due to 5 vinsects hic effect

Total for Ecological Impact 14/40 **Biological Characteristics and Dispersal** Score Mode of Reproduction (0-3)3 Ground ivy spreads primarily vegetatively; establishment from seed is rare in many habitats. Each flower produces up to four seeds (Hutchings and Price 1999). Long-distance dispersal (0-3)2 Seeds are primarily dispersed passively. They may be further dispersed by ants. Nutlets produce the mucilage on contact with water and can be fixed to various substrates (Hutchings and Price

1999).

common names: ground ivy

Spread by humans (0–3)	
	2
Ground ivy has been sold as a horticultural plant for use in	
hanging baskets. Garden varieties occasionally naturalize	
(Hessayon 1987 cited in Hutchings and Price 1999).	
Allelopathic (0–2)	2
Studies suggest strong allelopathic effects on co-occurring	
Raphanus sativus and Bromus tectorum (Hutchings and Pric	ce
1999). Exudates from leaves and roots of ground ivy decrea	se seed
germination, but stimulate root and shoot growth (Hutchin	
Price 1999).	1
Competitive Ability (0–3)	1
Ground ivy does not compete well with grasses and has a	
limited capacity to persist under tall herbs or tree canopy	
(Price and Hutchings 1996). Total biomass of plants was	
significantly reduced by the presence of competing <i>Lolium</i>	
perenne in experimental treatments. Also the number and le	ength
of secondary stolons were reduced in grass stands (Price an	d
Hutchings 1996).	
Thicket-forming/Smothering growth form $(0-2)$	1
Ground ivy forms extensive monospecific stands (Hutching	gs
and Price 1999, Mitich 1994), but does not grow taller than	the
surrounding vegetation.	
Germination requirements (0–3)	0
Ground ivy is unlikely to establish outside of open, disturbe	ed soil
(Grime et al. 1981). This species requires light for germinati	
(Grime et al. 1981).	
Other invasive species in the genus $(0-3)$	0
The genus <i>Glechoma</i> is monotypic (USDA 2002).	
Aquatic, wetland or riparian species (0-3)	1
Aquatic, wetland or riparian species (0–3) Ground ivy is frequent on shaded roadsides, waste areas, ed	-
Ground ivy is frequent on shaded roadsides, waste areas, ed	lges
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands	lges , and
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats	ges , and s, it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc	ges , and s, it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999).	ges , and s, it is hings
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal	ges , and s, it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S	ges , and 5, it is hings 2/25
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4)	ges , and s, it is hings 2/25 core 0
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an	ges , and s, it is hings 2/25 core 0
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999).	ges , and s, it is hings 2/25 core 0
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6)	ges , and s, it is hings 2/25 core 0 nd it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and	ges , and s, it is hings 2/25 core 0 nd it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999).	ges , and s, it is hings 2/25 core 0 nd it is
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in	ges , and s, it is hings 2/25 5 core 0 nd it is 1
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5)	ges , and s, it is hings 2/25 core 0 ad it is 1 3
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu	ges , and s, it is hings 2/25 core 0 ad it is 1 3
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for	ges , and s, it is hings 2/25 core 0 ad it is 1 3
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for colonization by ground ivy (Hutchings and Price 1999).	ges , and s, it is hings 2/25 core 0 nd it is 1 3 rbance
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution 8 Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for colonization by ground ivy (Hutchings and Price 1999). Current global distribution (0–5)	ges , and s, it is hings 2/25 5core 0 ad it is 1 3
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands, scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution 8 Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for colonization by ground ivy (Hutchings and Price 1999). Current global distribution (0–5) Ground ivy is native to Europe and temperate Asia. It is	ges , and s, it is hings 2/25 5 5 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution S Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for colonization by ground ivy (Hutchings and Price 1999). Current global distribution (0–5) Ground ivy is native to Europe and temperate Asia. It is documented from subarctic and alpine regions in Norway.	ges , and s, it is hings 2/25 core 0 nd it is 1 3 rbance 5 (t has
Ground ivy is frequent on shaded roadsides, waste areas, ed of pastures and arable fields, grasslands, cleared woodlands, scrubs. Although it is generally absent from aquatic habitats occasionally observed on riverbanks and flood plains (Hitc and Price 1999). Total for Biological Characteristics and Dispersal 1 Ecological Amplitude and Distribution 8 Highly domesticated or a weed of agriculture (0–4) Ground ivy occurs on edges of pastures and arable fields, an not an agricultural pest (Hutchings and Price 1999). Known level of impact in natural areas (0–6) Ground ivy generally grows in woodlands, grasslands, and pastures edges (Hutchings and Price 1999). Role of anthropogenic and natural disturbance in establishment (0–5) The open conditions, created by the death of plants or distu caused by grazing animals, probably opportunities for colonization by ground ivy (Hutchings and Price 1999). Current global distribution (0–5) Ground ivy is native to Europe and temperate Asia. It is	ges , and s, it is hings 2/25 core 0 nd it is 1 3 rbance 5 (t has

Extent of the species U.S. range and/or occurrence of 5	Feasibility of Control Score
formal state or provincial listing $(0-5)$	Seed banks (0–3) 3
The range of ground ivy extends throughout the United States;	Seeds of ground ivy remain viable in the soil more than 4 years
it is naturalized in Canada and ranges from Newfoundland to	(Chancellor 1985). Small numbers of viable seeds were found
British Columbia. This species is listed as a weed in Kentucky,	in soil samples of nearly 20 to over 40 years old (Hutchings and
Nebraska, and Wisconsin, though the species is not declared	Price 1999).
noxious (Invaders Database System 2003, USDA 2002). Ground	Vegetative regeneration (0–3) 2
ivy is on the Invasive Garden Perennials Not to Plant Statewide	Pieces of stem can root at the nodes (Hutchings and Price 1999).
List of Alaska (Integrated Pest Management Program 2004).	Level of effort required $(0-4)$ 3
Total for Ecological Amplitude and Distribution 14/25	Once it is establishes ground ivy is difficult to control. Ground
	ivy is nearly impossible to dig up and remove all roots and stolon
	fragments (Mitich 1994).
	Total for Feasibility of Control 8/10
	Total score for 4 sections48/100

Gypsophila paniculata L.

Ranking Summ	arv	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	25
Biological Characteristics and Dispersal	25	14
Amplitude and Distribution	25	18
Feasibility of Control	7	3
Relative Maximum		57
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	
South Coastal	No	Yes
Interior Boreal	Yes	-
Arctic Alpine	No	Yes
Gypsophila paniculata has been collected		
Matanuska–Susitna Valley in Alaska (I.		
J. Snyder pers. com.). Using CLIMEX m	01 0	
climatic similarity between Nome and a		*
documented is high. Range of the specie	es includes Banf	f, Alberta,
Canada and Regina, Saskatchewan, Car	ada (Darwemt	1975),
which has a 61% and 54% climatic match	n with Nome res	spectively.
Gypsophila paniculata can withstand con		
in temperature and moisture. It is one of		
ornamentals recommended for gardens	*	
(Darwent 1975). This suggests that estal	*	
<i>paniculata</i> in lower part of arctic alpine A		
Establishment is also likely in drier port		
region, such as upper Lynn Canal.	ions of the south	COastai
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		3
Baby's-breath appears to reduce availabl	e nutrients for c	0
occurring grass species (Robson 2004, V		
Protein content of desirable grasses decl		esence of
<i>Gypsophila paniculata</i> (Wisconsin DNR		7
Impact on Natural Community Structure Baby's-breath can form dense stands and		,
perennial species (Darwent 1975, Rutle	uge and McLen	uon 1990,
Wisconsin DNR 2005).		

common names: baby's-breath

\$

_	*
	Impact on Natural Community Composition (0–10)5
	Baby's-breath likely displaces native species (Robson 2004,
	Rutledge and McLendon 1996, Wisconsin DNR 2005).
	Impact on Higher Trophic Levels (0–10) 5
_	Though baby's-breath is not used by native mammals or birds,
	it has the ability to degrade wildlife habitat (Robson 2004).
	Baby's-breath contains high levels of saponins that could result
	in animal toxicity (Plants for a future 2002). Flowers of this
	plant are attractive to numerous species of pollinating bees and
	flies (Darwent 1975, Darwent and Coupland 1966), potentially
1	impacting pollination ecology of co-occurring plant species.
	Baby's-breath is also reported to be an alternate host for number
2	of viruses (Royer and Dickinson 1999).
	Total for Ecological Impact20/40
	Biological Characteristics and Dispersal Score
	Mode of Reproduction (0–3) 3
	Baby's-breath reproduces entirely by seed. Plants are capable
	of producing up to 14,000 seeds (Royer and Dickinson 1999,
	Rutledge and McLendon 1996).
	Long-distance dispersal (0–3) 3
	Most capsules drop off near the parent plant. However, wind
	is capable of carrying seeds distances of 1 km (Rutledge and
	McLendon 1996). At maturity, the plant often breaks off at base
	and tumbles in the wind, spreading seeds widely (Royer and
	Dickinson 1999).
	Spread by humans (0–3) 3
	Baby's-breath is cultivated in gardens and flower beds; it is readily
	available for sale at nurseries. It has escaped cultivation into
	pastures and rangelands (Robson 2004, Rutledge and McLendon
	1996, Whitson et al. 2000). Its fairly wide distribution in the
	northwestern U.S. may be a result of it invading transportation
	corridors (Robson 2004).It also is a potential seed contaminant
	(USDA, ARS 2004).
	Allelopathic $(0-2)$ 0
	No considerable allelopathic effects were found in experiments
	(Robson 2004).

Competitive Ability (0–3) 3	Role of anthropogenic and natural disturbance in 3
Baby's-breath has been observed to outcompete native perennial	establishment (0–5)
plants (Darwent 1975, MAFF 2005, Robson 2004, Rutledge	Baby's-breath occurs in lightly grazed pastures and grasslands
and McLendon 1996, Wisconsin DNR 2005). It has the ability	(Robson 2004, Wisconsin DNR 2005), and on stabilized sand
to thrive in a variety of climatic conditions and soil types; water	dunes in Saskatchewan (Darwent and Coupland 1966).
and nutrient allocation is facilitated by its deep tap root. Grasses	Current global distribution (0–5) 3
exhibited reduced growth rates in the micro-environment closes	Baby's-breath is native to Europe and temperate Asia. It is now
to the largest plants (Robson 2004).	widespread throughout North America (MAFF 2005, Royer and
Thicket-forming/Smothering growth form $(0-2)$ 0	Dickinson 1999, USDA, ARS 2004).
Baby's-breath forms dense stands, but it does not have climbing	Extent of the species U.S. range and/or occurrence of 5
or smothering growth habit (Douglas et al. 1998, Royer and	formal state or provincial listing $(0-5)$
Dickinson 1999, Whitson et al. 2000).	Baby's-breath is widespread across Canada and the Northern
Germination requirements (0–3) 2	United States (MAFF 2005, Royer and Dickinson 1999, USDA,
Maximum germination occurs at temperatures ranging from	ARS 2004). This species is listed as a noxious weed in California
50–82 °F from a depth no more then 0.25 cm in the soil (Rutledge	and Washington (USDA 2002).
and McLendon 1996, Wisconsin DNR 2005). Germination is not	Total for Ecological Amplitude and Distribution18/25
light sensitive (Darwent and Coupland 1966), therefore, it is likely	Feasibility of Control Score
to occur in vegetated areas.	Seed banks (0–3) U
Other invasive species in the genus $(0-3)$ 0	There is no data concerning seed viability.
Other introduced species of the genus are known in U.S. but they	Vegetative regeneration (0–3) 0
are not listed as weeds (Royer and Dickinson 1999, USDA 2002).	The plant does not sprout from root or stumps (MAFF 2005,
Aquatic, wetland or riparian species (0–3) 0	Rutledge and McLendon 1996, Wisconsin DNR 2005).
Baby's-breath occurs in pastures, roadsides, hayfields, and waste	Level of effort required (0–4) 3 A proval tilling is very effective in control of hohy's breach. This
places (Royer and Dickinson 1999, Rutledge and McLendon	Annual tilling is very effective in control of baby's-breath. This
1996, Wisconsin DNR 2005).	species is also sensitive to herbicides. In Canada, heavy grazing
Total for Biological Characteristics and Dispersal 14/25	has suppressed growth of plants and prevented the establishment
Ecological Amplitude and Distribution Score	of seedlings. Mowing or clipping does not appear effective
Highly domesticated or a weed of agriculture $(0-4)$ 4	(Robson 2004, Rutledge and McLendon 1996, Wisconsin DNR
Baby's-breath is cultivated in gardens and flower beds. It has	2005).
escaped cultivation into pastures and rangelands (Darwent 1975,	Total for Feasibility of Control 3/7
Rutledge and McLendon 1996, Whitson et al. 2000).	Total score for 4 sections 55/97
Known level of impact in natural areas $(0-6)$ 3 Relative heat investigation of the constant	\$
Baby's-breath has invaded grasslands in Canada (MAFF 2005).	
Large infestations occurred in lightly-grazed pastures located on	
sand dunes (Darwent 1975). It is known to invade sand dunes in	
Wisconsin (Wisconsin DNR 2005). Baby's-breath is becoming	
a threat to semi-disturbed areas of native grasslands in Idaho	
(Robson 2004).	

Heracleum mantegazzianum Sommier & Levier

common names: giant hogweed

D. 1 C				
Ranking Summary				10
Ecoregion known or expected to occur in		77	The plant is a public health hazard, causing severe dermatitis.	
South Coastal		Yes	Similar injury has been reported in birds and animals. The	
Interior Boreal		Yes	flowers of giant hogweed are insect-pollinated and it may alter	
Arctic Alpine	116	Yes	local pollination ecology. This plant produces coumarins that	
Potential		Score	have antifungial and antimicrobial properties. Numerous	
Ecological Impact	40	33	phytophagous animals and parasites are recorded for giant	
Biological Characteristics and Dispersal	25	22	hogweed (Noxious Weed Control Program 2003, Tiley et al.	
Amplitude and Distribution	25	17		1
Feasibility of Control	10	9	1996, Wright 1984). Hybrids between <i>H. mantegazzianum</i> and	
Relative Maximum		81	<i>H. sphondylium</i> occur where the two grow in the same location	
Climatic Comparison		07 F) (F) (F)	(Stewart and Grase 1984, Tiley and Philp 1992).	
Collect		CLIMEX	Total for Ecological Impact 33/4	
		similarity?	Biological Characteristics and Dispersal Scor	re
South Coastal	No	Yes	Mode of Reproduction (0–3)	3
Interior Boreal	No	Yes	Giant hogweed reproduces by numerous seeds, from 27,000 to	,
Arctic Alpine	No	Yes	over 50,000 seeds on a vigorous plant, (Pysek 1991, Tiley et al.	
Heracleum mantegazzianum has not been docum			1996, Noxious Weed Control Program 2003).	
(Hultén 1968, Welsh 1974, AKEPIC 2004, UAM	12004). Using	Long-distance dispersal (0–3)	2
the CLIMEX matching program, climatic simila	rity be	tween	The majority of seeds fall near the maternal plant. Wind disper-	ses
Juneau and areas where the species is documente			seeds a short distance (Pysek and Prach 1993, Tiley et al. 1996,	
Introduced range of the species includes Eskdale		·	Wright 1984). Long-distance dispersal occurs naturally along	,
Kingdom (Tiley et al. 1996) and Kristiansund, N			watercourses. The fruits float in water for up to 3 days. Most see	ode
Lid 1994), which has a 63% and 53% climatic ma			- · ·	
		-	and seedlings were found within 10 m of the colony and few mo	ore
Range of the species includes Røros and Dombås		· ·	than 50 m away (Clegg and Grace 1974).	
(Lid and Lid 1994), which has a 76% and 63% clip				3
with Nome, and 55% and 53% climatic match with	th Fairl	banks	Giant hogweed has escaped from ornamental gardens and	
respectively. Thus establishment of Heracleum m	antegaz	zzianum	naturalizes easily. Despite prohibition of giant hogweed, it is	
in south coastal, interior boreal, and arctic alpine	ecoge	ographic	sometimes misidentified and sold in nurseries. Dispersal also	
regions may be possible.	U		includes the use of seed heads in flower arrangements and it is	
Ecological Impact		Score	spread along right-of-ways (Noxious Weed Control Program	
Impact on Ecosystem Processes (0–10)		8	2003, Tiley et al. 1996, Wright 1984).	
Giant hogweed results in a reduction of native sp	ecies a	ndan		0
increase in soil erosion along streambanks in win			There is no recorded allelopathy in this species. The large volum	ne
Weed Control Program 2003, Tiley and Philp 19			of literature on invasiveness of this species and lack of its menti	
			suggests it is not allelopathic.	.011
1984). The availability of nutrients increases in an				3
giant hogweed due to the large amount of easily of	decom	posed	Giant hogweed is very competitive due to its quick early-season	
biomass (Pysek and Pysek 1995).				
Impact on Natural Community Structure (0–10)		7	growth, tolerance of shade, and very large leaf area (Noxious	
Giant hogweed has the ability to dominate native	e comn	nunities	Weed Control Program 2003, Pysek and Pysek 1995).	2
with 50–100% cover (Pysek and Pysek 1995).			0 [,] 00 ()	2
Impact on Natural Community Composition (0–1		8	Giant hogweed has the ability to shade out the surrounding	
Giant hogweed replaces native vegetation (Noxie	ous We	ed	vegetation due to its height and large leaves (Noxious Weed	
Control Program 2003, Tiley and Philp 1992, Ti	iley et a	l. 1996,	Control Program 2003, Pysek and Pysek 1995, Wright 1984).	
Wright 1984). In studies by Pysek and Pysek (199			1	3
vegetation was 40.5% less species-rich than surro			Under field conditions germination and establishment is best	
vegetation. Eleven species, which were not preser	,	<u> </u>	in open vegetation with adequate light and moisture. However,	,
vegetation, were recruited in areas invaded by gia			germination also occurs under vegetation (Tiley et al. 1996).	
	-			3
These species are mainly other invasive plants (A			Heracleum sphondylium is another introduced species, but it is n	not
pratensis, Dactylis glomerata, Elymus repens, Cirsin Lupinus polyphyllus, and Tanacetum vulgare).	um arv	ense,	listed as an invasive (USDA 2002).	

Aquatic, wetland or riparian species (0–3) 3	Current global distribution (0–5) 5	
In its native habitat giant hogweed occurs in forest edges and	Giant hogweed is native to the Caucasus Mountains and	
glades, often at streamsides in montane (Pysek 1991 or Tiley et al.	Southwestern Asia. It has naturalized throughout central Russia	
1996, Pysek and Prach 1993, Wright 1984). In Europe its primary	primary and Europe. It was introduced to Australia, New Zealand,	
colonization has been along watercourses (Clegg and Grace	Canada, and the United States (Tiley et al. 1996, USDA, ARS	
1974, Pysek 1991). Pysek (1991) reported habitat type where	2005). It has been recorded from arctic and subarctic regions in	
the species has been recorded: 42% occurred in a ponds, valleys,	Norway (Lid and Lid 1995).	
riverbanks, road verges, and railway tracks, 41.5% occurred in	Extent of the species U.S. range and/or occurrence of 5	
human-made, disturbed habitats including garbage dumps, parks,	formal state or provincial listing $(0-5)$	
and gardens, and 15.7% occurred in seminatural habitats such as	Giant hogweed has been documented from Connecticut, Maine,	
shrublands, meadows, and forests.	Massachusetts, New Jersey, New York, Oregon, Vermont, and	
Total for Biological Characteristics and Dispersal 22/25	Washington. Giant hogweed is currently on the United States	
Ecological Amplitude and Distribution Score	federal noxious weed list. This plant is considered noxious in 12	
Highly domesticated or a weed of agriculture $(0-4)$ 0	U.S. states, including Oregon and Washington (USDA 2002).	
Giant hogweed is not considered an agricultural weed.	Total for Ecological Amplitude and Distribution 17/25	
Known level of impact in natural areas (0–6) 4	Feasibility of Control Score	
Giant hogweed's infestations are located along streams and rivers	Seed banks (0-3) 3	
in Washington State (Noxious Weed Control Program 2003).	Seed longevity can be greater than 7 years (Noxious Weed	
In Scotland giant hogweed invades grasslands and woodlands	Control Program 2003).	
(Tiley et al. 1996). Giant hogweed was observed in mixed	Vegetative regeneration $(0-3)$ 2	
riparian communities, where it became entirely dominant (Clegg	Resprouting occurs from the base of the plant when flowering	
and Grace 1974). In the Czech Republic giant hogweed replaces stems are cut above ground level. After the stem is cut, a ta		
native vegetation in meadows, shrubs, forest, and forest margins	canopy is reestablished within 2 weeks (Tiley et al. 1996, Wright	
(Pysek 1991, Pysek and Pysek 1995).	1984).	
Role of anthropogenic and natural disturbance in 3	Level of effort required (0–4) 4	
establishment (0–5)	Control of giant hogweed can include mechanical, chemical, and	
Disturbed habitats such as open disturbed communities are more	biological methods. Plants must be dug out entirely or the roots	
easily invaded by giant hogweed. However, it can also invade cut at least 3–4 inches below ground level. Cutting plant stem		
closed communities such as grasslands and woodlands (Pysek ineffective. Herbicides have been used on this plant with vari		
and Pysek 1995, Tiley et al. 1996).	effectiveness. Grazing by domestic herbivores in springtime may	
	be effective. A coordinated control program is required over the	
	whole infestation and surrounding areas, since fresh seed supplies	
	continue to spread from uncontrolled plants. A minimum of 5	
	years of an intensive control is required to control giant hogweed	

Total score for 4 sections	81/100
Total for Feasibility of Control	9/10
(Wright 1984, Tiley and Philp 1992).	
/	8888

\$

common names: sweet rocket, dames rocket, dame's violet, mother-of-the-evening

Ranking Summar			Thicket-forming
Ecoregion known or expected to occur in	n	37	Dames rocket d Germination re
South Coastal Interior Boreal		Yes Yes	It is unknown i
Arctic Alpine		No	
	tential Max.	Score	vegetation. Other invasive s
Ecological Impact	40	10	Other introduc
Biological Characteristics and Dispersal	22	10	America (USD
Amplitude and Distribution	25	17	Aquatic, wetlan
Feasibility of Control	7	2	Dames rocket t
Relative Maximum		41	as moist and m
Climatic Comparis	son		roadsides, fence
	Collected in	CLIMEX	Total for Biolo
	0	similarity?	Ecologica
South Coastal	Yes	-	Highly domesti
Interior Boreal	Yes	-	Dame's rocket i
Arctic Alpine	No	No	included in "wi
Hesperis matronalis is cultivated and has na			Known level of i
Sitka, and Ketchikan (M. Shephard pers. co			Dames rocket i
growing in gardens in Anchorage and Hom			with native spe
It has also been recorded in Fort Wainwrig	ht Army Post	(UAM	tends to invade
2004).		0	(CWMA 2004)
Ecological Impact		Score	Role of anthrop
Impact on Ecosystem Processes (0–10) Dames rocket may delay the establishment	ofnativo	1	establishment (
sites where it has formed stands (M. Sheph			Dames rocket o
Impact on Natural Community Structure (0	÷	.) 3	and can be main
Dames rocket causes a moderate increase in		-	(M. Shephard p
mid-herbaceous layer, and in Ontario it has			Current global o
dominating localized areas (CWS 2004).	, been recorde		Dames rocket is
Impact on Natural Community Compositio	n (0–10)	3	temperate Asia
Dames rocket likely competes with native s		onsin	North America
DNR 2003).			Extent of the sp
Impact on Higher Trophic Levels (0–10)		3	formal state or p
Dames rocket may alter pollinator behavio	r. Hawkmoth	s have	Dames rocket is
been observed pollinating dames rocket in	Alaska and m	ay draw	States, except fo
pollinators away from native species (M. Sl	hephard pers.	obs.). It	declared noxiou
is an alternate host for number of viruses (I	Royer and Dic	kinson	USDA 2002). It
1999).			(Royer and Dic
Total for Ecological Impact		10/40	Total for Ecolo
Biological Characteristics and Dis	spersal	Score	Seed banks (0–3
Mode of Reproduction (0–3)		3	Seeds of dames
Dames rocket reproduces entirely by seed.	0 1	*	years (Wiscons
of producing up to 20,000 seeds (Royer and	d Dickinson 1	,	retained 5 years
Long-distance dispersal $(0-3)$		2	Vegetative reger
Dames rocket does not have particular ada	-	0	This plant has n
distance dispersal, but the large numbers o		ncrease	Level of effort re
the probability of a long-distance dispersal S_{max} dispersal	event.	2	Pulling is requi
Spread by humans (0–3) Dames rocket is planted as an ornamental a	and quickly of	3	established from
			the fruits have l
cultivation. This plant is often included as a seed mixes and is widely sold at nurseries (0	-		putting plants i
	C VV IVIA 2004	7	dispersal. Burn
Wisconsin DNR 2003). Allelopathic (0–2)		0	an effective con
Dames rocket has no allelopathy potential			Total for Feasi
Competitive Ability $(0-3)$	(001)12002). 1	Total score for
Dames rocket likely competes with native s	species (Wisc	-	
DNR 2003). It can outcompete grasses in c			
(J. Riley pers. com.).	1		
(J) p ===== =====================			1

lame's violet, mother-of-the-even	ing
Thicket-forming/Smothering growth form (0–2)	0
Dames rocket does not form dense thickets.	
Germination requirements (0–3)	U
It is unknown if this species can germinate in established	
vegetation.	
Other invasive species in the genus $(0-3)$	0
Other introduced species of <i>Hesperis</i> are not known in No	orth
America (USDA 2002).	
Aquatic, wetland or riparian species (0–3)	1
Dames rocket tends to invade riparian and wetland habita	
as moist and mesic woodlands (CWMA 2004). It also gro	0
roadsides, fence lines, and in open areas (Wisconsin DNR	
Total for Biological Characteristics and Dispersal	10/22
0 1	Score
Highly domesticated or a weed of agriculture (0–4)	4
Dame's rocket is widely planted as an ornamental. It is ofte	
included in "wildflower" seed mixes (Wisconsin DNR 200 Known loval of impact in natural arcses (0, 6)	J3). 3
Known level of impact in natural areas (0–6) Dames rocket invades forests and prairies in Wisconsin co	0
	~ ~
with native species (J. Riley pers. com., Wisconsin DNR 2	
tends to invade riparian and wetland habitat throughout C	Joiorado
(CWMA 2004).	2
Role of anthropogenic and natural disturbance in a_{1}	2
establishment (0–5) Dames rocket often establishes on anthropogenic disturba	22000
and can be maintained in previously disturbed forest remi	nants
(M. Shephard pers. com.). Current global distribution (0–5)	3
Dames rocket is native to Middle and Southern Europe an	-
temperate Asia. It is now introduced to the northern porti	
	011 01
North America (USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of	5
formal state or provincial listing $(0-5)$	3
Dames rocket is now found throughout Canada and the U	nited
States, except for the southern states (USDA 2002). The sp	
declared noxious in Colorado (Invaders Database System	
USDA 2002). It is considered a weed in Manitoba and Ter	inessee
(Royer and Dickinson 1999). Total for Ecological Amplitude and Distribution	17/25
Feasibility of Control	Score
Seed banks (0–3)	U
Seeds of dames rocket can remain viable in the soil for sev	-
years (Wisconsin DNR 2003), but it is unknown if viabilit	
retained 5 years or more.	
Vegetative regeneration $(0-3)$	0
This plant has no ability to resprout (USDA 2002).	
Level of effort required (0-4)	2
Pulling is required for several years to remove new plants	
established from the seed bank. Seeds are likely to mature	if
the fruits have begun developing at the time the plant is pu	
putting plants in a bag or burning them will prevent furthe	
dispersal. Burning and herbicides treatment has been four	
an effective control method (Wisconsin DNR 2003).	
Total for Feasibility of Control	2/7
Total score for 4 sections	39/94
\$	
J	

Hieracium aurantiacum L. and H. caespitosum Dumort.

- Ranking Summ	arv		
Ecoregion known or expected to occu			
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
	Potential Max.	Score	
Ecological Impact	40	29	
Biological Characteristics and Dispersal	25	23	
Amplitude and Distribution	25	19	
Feasibility of Control	10	8	
Relative Maximum		79	
Climatic Compa	rison		
-	Collected in	CLIMEX	
	Alaska regions?	similarity?	
South Coastal	Yes	_	
Interior Boreal	Yes	-	
Arctic Alpine	No	Yes	
Hieracium aurantiacum has been collect	ed in the south o	coastal	
[Juneau (Hultén 1968) and Kodiak (Sp	encer pers. com	.)] and	
interior boreal [Willow (Lapina 2003)]			
<i>Hieracium caespitosum</i> has been collecte	0		
(AKEPIC 2005, M. Shephard pers. com	-		
matching program, climatic similarity b			
where <i>Hieracium aurantiacum</i> is docum			
high. Range of the species includes Anc			
(Finland), and Saint Petersburg (Russia			
has a 61%, 54%, and 53% climatic match	with Nome, res	spectively.	
These suggest that establishment of oran	nge hawkweed i	n arctic	
alpine ecogeographic region may be pos	sible. Range of I	Hieracium	
caespitosum includes Kirov and Kazan, I	0		
1995), which has a 66%, and 58% climat			
60% and 59% climatic match with Fairb			
establishment of meadow hawkweed in			
alpine ecogeographic regions may be po	ssible.	Score	
Ecological Impact		Score 7	
Impact on Ecosystem Processes (0–10) Orange and meadow hawkweed likely r	aduca cail maist	/	
		ule allu	
nutrient availability (J. Snyder pers. con		7	
Impact on Natural Community Structure		7 T	
Extensive stolons form dense mats of ha			
a new layer, and excluding other forbs an	0		
Miller 1999, Prather et al. 2003, Rinella		,	
Impact on Natural Community Compos		8	
Orange and meadow hawkweed elimina	-		
forming dense, monospecific stands (Ca	allihan and Mill	er 1999,	
Prather et al. 2003, Rinella and Sheley 2	.002). Effects of	this taxon	
are likely restricted to low herbaceous s	pecies (M. Carls	son).	
Orange hawkweed reduces the populati			
forbs–fern meadows in Kodiak (P. Spencer pers. com.).			
Impact on Higher Trophic Levels $(0-10)$	p ===: = ===:.).	7	
Orange and meadow hawkweed are unp	alatable and red	luces the	
forage value of grasslands for grazing an			
with native and non-native hawkweeds			
1999, Noxious Weed Control Program			
Rinella and Sheley 2002). Orange hawk		act tor	
		551 101	
nematode species (Townshend and Dav Total for Ecological Impact	ridson 1962).	29/40	

common names: orange hawkweed meadow hawkweed

Biological Characteristics and Dispersal	Score
Mode of Reproduction $(0-3)$	3
Each rosette of hawkweed is capable of producing betw	
and 45,000 tiny seeds. In addition to reproducing by se	
hawkweeds are capable of spreading by rhizomes, stole	
adventitious root buds (Callihan and Miller 1999, Prat	her et al.
2003, Rinella ans Sheley 2002).	
Long-distance dispersal (0–3)	3
The seeds are spread by wind and animals (Callihan ar	
1999, Rinella and Sheley 2002). Seeds are tiny and plu	
Spread by humans (0–3)	3
The seeds are easily carried by vehicles, animals, and cl	0
Orange hawkweed has escaped from flower gardens (N	
Weed Control Program 2004, Rinella and Sheley 2002	2).
Allelopathic (0–2)	2
These species are described as allelopathic (Murphy ar	nd Aarssen
1995, Noxious Weed Control Program 2003).	
Competitive Ability (0–3)	3
Orange and meadow hawkweeds outcompete many na	
species by forming dense, monospecific stands (Prathe	er et al.
2003, Rinella and Sheley 2002).	
Thicket-forming/Smothering growth form $(0-2)$	2
Orange and meadow hawkweeds form dense, monosp	
stands. However, leaves are primarily basal and do not	
grasses and most other forbs (Callihan and Miller 1999	9, Rinella
and Sheley 2002).	
Germination requirements (0–3)	2
These hawkweed species can germinate in vegetated an	
germination is best in full sun (Rinella and Sheley 200	· _
Other invasive species in the genus $(0-3)$	3
Hieracium umbellatum L., H. pilosella L., H. piloselloide	
H. floribundum Wimmer & Grab. are listed as noxious	
in U.S. (Invaders Database System 2002, Royer and D	ickinson
1999, USDA, NRCS 2002).	
Aquatic, wetland or riparian species (0–3)	2
Orange and meadow hawkweeds generally inhabit roa	
gravel pits, pastures, and moist grasslands (Callihan ar	
1999, Prather et al. 2003). In Alaska, orange hawkweed	
observed invading wetlands and boreal white spruce-l	pirch
forests (M. Shephard pers. obs., M. Carlson pers. obs.).	
Total for Biological Characteristics and Dispersal	23/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	4
Orange hawkweed was first introduced into United Sta	
as an herbal remedy and garden ornamental. It is curre	
planted as an ornamental in Girdwood and the Susitna	Valley
(I. Lapina pers. obs.).	
Known level of impact in natural areas (0–6)	4
Orange and meadow hawkweeds invade permanent m	eadows,
grasslands, rangelands, and pastures in Montana and	
Washington. It is a major environmental weed in mont	ane areas
in Canada and New Zealand (Noxious Weed Control	Board
2004, Prather 2003, Rinella and Sheley 2002). Orange	
invades forb-fern meadows in Kodiak (P. Spencer pers	. com.).

Role of anthropogenic and natural disturbance in 3	Extent of the species U.S. range and/or occurrence of 5
establishment (0–5)	formal state or provincial listing $(0-5)$
Hawkweeds readily grow in cleared areas in forests. Mowing	Hieracium aurantiacum listed as a noxious weed in British
promotes flowering and spreading of stolons. However,	Colombia, Colorado, Idaho, Minnesota, Montana, Quebec, and
populations often establish in remote mountain meadows and	Washington. <i>H. caespitosum</i> is considered a noxious in Idaho,
forested habitats with moderate levels of natural disturbance	Montana, Oregon, and Washington (Invaders Database System
(Rinella and Sheley 2002). Orange and meadow hawkweeds have	2003, USDA 2002).
been established in native communities with natural disturbances	Total for Ecological Amplitude and Distribution19/25
in Kodiak, Juneau, and Valdez (P. Spencer pers. com., M.	Feasibility of ControlScore
Shephard pers. com.).	Seed banks (0–3) 3
Current global distribution (0–5) 3	Seeds of hawkweeds are viable up to 7 years (Rinella and Sheley
Orange hawkweed originates from the British Isles, southern	2002).
Scandinavia, west to Russia, and south to the Mediterranean.	Vegetative regeneration $(0-3)$ 2
Meadow hawkweed is indigenous to Northern, Central, and	The hawkweeds are capable of spreading by rhizomes and stolons
Eastern Europe. Hawkweeds now are also established in East	and adventitious root buds (Rinella and Sheley 2002).
Asia, the United States, Canada, and New Zealand (Hultén 1968,	Level of effort required (0–4) 3
Rinella and Sheley 2002).	Mechanical control procedures are generally not successful;
	digging, grazing, or tillage can stimulate the growth of new plants
	from fragmented roots, stolons, and rhizomes. Orange hawkweed
	can be controlled with herbicides. The site should be monitored
	for several years for plants growing from root fragments and from
	seed bank. Small, isolated populations are more easily controlled
	(Rinella and Sheley 2002).
	Total for Feasibility of Control8/10
	Total score for 4 sections79/100

S

Hieracium umbellatum L.

common names: narrowleaf hawkweed

Ranking Summary	Spread by humans (0–3) 3
Ecoregion known or expected to occur in	Narrowleaf hawkweed has been observed spreading along
South Coastal Yes	transportation corridors (I. Lapina pers. obs.). It has been used as
Interior Boreal Yes	an ornamental (Plants for a future 2002).
Arctic Alpine Yes	Allelopathic (0–2)
Potential Max. Score	Unknown
Ecological Impact 30 13	Competitive Ability (0–3) 3
Biological Characteristics and Dispersal 20 16	It has moderate competitive abilities with other non-native
Amplitude and Distribution259	species on disturbed sites (I. Lapina pers. obs.). The plant is
Feasibility of Control 7 4	adapted to all soil types (sandy, loamy, and clay). It can grow in
Relative Maximum 51	nutritionally poor soil and withstand semishade (Plants for a
Climatic Comparison	future 2002).
Collected in CLIMEX	Thicket-forming/Smothering growth form $(0-2)$ 1
Alaska regions? similarity?	Narrowleaf hawkweed is capable of forming dense nearly
South Coastal Yes –	monocultural stands in disturbed sites in south-central Alaska.
Interior Boreal Yes –	Plants can grow up to 4 feet tall and overshadow other herbaceous
Arctic Alpine Yes Yes	plants (I. Lapina pers. obs.).
This species has been collected near Coldfoot in the Brooks	Germination requirements (0–3)
Range (edge of the arctic alpine ecogeographic region);	Unknown
Fairbanks, Anchorage, Tanana Lowlands, and Matanuska–	Other invasive species in the genus $(0-3)$ 3
Susitna Valley (interior boreal ecogeographic region); and	Hieracium aurantiacum L., H. caespitosum Dumort, H. pilosella
Wrangell Island and Petersburg (south coastal ecogeographic	L., and H. <i>piloselloides</i> Vill. (Royer and Dickinson 1999, USDA,
region) (AKEPIC 2007, UAM 2004). <i>Hieracium umbellatum</i> has	NRCS 2006).
been collected from the edge of the arctic alpine ecogeographic	Aquatic, wetland or riparian species (0–3)
region on the southern side of the Brooks Range (AKEPIC	In Alaska narrowleaf hawkweed is generally observed in
2007). This specific site is a more interior boreal plant community	disturbed mesic areas. However, in its native range it grows along
and has relatively warm summers, but cold and long winters.	streambanks, moist meadows, grasslands, and forests (Douglass
Additionally, its range includes subarctic regions such as	
Northwest Territory and Yukon Territory, Canada and Siberia,	et al. 1998, Gubanov et al. 1995). It has been noted invading 40
Russia (Douglas et al. 1998, USDA, ARS 2004), with a greater	year old abandoned fields along the Stikine River (M. Shephard
than 50% climatic similarity between known sites and Nome	pers. com.).
	Total for Biological Characteristics and Dispersal 16/20
(CLIMEX 1999). This suggests that establishment in arctic and	Ecological Amplitude and Distribution Score
alpine regions of Alaska may be possible.	Highly domesticated or a weed of agriculture $(0-4)$ 2
Ecological Impact Score	Narrowleaf hawkweed is known as an ornamental (Plants for a
Impact on Ecosystem Processes (0–10) 5	future 2002).
Narrowleaf hawkweed consumes soil moisture and nutrients. It	Known level of impact in natural areas $(0-6)$ 0
can form relatively dense stands in only weakly disturbed sites	The impact of narrowleaf hawkweed in natural areas has not been
and is likely to delay establishment of native species (M. Carlson	documented.
pers. obs., I. Lapina pers. obs.).	Role of anthropogenic and natural disturbance in 0
Impact on Natural Community Structure (0–10) 3	establishment (0–5)
It establishes in an existing herbaceous layer, changing the density	Narrowleaf hawkweed has been observed only in sites with
of the layer (I. Lapina pers. obs.).	disturbed substrates (I. Lapina pers. obs., Villano 2007).
Impact on Natural Community Composition $(0-10)$ 5	Current global distribution (0–5) 5
Narrowleaf hawkweed has been observed in naturally disturbed	The native range of narrowleaf hawkweed includes Europe,
	temperate Asia, and North America. It is known from subarctic
areas following forest fires in interior Alaska (Villano 2007) as	
well as partially disturbed roadsides areas in Alaska (I. Lapina	regions in Northwest Territory and Yukon Territory, Canada
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats.	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004).
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS2004).Extent of the species U.S. range and/or occurrence of2
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown.	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5)
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS2004).Extent of the species U.S. range and/or occurrence of2
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats.Impact on Higher Trophic Levels (0–10)UImpact on higher trophic levels is unknown.13/30Total for Ecological Impact13/30Biological Characteristics and DispersalScore	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS2004).Extent of the species U.S. range and/or occurrence of2formal state or provincial listing (0–5)
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats.Impact on Higher Trophic Levels (0–10)UImpact on higher trophic levels is unknown.13/30Total for Ecological Impact13/30Biological Characteristics and Dispersal Mode of Reproduction (0–3)Score	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock &
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants for a future 2002).	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to United States as far south as Colorado and Nebraska (ITIS 2004,
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants for a future 2002). Long-distance dispersal (0–3) 3	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to United States as far south as Colorado and Nebraska (ITIS 2004, USDA, ARS 2004). This species is on threatened and endangered
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants for a future 2002). Long-distance dispersal (0–3) 3 Seeds have pappus and are likely wind dispersed (Douglas et al.	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to United States as far south as Colorado and Nebraska (ITIS 2004, USDA, ARS 2004). This species is on threatened and endangered plants list in New Hampshire (USDA 2002). It is not listed as
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants for a future 2002). Long-distance dispersal (0–3) 3	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to United States as far south as Colorado and Nebraska (ITIS 2004, USDA, ARS 2004). This species is on threatened and endangered plants list in New Hampshire (USDA 2002). It is not listed as noxious in any American states or Canadian provinces (Rice
well as partially disturbed roadsides areas in Alaska (I. Lapina pers. obs.). It likely reduces the diversity and density of native species in these disturbed habitats. Impact on Higher Trophic Levels (0–10) U Impact on higher trophic levels is unknown. Total for Ecological Impact 13/30 Biological Characteristics and Dispersal Score Mode of Reproduction (0–3) 2 Narrowleaf hawkweed spreads by both seed and rhizomes (Plants for a future 2002). Long-distance dispersal (0–3) 3 Seeds have pappus and are likely wind dispersed (Douglas et al.	and Siberia, Russia (Douglas et al. 1998, ITIS 2004, USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of 2 formal state or provincial listing (0–5) Introduced populations in North America extend from Alaska south to Idaho and northwestern Oregon (Hitchcock & Cronquist 1990, Welsh 1974). However, it is considered native to United States as far south as Colorado and Nebraska (ITIS 2004, USDA, ARS 2004). This species is on threatened and endangered plants list in New Hampshire (USDA 2002). It is not listed as

Feasibility of Control	Score	Level of effort required (0–4)	2
Seed banks (0–3)	U	Control options have not been investigated. Population	ns in south-
Unknown		central Alaska appear to be persisting and spreading wi	thout
Vegetative regeneration (0–3)	2	continual disturbance (I. Lapina pers. obs.).	
Narrowleaf hawkweed can resprout from rhizomes (1	Plant for a	Total for Feasibility of Control	4/7
future 2002).		Total score for 4 sections	44/82
		S	

Hordeum jubatum L.

Ranking Summ		
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	18
Biological Characteristics and Dispersal	25	16
Amplitude and Distribution	25	20
Feasibility of Control	10	9
Relative Maximum	•	63
Climatic Compa		
	Collected in	CLIMEX
South Coastal	Alaska regions? Yes	simuarity:
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Special Note–nativity : Hordeum jubatu		-
North America and has become natural		
America, as well as Europe (Hitcock an	~	
2002, USDA 2002). Judging from herba		
of Alaska Museum 2004), it is most like	,	A
small populations in eastern interior Al	*	
However, it has spread dramatically in t		,
associated with accelerated human dist	urbances. Popu	lations
in much of Alaska are generally associat	ed with anthroj	pogenic
disturbance and are most likely introdu	ced or introgres	ssed
genotypes as in Phalaris arundinacea in	the Pacific Nor	thwest
(see Merigliano and Lesica 1998). Grea	ter study, using	molecular
and morphological markers and paleoe		
necessary to tease apart the patterns of		
Alaska.	,	I
Hordeum jubatum has been collected in	all ecogeograp	nic regions
in Alaska (Hultén 1968, UAM 2004).	0 0 1	0
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		3
Foxtail barley accumulates high amoun	ts of salt in its st	0
leaves, reducing soil salinity (Badger an		
Ungar 2002).	a ongar 1770,1	contor und
Impact on Natural Community Structur	e(0-10)	3
Foxtail barley has been observed creatin		e
along barren river bars and eroding slop		
I. Lapina pers. obs.).	Co (). Conn per	3. 003.,
I I SIND'S DECK ODS I		

common names: foxtail barley

common names. Toxtan ba	iiiey
Impact on Natural Community Composition (0–10)	5
Hordeum jubatum was often the dominant species in Ohi	
where soil salinity averaged about 0.6%. At moderate sali	*
concentrations, it made up 90–100% of the vegetation co	ver
(Badger and Ungar 1990). In Alaska it has been recorded	forming
large component of the herbaceous vegetation (J. Conn J	pers.
obs.). These high densities are believed to reduce populat	ions of
other grasses and forbs.	
Impact on Higher Trophic Levels (0–10)	7
In early summer foxtail is palatable to browsing animals.	
waterfowl species eat the seeds and leaves of foxtail barle	
late summer, the sharp pointed awns may cause damage	
mouth, eyes, and skin of animals. This plant is host for nu	mber
of viruses (MAFRI 2004, Royer and Dickinson 1999, Te	sky
1992, Whitson et al. 2000, Woodcock 1925). Hordeum ju	ıbatum
is interfertile with numerous species, forming hybrids (H	lultén
1968, Murry and Tai 1980, Welsh 1974).	
Total for Ecological Impact	18/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	1
This plant reproduces primarily by seed. Each plant is cap	
producing more than 180 seeds (Royer and Dickinson 19	999).
Long-distance dispersal (0–3)	3
The seeds are dispersed by wind or transported in the ha	ir of
animals (Royer and Dickinson 1999, Tesky 1992).	
Spread by humans (0–3)	3
Foxtail barley has been grown as an ornamental (Tesky 1	
It also is a potential crop contaminant (USDA, ARS 200	
grass has increased in frequency as a response to human	activities
that increase soil salinity (Badger and Ungar 1994).	0
Allelopathic (0–2)	0
No records are found concerning allelopathy. Competitive Ability (0–3)	1
Foxtail barley is capable of dominating sites with high so:	
salinity, but it is typically a poor competitor with other sp	
low salinities (Badger and Ungar 1994).	eeres at
Thicket-forming/Smothering growth form $(0-2)$	0
This plant can grow 1 to 2 feet tall (Whitson et al. 2000)	Ũ
Germination requirements (0–3)	2
As a pioneer on disturbed sites, foxtail barley likely adapt	ed
to germinate in open soils (Tesky 1992). However, it has	been
observed in wet meadows without obviously open soils in	
(M. Carlson pers. obs.)	
Other invasive species in the genus $(0-3)$	3
Hordeum murinum L., H. pusillum Nutt., and H. vulgare a	re
considered weeds in United States (USDA 2002, Whitso	
2000).	

Aquatic, wetland or riparian species $(0-3)$ 3	Extent of the species U.S. range and/or occurrence of 5
Foxtail barley can be found on roadsides and waste areas. It is	formal state or provincial listing (0–5)
common also on tidal flats, terraces, and riverbanks (Hultén	The current range of <i>Hordeum jubatum</i> includes most of the
1968, Tesky 1992, Welsh 1974).	United States except for the southeastern states (ITIS 2002,
Total for Biological Characteristics and Dispersal 16/23	USDA 2002). Foxtail barley is declared a noxious weed in
Ecological Amplitude and Distribution Score	Manitoba and Quebec (Invaders Database System 2003, USDA
Highly domesticated or a weed of agriculture $(0-4)$ 4	2002).
Foxtail barley is a common weed in cultivated fields (MAFRI	Total for Ecological Amplitude and Distribution 20/25
2004, Robson et al. 2004). It also is considered a pasture weed	Feasibility of Control Score
because of the damage to animals (Tesky 1992).	Seed banks (0–3) 3
Known level of impact in natural areas (0–6) 3	Test in Alaska indicated that up to 67% of seeds remained viable
Foxtail barley is known to grow in grasslands throughout the	during first year in the soil. Germinability decreased with burial
West. It reaches its greatest abundance on the edges of sloughs	and time. Less than 1% of buried seeds remain viable for up to 7
and salt marshes, grassy slopes, and flatlands of the prairies. It	years (Conn and Deck 1995, Badger and Ungar 1994).
also is abundant in sagebrush margins and irrigated meadows	Vegetative regeneration $(0-3)$ 2
(Tesky 1992).	Foxtail barley reproduces by seed (MAFRI 2004, Whitson et
Role of anthropogenic and natural disturbance in 3	al. 2000). Reproduction vegetatively by tilling has also been
establishment (0–5)	reported (Tesky 1992). Foxtail barley has the ability to resprout
This species has been observed invading areas with natural	after mowing or cutting (J. Conn pers. com.).
disturbances such as flooding and river erosion (J. Conn pers.	Level of effort required $(0-4)$ 4
obs.). Some types of disturbance, such as overgrazing, mowing,	Once established foxtail barley is hard to eradicate. Revegetating
burning, increasing soil salinity, and soil contamination increases	disturbed areas with desirable plants and controlling water levels
the density of foxtail barley (Badger and Ungar 1990, Robson et	is effective in reducing the amount of foxtail barley (Tesky 1992).
al. 2004, Tesky 1992).	This species can be control with herbicides (MAFRI 2004).
Current global distribution (0–5) 5	Total for Feasibility of Control9/10
Foxtail barley is native to western North America and has	Total score for 4 sections63/100
become naturalized in eastern North America, Europe, and	S
Asia, including arctic and subarctic regions. It also is recorded	U U U U U U U U U U U U U U U U U U U
from Mexico and Great Britain (Hultén 1968, ITIS 2002, USDA	
2002).	

Hordeum murinum ssp. leporinum (Link) Arcang.

Ranking Summary			
Ecoregion known or expected to occur in			
South Coastal		No	
Interior Boreal		Yes	
Arctic Alpine		No	
	Potential Max.	Score	
Ecological Impact	40	18	
Biological Characteristics and Dispersal	25	17	
Amplitude and Distribution	25	17	
Feasibility of Control	10	8	
Relative Maximum		60	
Climatic Compa	rison		
	Collected in	CLIMEX	
	Alaska regions?	similarity?	
South Coastal	No	No	
Interior Boreal	Yes	-	
Arctic Alpine	No	No	
Hordeum murinum ssp. leporinum has been collected in the			
Matanuska and Susitna Valleys in Alaska (AKEPIC 2004). The			
climatic similarity between Juneau and Fairbanks and areas			
where this species occurs is low (CLIMEX 1999, USDA 2002).			
This low similarity suggests that establishment of <i>Hordeum</i>			
<i>murinum</i> ssp. <i>leporinum</i> in south coastal and arctic alpine			
ecogeographic regions is unlikely.	0		

common names: leporinum barley, lepor barley, rabbit barley, hare barley

1 //	// /
Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	3
Leporinum barley likely reduces soil moi	sture and nutrients
(I. Lapina pers. obs.). This species can for	m high densities in
Alaska where it certainly uses substantial	soil moisture and
nutrients (I. Lapina pers. obs.). It is not ki	nown if these resources
are limiting to other species in these sites	
Impact on Natural Community Structure	(0–10) 3
A high density of leporinum barley has be	en observed in an
existing layer of vegetation in south-centre	ral Alaska (I. Lapina
pers. obs.). It becomes the dominant com	ponent of mixed crop
pastures in Australia and New Zealand (Cocks and Donald 1973,
Govey et al. 2003, Popay 1981).	
Impact on Natural Community Composit	ion (0–10) 5
Leporinum barley can reduce the numbe	r of native individuals in
forb and grass communities (Cocks and I	Donald 1973, Govey et
al. 2003).	
Impact on Higher Trophic Levels $(0-10)$	7
Awns of mature plants can cause serious	
and throat of grazing animals (Klott 1981	, Warr 19981, Whitson
et al. 2000). This plant also hosts several of	diseases (Klott 1981).
Total for Ecological Impact	18/30

Mode of Reproduction (0–3) Leporinum barley reproduces by seeds that are produced	3 in large	Highly domesticated or a weed of agriculture (0–4) Leporinum barley was introduced during the eighteenth	4 and
numbers (Halloran and Pennell 1981).	iii iui ge	nineteenth centuries to North and South America, Austr	
Long-distance dispersal (0–3)	3	and New Zealand where it has become a weed of conside	
The seeds can be transported by attachment to animal hai			
(Cocks and Donald 1973).		economic importance (Cocks and Donald 1973, Davisor	19/1,
Spread by humans (0–3)	3	Popey 1981).	1
Seed can be transported by entanglement in commercial		Known level of impact in natural areas (0–6) Many annual grass pastures in Australia are invaded and	1 hacoma
or as a contaminant in seed and hay (Cocks and Donald 1)		dominated by leporinum barley (Cock and Donald 1973)	
Klott 1981, USDA, ARS 2005). It can be dispersed with sl		Role of anthropogenic and natural disturbance in). 3
bedding (J. Conn pers. com.).	04 408	establishment (0–5)	5
Allelopathic (0–2)	0	Leporinum barley readily establishes in areas subject to r	egular
No records are found concerning allelopathy.	Ũ	grazing and trampling. It becomes dominant with increa	
Competitive Ability (0–3)	3	intensity of grazing (Groves et al. 2003).	sing
Leporinum barley can invade pastures and dominate nati	ve	Current global distribution (0–5)	5
forb and grass communities (Cocks and Donald 1973, Gr		Leporinum barley is believed to have originated in Euras	
et al. 2003). Leporinum barley has several features which		native range extends from Middle Europe south to North	
it a potential advantage over native or resident species. It h		Africa and west to Western Asia and the Caucasus (USD.	
high seed production and earlier, more rapid and more con		2005). It has become naturalized in North and South Am	
germination than other annual grasses (Cocks and Donal		Australia, and New Zealand (Halloran and Pennell 1981)	
1973, Groves et al. 2003, Halloran and Pennell 1981). Mil		1971).	Davison
(1961) found that in mixed cultures rapidly-germinating		Extent of the species U.S. range and/or occurrence of	4
species tend to dominate over more slowly-germinating sp		formal state or provincial listing $(0-5)$	
Leporinum barley is also able to germinate at lower seed r		The species' range in North America extends along both	the
content and over a broader range of temperatures. Germin		west and east coasts. <i>Hordeum murinum</i> ssp. <i>leporinum</i> is	
is strongly stimulated by short periods of wetting. The lon		considered noxious in North America (Invaders Databas	
provide a competitive advantage by making seeds difficult	e	2003, USDA 2002).	e oystem
animals to eat and by assisting natural seed burial (Cocks		Total for Ecological Amplitude and Distribution	17/25
Donald 1973, Halloran and Pennell 1981, Piggin et al. 197		Feasibility of Control	Score
Thicket-forming/Smothering growth form $(0-2)$	0	Seed banks (0–3)	3
Leporinum barley is not characterized by a climbing or	-	One viable seed of leporinum barley was found in 200-ye	ar old
smothering growth habit. It can grow up to 10 inches tall		adobe bricks from Northern Mexico (Spira and Wagner	1983).
(Hitchcock et al. 1969, Whitson et al. 2000).		Additional information on leporinum barley seed viabilit	y is
Germination requirements (0–3)	2	lacking, but seeds of other <i>Hordeum</i> species appear to rer	nain
Leporinum barley typically establishes on bare soils but li	kely is	viable for long periods (Haferkamp et al. 1953).	
able to establish in vegetated areas also (Cocks and Donal		Vegetative regeneration (0–3)	2
Piggin et al. 1973, Popay 1981).		Leporinum barley can resprout after removal of abovegro	ound
Other invasive species in the genus $(0-3)$	3	growth.	
Hordeum jubatum L., H. pusillum Nutt., and H. vulgare are		Level of effort required (0–4)	3
considered weeds in the United States (USDA 2002, Whi	tson et	Grazing, mowing, and herbicides can be used to reduce t	
al. 2000).		leporinum barley content in pastures. Leporinum barley	
Aquatic, wetland or riparian species $(0-3)$	0	to be strongly resistant to a number of herbicides (Klott 1	981,
Leporinum barley occupies ruderal places such as roadsid		Stephenson 1993).	
the margins of cultivated land. In Australia this grass occu	-	Total for Feasibility of Control	8/10
annual pastures, while in New Zealand it is a greater prob		Total score for 4 sections	60/90
in sheep pastures and alfalfa crops (Cocks and Donald 19	73,	\$	
		-	
Davison 1971). Total for Biological Characteristics and Dispersal	17/25		

Hydrilla verticillata (L. f.) Royle

Ranking Summary		
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	38
Biological Characteristics and Dispersal	22	17
Amplitude and Distribution	25	14
Feasibility of Control	10	9
Relative Maximum		78
	•	

Climatic Comparison

	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	No	Yes
Interior Boreal	No	Yes
Arctic Alpine	No	No
Hydrilla verticillata has not been doc	umented in Alaska	(Hultén

1968, Pfauth and Sytsma 2005, UAM 2004). The CLIMEX climate matching program indicates a climatic similarity between south coastal region of Alaska and areas of the spec documented occurrence are high. The native range of hydril includes Akita, Japan and Thredbo, Australia (Cook and Lüč 1982) which have 55% and 53% of climate similarity with Ju The distribution range of hydrilla also includes Minsk, Belar and Semipalatinsk, Russia (Cook and Lüönd 1982) which ha a 62% and 61% climate similarity with Anchorage, respectiv Climatic similarities between Fairbanks and Semipalatinsk Blagoveshchensk, Russia and Qiqihar, China have a 64%, 61 and 50% similarity with Fairbanks respectively. Hydrilla is r known from arctic regions. In general, aquatic species are les impacted by variation in terrestrial climates. Hydrilla verticil is likely to become established in the south coastal and interboreal regions of Alaska.

Ecological ImpactScoreImpact on Ecosystem Processes (0–10)8Hydrilla infestations slow the movement of water, causingflooding. Slow waterflow can also increase the sedimentationrates, water temperature, and pH level (Estes et al. 1990, Joyce etal. 1992) and decrease dissolved oxygen (Bossard et al. 2000). Italso affects water nutrient turnover (Bole and Allan 1978, Sinhaet al. 2000).

Impact on Natural Community Structure (0–10) 10 Hydrilla forms a dense mat of vegetation at the water surface and limits light penetration degrading or eliminating all layers below (Bossard et al. 2000). Haller and Sutton (1975) reported that light penetration is reduced by at least 95% at 1 foot of depth. An aquatic vegetation study in Florida found that area coverage of submersed aquatic macrophytes increased from 8% in 1987 to 90% in 1989 and 1990 due to the expansion of hydrilla (Estes et al. 1990).

common names: hydrilla

	common manies. nyurma
	Impact on Natural Community Composition (0–10) 10
	Hydrilla infestations can cause a reduction or the extirpation
Yes	of populations of native aquatic species (Bossard et al. 2000).
Yes	Hydrilla may also shift the phytoplankton composition (Canfield
No	et al. 1984). Infestations also adversely affect fish populations.
Score	Hydrilla may reduce seed production of native species, resulting
38	eventually in a reducing of a number of native species in the
17	community (de Winton and Clayton 1996). A study in Florida
14 9	found that the frequency of occurrence for the most abundant
78	native submersed plants, coontail and southern naiad decreased
70	from 11% to 4% and 56% to 4%, respectively, from 1987 to 1990
IMEX	(Ester et al. 1990).
ilarity?	
Yes	
Yes	Hydrilla is eaten by waterfowl and fish. Some studies support
No	the view that hydrilla is beneficial as a fishfood and cover (Estes
ıltén	et al. 1990); other researches suggest that fish populations are
	adversely affected when hydrilla coverage exceeds 30% (Colle and
	Shireman 1980). Hydrilla appears to be an important habitat for a
cies	number of mosquito species (Hearnden and Kay 1997).
lla	Total for Ecological Impact 38/40
önd	Biological Characteristics and Dispersal Score
ineau.	Mode of Reproduction (0–3) 3
rus	Hydrilla reproduces by seeds, but seed production has minor
ave	importance. Vegetative reproduction is very efficient and occurs
vely.	by fragmentation of the stem, or by the production of axillary
and	buds (turions) and below-ground tubers. One plant can produce
1997, 19977, 1997, 19977, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997	an average of 6,046 tubers per season (Sutton et al. 1992). An
not	experiment by Thullen (1990) showed that hydrilla can produced
SS	up to 46 axillary turions per 1.0 g dry weight (estimated of
illata	2803 turions per m ³). About 50% of the fragments with a single
I	whorl can sprout and form new plant, and more than 50% of the
rior	fragments with three whorls can sprout (Langeland and Sutton
	1980).
core 8	Long-distance dispersal (0–3) 2
0	Tubers, turions, and stem fragments disperse with flooding.
n	Tubers survive ingestion by waterfowl and might be transported
	from one water body to another (Joyce et al. 1980). The
o). It	importance of tubers dispersal, therefore, is unknown.
inha	Spread by humans (0–3) 2
uiiia	Hydrilla was first introduced into North America as an aquarium
10	plant. Turions or small pieces of hydrilla stems can travel on boat
e and	trailers or planes. Accidental introductions with planted waterlily
elow	have been reported (Washington State Department of Ecology
	2004). Hydrilla twigs survive 16 hours of desiccation (Basiouny et
at .	al. 1978, Kar and Choudhuri 1982). Tubers can remain viable for
n. An	several days out of water (Basiouny et al. 1978).
e of	Allelopathic $(0-2)$ 2
to	In experiments by Elakovich and Wooten (1989) extracts of
es et	hydrilla exhibit high allelopathy potential and inhibited the
1	growth of lettuce seedling and duckweed.

Competitive Ability (0–3) 3	Role of anthropogenic and natural disturbance in 5
Hydrilla is highly adaptive to the environment and competitive	establishment (0–5)
with most other aquatic plants (Haller and Sutton 1975). It is able	Hydrilla can be readily established in undisturbed aquatic
to outcompete native submerged plants for light and nutrients.	ecosystem (Bossard et al. 2000).
The growth habit of hydrilla enables it to compete effectively for	Current global distribution (0–5) 3
sunlight. It can elongate up to 1 inch per day, and produces the	Hydrilla is probably native to the warmer regions of Asia (Cook
majority of the stems in the upper 2–3 feet of water (Haller and	and Lüönd 1982). It is a cosmopolitan species that occurs in
Sutton 1975). This mat of vegetation intercepts sunlight and leads	Europe, Asia, Australia, New Zealand the Pacific Islands, Africa,
to exclusion of other aquatic plants. Hydrilla is also adapted to use	and North and South America.
	Extent of the species U.S. range and/or occurrence of 5
low light levels for photosynthesis (Barko and Smart 1981, Van	formal state or provincial listing $(0-5)$
et al. 1976). Hydrilla efficiently uses a limited supply of nutrients	In the United States hydrilla populations occur in all
such as carbon, nitrogen, and phosphorus. Thicket-forming/Smothering growth form (0–2) 2	Southeastern states and in Arizona, California, and Washington
Thicket-forming/Smothering growth form $(0-2)$ 2 Hydrilla can form a dense mat near the water surface (Bossard et	(USDA, NRCS 2006). <i>Hydrilla verticillata</i> is declared a federal
al. 2000).	noxious weed in U.S. It also is listed noxious in 17 American states
Germination requirements (0–3) N/A	(Rice 2006, USDA, NRCS 2006).
Germination of seeds is not a significant factor in reproduction.	Total for Ecological Amplitude and Distribution 14/25
(Bossard et al. 2000).	Feasibility of Control Score
Other invasive species in the genus $(0-3)$ 0	Seed banks (0–3) 2
None	Seed production and seed viability is probably low. However,
Aquatic, wetland or riparian species (0–3) 3	propagules of hydrilla tubers survived in undisturbed sediment
Hydrilla is a submerged aquatic perennial. Typical habitats of	for a period of over 4 years. Axillary turions usually do not remain
hydrilla include ditches, canals, ponds, reservoirs. It can be found	viable for more than 1 year (Van and Steward 1990).
in fresh and brackish, flowing, and still waters (Bossard et al.	Vegetative regeneration (0–3) 3
2000, Thorne 1993).	Hydrilla can regenerate from stem fragments, tubers, and turions
Total for Biological Characteristics and Dispersal17/22	(Basiouny et al. 1978, Spencer and Rejmanek 1989, Steward 1992,
Ecological Amplitude and Distribution Score	Sutton et al. 1992). About 50% of the fragments with a single
Highly domesticated or a weed of agriculture $(0-4)$ 0	whorl can sprout and form new plants. More than 50% of the
Hydrilla is not an agricultural weed.	fragments with three whorls can sprout (Langeland and Sutton
Known level of impact in natural areas $(0-6)$ 1	1980).
Hydrilla causes severe alterations of plant community	Level of effort required (0–4) 4
composition, community structure, and ecosystem processes	The cost of hydrilla management is extremely high. Management
in water bodies in California (Bossard et al. 2000). This aquatic	methods currently include mechanical removal, herbicides
weed displaces native plants and adversely impacts freshwater	applications, and biological control. Hydrilla is fragmented easily
habitats in Florida (Langeland 1996). Hydrilla is reported	and damaged plants that are not removed by mechanical control
from one lake system in Washington. This is the only known	methods can act as a source of reestablishment. Several species
occurrence of hydrilla in the Pacific Northwest and impact on	of weevils, leaf-mining flies, and moth have been introduced to
native aquatic ecosystem has not been recorded (Washington	control hydrilla (Bossard et al. 2000, Langeland 1996).
State Department of Ecology 2004).	Total for Feasibility of Control 9/10
	Total score for 4 sections 78/97

\$

Hypericum perforatum L.

Ranking Summ	arv	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	11
Biological Characteristics and Dispersal	25	15
Amplitude and Distribution	25	18
Feasibility of Control	10	8
Relative Maximum		52
Climatic Compar		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	
Interior Boreal	Yes	
Arctic Alpine	No	
Hypericum perforatum has been recorded		0
Sitka, Ketchikan, and Baranof Island (A		
similarity is high between Nome (arctic		
areas where the species is documented. I	0	
species includes Ust'Tsil'ma, Ust'Shchuş	gor, and Zlatov	ıst, Russia
(Gubanov et al. 2003, USDA, ARS 2004), which has a '	78%,73%
and 71% climatic match with Nome and	66%, 67%, and	164%
with Fairbanks, respectively. The species	has been reco	rded
from Anchorage which has a 61% climat		
Thus establishment of <i>Hypericum perford</i>		
interior boreal ecoregions may be possib		upilie ulla
Ecological Impact	10.	Score
Impact on Ecosystem Processes (0–10)		3
Common St. Johnswort depletes soil mo	isture. It is like	elv to
delay the establishment of native species		
late summer, the dry stalks of St. Johnsw		
hazard to forests and rangelands (Samps		
Impact on Natural Community Structure		3
Common St. Johnswort is capable of form		0
grasslands and pastures (Powell et al. 19		
White et al. 1993).	/ 1, 1 iscuite et t	
Impact on Natural Community Composi	tion $(0 - 10)$	3
Common St. Johnswort is capable of dis		
and modifying native plant community		*
and McLendon 1996).	composition (i	lancage
Impact on Higher Trophic Levels (0–10)		2
The plant contains a toxin that causes sev	vere dermatitio	
light-haired livestock when they are expo		
(Powell et al. 1994, Rutledge and McLer	0	0
2000). Hybrids of <i>H. perforatum</i> and <i>H.</i>		
in Europe where both species occur (Car	mpbell and De	liosse
1984, Lid and Lid 1994).		11/40
Total for Ecological Impact		<u>11/40</u>
Biological Characteristics and I Made of Depreduction $(0, 2)$	Jispersal	Score
Mode of Reproduction $(0-3)$	and and share	3
Common St. Johnswort reproduces by s		
The root system spreads horizontally and		
(Rutledge and McLendon 1996). Accord		
plants are capable of producing up to 15,		
production during a 2-year study in Idah	to averaged 23,	,350 seeds
per plant (Tisdale et al. 1959).		

common names: St. Johnswort

Long-distance dispersal (0-3)Water and animals are likely the main factors of seed dispersal (Rutledge and McLendon 1996, Parsons 1957). Seeds have no adaptation to wind dispersal; however, a few tests conducted in Idaho indicate that seeds can be dispersed by wind up to 30 feet from the nearest plant (Tisdale et al. 1959). A gelatinous coat of the seed facilitates long-distance dispersal by sticking to objects or animals (Sampson and Parker 1930 cited in Crompton et al. Spread by humans (0-3)3 Common St. Johnswort was introduced to new areas for ornamental and medicinal purposes (Parsons 1957). It has been cultivated on farms in Eastern European countries (Gubanov et al. 2003). Seeds may contaminate commercial crop seed (USDA, ARS 2005). Seeds also can be distributed over large areas, adhering to wheels of vehicles, or contaminating hay or soil (Parsons 1957). Allelopathic (0-2)0 Allelopathy has never been reported for common St. Johnswort, there is likely no allelopathy potential for this plant. Competitive Ability (0-3)1 Seedlings of common St. Johnswort are very small, grow slowly, and are extremely susceptible to competition from other pasture plants. Once the new seedlings pass their first year and are established, they are able to outcompete and displace their neighbors (Cambell 1985). Tisdale and others (1959) found that perennial pasture grasses are more competitive plants compared to common St. Johnswort. The root system of seedlings commonly attains a depth of about 1 foot during its first growing season. Mature plants have an extensive root system which extends 4-5 feet in depth and about 3 feet laterally. The deep root system is capable of supporting the plant when soil water has been depleted (Tisdale et al. 1959). Thicket-forming/Smothering growth form (0-2)1 Common St. Johnswort forms a dense spreading canopy over 3 feet tall and may overtop other pasture forbs and grasses (Crompton et al. 1988). 0 Germination requirements (0-3)Seeds require bare soil, sunlight, and/or heavy rain for germination (Tisdale et al. 1959). Germination is generally inhibited by high levels of litter (Rutledge and McLendon 1996). Other invasive species in the genus (0-3)Hypericum androsaemum is a very important weed in Australia (Parsons 1957). Aquatic, wetland or riparian species (0-3)1 Common St. Johnswort is commonly found along roadsides and on other disturbed areas. It also invades rangelands, pastures, and meadows (Guide to weeds in British Columbia 2002, Powell et al. 1994). It is known to invade large areas on riverbanks in northeastern Australia (Parsons 1957). Total for Biological Characteristics and Dispersal 15/25**Ecological Amplitude and Distribution** Score 4

Highly domesticated or a weed of agriculture (0-4)Although common St. Johnswort is not domesticated, it has been cultivated on farms in Eastern European countries for medicinal purposes (Gubanov et al. 2003)

1988).

Known level of impact in natural areas $(0-6)$ 3	Feasibility of Control Score
Common St. Johnswort invades grasslands and open forests	Seed banks $(0-3)$ 3
in California, Oregon, Washington, Idaho, and Montana. In	In Australia, Clark (1953) found that St. Johnswort seeds may
Idaho, common St. Johnswort creates medium to dense stands	remain viable in the soil for as long as 6 years. In Idaho, seed
in grasslands, replacing native vegetation. It has been established	buried in soil retained viability after 3 years (Tisdale et al. 1959).
in cut and burned-over areas in <i>Pinus</i> ponderosa forests in Idaho	Vegetative regeneration (0–3) 2
(Tisdale et al. 1959). This weed forms large dense stands in moist	Common St. Johnswort can sprout from buds on lateral roots
grasslands and open forest areas in British Columbia (Powell	(Rutledge and McLendon 1996).
et al. 1994, White et al. 1993). Common St. Johnswort invades	Level of effort required $(0-4)$ 3
large areas in forests, riverbanks, and pastures in Northeastern	Common St. Johnswort is difficult to control because of its
Australia (Parsons 1957)	extensive root system and long-lived seeds. Tillage, hand pulling,
Role of anthropogenic and natural disturbance in 3	mowing, or burning appears to be ineffective because vegetative
establishment (0–5)	reproduction may be stimulated by mechanical treatment
Original infestations are usually associated with logging, fire,	(Tisdale et al. 1959). Common St. Johnswort can be controlled
mining, or other disturbance. It can establish in forested areas	by herbicides, however, wax on the leaves inhibit herbicide
experiencing natural disturbances such as fire or animal digging	uptake. Biological control has been relatively successful using
and burrowing (Clark 1953, Davey 1919). Vegetative propagation	several leaf-feeding beetles. However, in Canada and at high
is usually stimulated when St. Johnswort plants are affected by	elevations these insects do not thrive (Rutledge and McLendon
grazing, mowing, or fire (Tisdale et al. 1959).	1996, White et al. 1994).
Current global distribution (0–5) 3	Total for Feasibility of Control 8/10
Common St. Johnswort is native to Europe, and it is naturalized	Total score for 4 sections52/100
in Asia, South Africa, Japan, North and South America, Australia,	\$
and New Zealand (Gubanov et al. 2003, USDA, ARS 2005).	
Extent of the species U.S. range and/or occurrence of 5	
formal state or provincial listing (0–5)	
Common St. Johnswort has been found in nearly all the	
continental United States and Hawaii. It is known from British	
Columbia, Ontario, Manitoba, and Quebec (Crompton et al.	
1988, USDA 2002). <i>Hypericum perforatum</i> is declared a noxious	
weed in California, Colorado, Montana, Nevada, Oregon,	
Washington, Wyoming, Manitoba, and Quebec (Invaders	
Database System 2003, USDA 2002).	

Database System 2003, USDA 2002).Total for Ecological Amplitude and Distribution18/25

Impatiens glandulifera Royle common names: ornamental jewelweed, policemen's helmet, Himalayan balsam, Washington orchid

			Illialayali Daisalii, Washing
Ranking Summ			Biological Characteristics and Disp
Ecoregion known or expected to occu	r in		Mode of Reproduction (0–3)
South Coastal		Yes	Jewelweed reproduces entirely by seeds. Med
Interior Boreal		Yes	growing at a density of 20 per square meter p
Arctic Alpine		No	700 and 800 seeds (Beerling and Perrins 199
	Potential Max.	Score	produce up to 2,500 seeds, (Chittka and Sch
Ecological Impact	40	29	County 2004).
Biological Characteristics and Dispersal	23	22	Long-distance dispersal (0–3)
Amplitude and Distribution	25	22	The seeds can be transported long distance
Feasibility of Control	10	7	small mammals (Beerling and Perrins 1993
Relative Maximum		82	_
Climatic Compa			The rate of spread in the U.K. was estimated
	Collected in	CLIMEX	(Beerling and Perrins 1993).
	Alaska regions?	similarity?	Spread by humans $(0-3)$
South Coastal	Yes	-	Ornamental jewelweed is a garden plant th
Interior Boreal	Yes	-	cultivation. It is frequently sold at nurserie
Arctic Alpine	No	No	and commonly planted in southern Alaska
Ornamental jewelweed has been recorde			Allelopathic (0–2)
2004) and Wrangell (M. Shephard pers.			There is no record of allelopathy.
as an ornamental in Anchorage (I. Lapin	a pers. obs.). Th	e length	Competitive Ability (0–3)
of the growing season may be a limiting	-	0	This species is an aggressive competitor,
distribution, while absolute minimum te			suppressing the growth of neighboring s
not significantly limiting. Beerling (1993	~ ~ ~ ~		Perrins 1993). Impatiens glandulifera tole
required value of 2,195 day-degrees from			it occurs on fine and coarse alluvium, ma
			draining mineral soils, and peat. It can g
in Europe and used this to predict the no			partial shade. It has been found along in
growing season in arctic alpine Alaska is		•	it is tolerant or resistant to aquatic and/o
degrees: 1,112 day-degrees in Nome, 1,5			-
Barrow (WRCC 2001). This suggests th	at Impatiens gla	ndulifera	(Beerling and Perrins 1993, King Coun
cannot extend its distribution into arctic	alpine Alaska.		Thicket-forming/Smothering growth for
Ecological Impact		Score	Impatiens glandulifera creates dense thic
Impact on Ecosystem Processes (0–10)		7	and it is normally taller than surrounding
This plant can alter waterflow and increa			(Beerling and Perrins 1988).
high densities (King County 2004). Add			Germination requirements (0–3)
the growth of co-occurring species it like	ely reduces avai	lable	This plant requires open soil to germina
resources (light, nutrients, moisture) (Pr	rots and Klotz 2	.004)	and Perrins 1993). It will also germinate
Impact on Natural Community Structure		8	Shephard pers. obs.).
Impatiens gladulifera creates a dense cano		g most	Other invasive species in the genus $(0-3)$
layers below. Despite being an annual, its			Impatiens walleriana Hook. f. is conside
a layer the following spring (Beerling an			(USDA 2002). Impatiens parviflora DC
County 2004).		0	invasive in northern Europe (Lid and L
Impact on Natural Community Composi	tion (0_{-10})	7	Aquatic, wetland or riparian species (0–3
This aggressive plant is able to reduce the			Jewelweed is found in wetlands, riparia
eventually replacing them at sites where	-	_	lowlands, wet meadows and forests, an
County 2004, Prots and Klotz 2004). In			planted in gardens and parks (Beerling
			County 2004).
very few species were found co-occurrin	0	17.21	Total for Biological Characteristics a
jewelweed (Beerling and Perrins 1993,).		_	Ecological Amplitude and Di
Impact on Higher Trophic Levels (0–10)	11.	7	Highly domesticated or a weed of agricu
This plant competes with native plants for	-	-	Ornamental jewelweed is known as "o
seed set in native plants. Pollinators inclu	~		hardy plants" for use in flower gardens
bumblebees, honeybees, moths, and was	ps (Beerling an	d Perrins	1993).
1993, Chittka and Schürkens 2001, King	g County 2004)	. It alters	1//J].
habitats for wildlife species. Because of h			
in its stems, it persists as a litter the follow			
competing seedlings of other species (Be		~ ~	
competing securings of other species (D)	coning and reff		
	d mars 1	ing the -	
Nectar of Impatiens glandulifera is rich an			
Nectar of <i>Impatiens glandulifera</i> is rich an that of any known native plant in Centra			
Nectar of Impatiens glandulifera is rich and			

Known level of impact in natural areas (0–6)6Ornamental jewelweed is an aggressive invader of wetlands and streams in Washington State. It has been recorded displacing native plants and altering wildlife habitats (King County 2004, Pojar and MacKinnon 1994). In Great Britain ornamental jewelweed invades river bars, grasslands, and mixed woodland in the early stages of succession. It is considered extremely invasive to moist natural areas and listed in the "top 20" aliens in Great Britain (Beerling and Perrins 1993).Role of anthropogenic and natural disturbance in areas locally disturbed by uprooted trees or fallen branches e.g. (Beerling and Perrins 1993).Current global distribution (0–5) Native to the western Himalayas, ornamental jewelweed is now naturalized in 31 countries. It is widespread in Europe, North America, and Asia between the latitudes of 30° and 64°N (Beerling and Perrins 1993, Prots and Klotz 2004).Extent of the species U.S. range and/or occurrence of 4 formal state or provincial listing (0–5)	Feasibility of ControlScoreSeed banks (0-3)2Seeds were viable for at least 18 months in one field experimentand 3 years in another experiment (Beerling and Perrins 1993,King County 2004, Mumford 1988).Vegetative regeneration (0-3)2Impatiens glandulifera may resprout after mowing (Beerling andPerrins 1993).Level of effort required (0-4)3Small population can be hand pulled or dug up. Sites need to bemonitored following years for new seedlings from the seed bank.Mowing is very effective and reduces the risk of erosion comparedto hand pulling. However, mowed or cut plants may resprout laterin the season. Only specific herbicides can be used in wetlands.No biological control agents have been identified (Beerling andPerrins 1993, King County 2004).Total for Feasibility of Control7/10Total score for 4 sections\$
(Beerling and Perrins 1993, Prots and Klotz 2004).Extent of the species U.S. range and/or occurrence of4	۷
Washington, and British Columbia (Hitchcock and Cronquist	
1973, USDA 2002). Currently, it is rapidly expanding its range	
in North America (Prots and Klotz 2004). It is considered to be	
noxious in Washington (Invaders Database System 2003, USDA	
2002).	
Total for Ecological Amplitude and Distribution22/25	

Ranking Summ	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	10
Biological Characteristics and Dispersal	25	12
Amplitude and Distribution	25	17
Feasibility of Control	10	5
Relative Maximum		44
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	_
Arctic Alpine	No	Yes
Lappula squarrosa has been collected in		
interior boreal ecogeographic regions of		
Welsh 1974, Densmore et al. 2001 AKE		,
The CLIMEX matching program indica		
between Nome and areas where Lappul	a squarrosa is do	ocumented
is moderately high. The range of this spe	ecies includes Z	latoust,
Bogolovsk, and Kirov, Russia (Gubanov		
71%, 67%, and 66% climatic match with		
The native range of European stickseed	· 1	/
Norway (Lid and Lid 1994), which has a		
Nome, as well as occurring as far north		
the basis of these matches establishmen		
		urrosa 111
arctic alpine ecogeographic region may	be possible.	Score
Ecological Impact Impact on Ecosystem Processes (0–10)		3
As an early colonizing species, Europea	n sticksood is in	6
to successional processes on disturbed s		
-		
of European stickseed reduce evaporati		
Senescent plants persist over winter and	l trap snow whic	ch,
increases soil moisture (Frick 1984).		-
Impact on Natural Community Structur		3
European stickseed is capable of formin		
bare ground (Frick 1984); however, den		
stickseed have not been observed in Ala	ska (M. Densm	ore et al.
2001, M. Carlson pers. obs., I. Lapina pe		
Impact on Natural Community Compos		1
European stickseed has not been report	ed from native	
communities in Alaska (UAM 2003). It	presumably co	mpetes for
limited moisture and nutrients with adja	acent plants in d	listurbed
areas (Frick 1984).	_	
Impact on Higher Trophic Levels (0–10)		3
European stickseed is occasionally eater	n by wildlife spe	
The plant hosts fungus species and attra		
The plant hosts fungus species and attra herbivorous insects (Frick 1984).		
The plant hosts fungus species and attra herbivorous insects (Frick 1984). Total for Ecological Impact	ets a range mane	10/40

Lappula squarrosa (Retz.) Dumort. common names: European stickseed, bristly sheepburr

_		
	Biological Characteristics and Dispersal	Score
	Mode of Reproduction $(0-3)$	3
	European stickseed reproduces exclusively by seed. Sum	
	annuals can produce 200 to 500 seeds, while winter annu	
	may produce as many as 40,000 seeds (Frick 1984, Roye	
	Dickinson 1999). It is unlikely that European stickseed of	
	behave as winter annual in Alaska (M. Carlson pers. com	n, J. Conn
	pers. com.).	
	Long-distance dispersal (0–3)	3
	The primary mechanism of long-distance dispersal is by	
٦	attachment of the hooked seeds to animal hair, but seeds	*
	be carried by the wind, either alone or as detached portio	ons of the
·	plant (Frick 1984, Royer and Dickinson 1999).	
	Spread by humans (0–3)	3
	The seeds readily attach to clothing and animal hair (Fridal Allalamethic $(0, 2)$	
	Allelopathic (0–2) Allelopathy has not been documented for this species.	0
	Competitive Ability (0–3)	1
	European stickseed presumably competes for limited mo	-
	and nutrients with adjacent plants (Frick 1984). Europea	
	stickseed is adapted to conditions of deficient moisture a	
	nutrients. It is able to produce seed under poor growing	
	conditions and maximizes seed production under optim	um
	conditions (Frick 1984).	
	Thicket-forming/Smothering growth form $(0-2)$	0
	European stickseed can grow up to 2 feet tall and is not	
	characterized by a climbing or smothering growth habit	(Douglas
	et al. 1998, Frick 1984, Royer and Dickinson 1999).	, U
	Germination requirements (0–3)	0
4	This plant typically germinates and establishes on distur	bed
	areas. Seeds germinate best in light and in the top 1-inch	of soil.
	Presumably mechanical disturbance of soil that brings se	eeds
	to the surface induces germination (Frick 1984, Royer and	nd
	Dickinson 1999).	
	Other invasive species in the genus $(0-3)$	3
	Flatspine stickseed (<i>Lappula occidentalis</i> (S.Wats.) Green	
	a native annual of western North America, is a serious w	eed in
	Western Europe (USDA 2002, Whitson et al. 2000).	0
	Aquatic, wetland or riparian species $(0-3)$	0
	European stickseed can be found on roadsides, in distur	
	and waste areas, and cultivated fields (Frick 1984, Royer	
	Dickinson 1999). It can also inhabit dry to mesic rocky s	
	grasslands, shrublands, and forest openings in lowland, s and montane zones (Douglass et al. 1998).	steppe,
	Total for Biological Characteristics and Dispersal	12/25
	Ecological Amplitude and Distribution	Score
	Highly domesticated or a weed of agriculture (0–4)	4
	European stickseed was reported as a wheat field pest in	Canada
	as early as 1895. It is common in crops of wheat, barley, o	
	flax, and rape (Frick 1984).	•
	Known level of impact in natural areas $(0-6)$	3
	European stickseed is known to invade rocky slopes, gra	
	shrublands, and forest openings in British Columbia (De	ouglass
	et al. 1998).	

Role of anthropogenic and natural disturbance in 0	Feasibility of Control Score
establishment (0–5)	Seed banks (0–3) 2
European stickseed typically establishes in disturbed areas	Although 95% of European stickseed seedlings emerge in the first
and may become abundant in overgrazed pastures (Royer and	year, seedling emergence may continue for 4 years (Chepil 1946).
Dickinson 1999). In Denali National Park it was found only on	Vegetative regeneration (0–3) 1
sites disturbed within the last 3 years or sites regularly disturbed	Mowing or grazing frequently results in forming numerous
(Densmore et al. 2001).	axillary inflorescences produced below the injury, which can
Current global distribution (0–5) 5	increase seed production (Frick 1984).
European stickseed is native to the eastern Mediterranean region.	Level of effort required $(0-4)$ 2
Its modern-day distribution extends from Europe (including	European stickseed is easily pulled up by hand, although several
the North Pacific islands of Spitsbergen and Iceland) to North	weedings may be necessary to eliminate population (Densmore et
America, Asia and Japan between approximately 30° and 70°N	al. 2001). In cultivated crops it may be controlled by a wide range
latitude. European stickseed occurs in comparable southern	of commonly used herbicides. Mowing or grazing is usually not
hemisphere regions in South Africa and Australia (Frick 1984). It	effective (Frick 1984).
is known from arctic Norway (Lid and Lid 1994).	Total for Feasibility of Control 5/10
Extent of the species U.S. range and/or occurrence of 5	Total score for 4 sections 44/100
formal state or provincial listing (0–5)	\$
European stickseed has been reported from every Canadian	
province and nearly all American states (Royer and Dickinson	
1999, USDA 2002). It is declared a federal noxious weed in	
Canada. This species is a restricted noxious weed in Alaska	
(Alaska Administrative Code 1987, Royer and Dickinson 1999).	
Total for Ecological Amplitude and Distribution17/25	

common names: common pepperweed

Lepidium densiflorum common no var. densiflorum Schrad. L. densiflorum var. elongatum (Rydb.) Thellung.

tall pepperweed

Ranking Summary Ecoregion known or expected to occur in			
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
Potential	Max.	Score	
Ecological Impact	30	1	
Biological Characteristics and Dispersal	23	9	
Amplitude and Distribution	25	8	
Feasibility of Control	10	4	
Relative Maximum		25	
Climatic Comparison		CT T CT T	
Collecter		CLIMEX	
	<i>ions:</i> No	<i>similarity?</i> Yes	
	Yes	168	
	No	Yes	
Lepidium densiflorum has been documented in the			
boreal ecogeographic region in Alaska (Hultén 19			
2005, UAM 2004). The CLIMEX matching progr			
the climatic similarity between arctic alpine and so			
ecogeographic regions of Alaska and areas where o			
pepperweed has been introduced is moderately his	-	_	
range includes Dombås, Norway and Sarna and Ö			
Sweden (Natur Historiska Riksmuseet Database 2	,		
have a 63%, 61% and 57% climatic match with Nor			
The introduced range of this species also includes	-		
Kristiansand, and Stavanger, Norway, which have			
52% climatic match with Juneau, respectively. Thu			
of common pepperweed in arctic alpine and south	coas	tal	
ecogeographic regions is likely.		-	
Ecological Impact		Score	
Impact on Ecosystem Processes (0–10)		0	
Common pepperweed does not occur in natural a			
(UAM 2005, AKEPIC 2006). This species has litt			
on natural ecosystem processes (Densmore et al. 2	2001)	. 1	
Impact on Natural Community Structure (0–10) Common pepperweed establishes in an existing la	war a	-	
increases total percent cover in open, disturbed sit			
	.es (1.	Lapilla	
pers. obs.). Impact on Natural Community Composition (0–10	n)	0	
	ndist		
Common pepperweed has not been observed in u		urbed	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005	, AK	urbed EPIC	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat	, AK	urbed EPIC	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented.	, AK	urbed EPIC have been	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10)	, AK	urbed EPIC have been U	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu	, AK	urbed EPIC have been U ed.	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact	, AK ions ment	urbed EPIC have been U	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu	, AK ions ment	urbed EPIC have been U ed. <u>1/30</u>	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact Biological Characteristics and Dispersa	, AK tions ment	urbed EPIC have been U ed. <u>1/30</u> Score 3	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact Biological Characteristics and Dispersa Mode of Reproduction (0–3)	5, AK tions ment l Each	urbed EPIC have been U ed. <u>1/30</u> Score 3 plant is	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact Biological Characteristics and Dispersa Mode of Reproduction (0–3) Common pepperweed reproduces by seeds only. H	5, AK tions ment l Each	urbed EPIC have been U ed. <u>1/30</u> Score 3 plant is	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact Biological Characteristics and Dispersa Mode of Reproduction (0–3) Common pepperweed reproduces by seeds only. F capable of producing up to 5,000 seeds (Royer and	5, AK tions ment l Each	urbed EPIC have been U ed. <u>1/30</u> Score 3 plant is	
Common pepperweed has not been observed in u areas in Alaska (Densmore et al. 2001, UAM 2005 2006) and no perceived impacts on native populat documented. Impact on Higher Trophic Levels (0–10) Impact on higher trophic levels has not been docu Total for Ecological Impact Biological Characteristics and Dispersa Mode of Reproduction (0–3) Common pepperweed reproduces by seeds only. If capable of producing up to 5,000 seeds (Royer and 1999).	5, AK cions ment l Each	urbed EPIC have been U ed. <u>1/30</u> Score 3 plant is kinson	

Spread by humans (0–3) Common pepperweed is a weed of cultivated crops and can be	2
	2
spread as a commercial seed contaminant (USDA, ARS 2006)	
Allelopathic (0–2)	U
No data on allelopathic potential of common peppergrass wer	e
found during this review.	
Competitive Ability (0–3)	0
Although common pepperweed is a frequent crop weed, it	
competes poorly with vigorous plants (Chepil 1946, Densmor	e et
al. 2001).	
Thicket-forming/Smothering growth form $(0-2)$	0
Common pepperweed is a branched plant up to 1.5 feet tall, and	
does not posses a climbing or smothering growth habit (Doug	las
et al. 1998, Royer and Dickinson 1999).	
Germination requirements (0–3)	0
Common pepperweed requires disturbance and open soil for	
germination (Densmore et al. 2001).	
Other invasive species in the genus $(0-3)$	3
<i>Lepidium campestre</i> (L.) Ait. f. is noxious weed in several	
American states. Lepidium latifolium L. and L. perfoliatum L. a	re
listed as invasive plants (USDA, NRCS 2006).	
Aquatic, wetland or riparian species $(0-3)$	0
Common pepperweed is a plant of disturbed soils: roadsides,	
waste areas, farm yards, and cultivated fields (Welsh 1974, Roy	yer
and Dickinson 1999).	
Total for Biological Characteristics and Dispersal 9/2	
Ecological Amplitude and Distribution Sco	
Highly domesticated or a weed of agriculture $(0-4)$	
	3
Common pepperweed is a serious weed of cultivated fields and	-
can substantially reduce crop yields (Chepil 1946).	d
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6)	-
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural	d
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has	d 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe	d 0 r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al.	d 0 r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001).	d O r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in	d 0 r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5)	d O r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated	d O r
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001).	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5)	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968).	d 0 r 0 0 ada,
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of	d 0 r 0
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5)	d 0 r 0 0 ada,
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common pepperweed is widely distributed in nearly all	d 0 r 0 ada, 5
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common pepperweed is widely distributed in nearly all American states and Canadian provinces (Hulten 1968, USD.	d 0 r 0 0 ada, 5 A,
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common pepperweed is widely distributed in nearly all American states and Canadian provinces (Hulten 1968, USD. NRCS 2006). Lepidium densiflorum is not listed as a prohibited	d 0 r 0 0 ada, 5 A,
can substantially reduce crop yields (Chepil 1946). Known level of impact in natural areas (0–6) Common pepperweed has not been documented in natural habitats in Alaska, and its impact on natural communities has not been documented. It is not listed as an invader in any othe natural areas (Rutledge and McLendon 1996, Densmore et al. 2001). Role of anthropogenic and natural disturbance in establishment (0–5) Common pepperweed occurrence is especially associated with human disturbances. Plants may appear on sites of previous human use, particularly when the soil is disturbed by construction or trampling (Densmore et al. 2001). Current global distribution (0–5) Today the distribution of common pepperweed includes Cana United States, and countries of North and Middle Europe (Hultén 1968). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) Common pepperweed is widely distributed in nearly all American states and Canadian provinces (Hulten 1968, USD.	d 0 r 0 ada, 5 A,, d

Feasibility of Control Score	Level of effort required $(0-4)$	1
Seed banks (0–3) 3	Common pepperweed can be easily control	ol by hand pulling or
The majority of seeds germinate in the first 4 years, but some	herbicide applications. Due to the large, los	ng lived seed bank,
viable seeds remain in the soil for more than 6 years (Chepil	several treatments may be necessary (Den	smore et al. 2001).
1948).	Total for Feasibility of Control	4/10
Vegetative regeneration (0–3) 0	Total score for 4 sections	22/88
Common pepperweed has no ability to resprout (Densmore et al.	0	
2001).	Ϋ́	

Lepidium latifolium L. common names: perennial pepperweed, tall whitetop

Ranking Summar			Impact on Natural Community Composition (0–10)	7	
Ecoregion known or expected to occur in			Perennial pepperweed can displace native plant and animal		
South Coastal		No	op ceres in particularly interior of interior Seneration of inparticular		
Interior Boreal		Yes	plant species such as willows and cottonwoods (Young et	al.	
Arctic Alpine Yes 1995). Stands of perennial p			1995). Stands of perennial pepperweed increase soil salini	ity;	
	ential Max.	Score	this favors halophytes and reduces other species, thereby		
Ecological Impact	40	28	shifting plant composition and diversity (Renz 2000). Per	ennial	
Biological Characteristics and Dispersal	22	17	pepperweed creates a litter layer that prevents the emerger		
Amplitude and Distribution Feasibility of Control	25 7	16 6	establishment of annual native plants (Renz 2000).		
Relative Maximum	/	71	Impact on Higher Trophic Levels (0–10)	7	
Climatic Comparise	212	/1	Perennial pepperweed degrades nesting and foraging sites	s for	
	ollected in	CLIMEX	waterfowl by outcompeting grasses. It also prevents willow		
	ska regions?		cottonwood regeneration, altering riparian species' habita		
South Coastal	No	No	(Howald 2000).	0	
Interior Boreal	No	Yes	Total for Ecological Impact	28/40	
Arctic Alpine	No	Yes		Score	
Lepidium latifolium has not been document			Mode of Reproduction $(0-3)$	3	
1968, Welsh 1974, AKEPIC 2004, UAM 20			Perennial pepperweed reproduces by seed or vegetatively	-	
of <i>Lepidium latifolium</i> includes southwester			an intact root system or from pieces of the underground stems.		
Siberia (Gubanov et al 2003). The CLIMEX			The plant is capable of producing thousands of seeds annually		
shows that climatic similarity between Alas			(Howald 2000, Renz 2000).	ully	
the species is documented is high. Kazan, P			Long-distance dispersal (0–3)	2	
Russia have 72%, 68%, and 67% similarity v			The seeds have no adaptations for long-distance dispersal;		
59%, 53%, and 53% with Fairbanks, respect		0	however, they are capable of being transported by wind, water,		
			and possibly by waterfowl (Howald 2000). Root fragments can		
56%, and 57% climatic similarity with Kaza			be transported in streams and establish new populations (Renz		
respectively. Climatic similarity between Ju			2000).	,ICCII2	
the species is documented is low. This sugge			Spread by humans (0–3)	2	
of perennial pepperweed may be possible in		r boreal	It was likely introduced to North America as a contaminant of		
and arctic alpine ecogeographic region of A	laska.	0	sugar beet seed. Recent infestations in California are due		
Ecological Impact		Score	or plant fragments contaminating rice straw bales (Howal		
Impact on Ecosystem Processes (0–10)		7	Allelopathic (0–2)	0	
Perennial pepperweed may retard natural s			Allelopathic potential has not been recorded.	U	
previously disturbed areas. The roots of this	-	~	Competitive Ability $(0-3)$	3	
easily, allowing soil erosion to occur more f			Infestations of perennial pepperweed are extremely comp	etitive	
areas (Renz 2000). This plant also takes sal		~	and very few plant species can establish within these stand		
soil profile, and transports them near the so			(Renz 2000). Extensive creeping root system enhances th		
increasing soil salinity (Blank and Young 20	002, Blank a	and Young	competitiveness of perennial pepperweed for water and m		
2004).			Allocation of carbohydrate reserves to below ground orga		
Impact on Natural Community Structure (0		7			
Perennial pepperweed creates a large mono		er and	important for rapid shoot development in the spring (Renz 2000). Thicket-forming/Smothering growth form (0–2) 1		
displaces native plants (Corliss 1993, Renz	2000).		Perennial pepperweed creates large monospecific stands t	hat can	
			grow to over 3 feet in height (Corliss 1993, Douglas et al. 1		
				L//U1	

Germination requirements (0–3) U The seeds rapidly germinate in laboratory conditions, but few seedlings are observed in the field. Reasons for this are unknown.	Extent of the species U.S. range and/or occurrence of 5 formal state or provincial listing (0–5) Perennial pepperweed is found in all western states. It is reported
Population is mostly maintained by vegetative growth from root	from three Canadian provinces. <i>Lepidium latifolium</i> is declared
segments (Renz 2000).	a noxious weed in 13 American states, including Alaska (Alaska
Other invasive species in the genus $(0-3)$ 3	Administrative Code 1987, Invaders Database System 2003,
Lepidium campestre (L.) Ait.f., L. densiflorum Schrad.,	USDA 2002).
L. perfoliatum L., and L. ruderale L. (Royer and Dickinson 1999,	Total for Ecological Amplitude and Distribution 16/25
USDA 2002).	Feasibility of Control Score
Aquatic, wetland or riparian species (0–3) 3	Seed banks (0–3) U
This species can invade a wide range of habitats including riparian	Seeds lack a hard coat and do not seem to be capable of surviving
areas, wetlands, marshes, estuaries, irrigation channels, and flood	long periods in the soil, thus seed viability is likely to be short
plains, as well as meadows, crop fields, roadsides, and rangelands	(Renz 2000), but seed longevity remains unknown.
(Renz 2000).	Vegetative regeneration $(0-3)$ 2
Total for Biological Characteristics and Dispersal 17/22	Perennial roots can remain dormant in the soil for several years.
Ecological Amplitude and Distribution Score	New plants readily grow from pieces of rootstock less than 1-inch
Highly domesticated or a weed of agriculture (0–4) 2	long (Wotring et al. 1997 cited in Howald 2000).
Perennial pepperweed is primarily a weed of rangeland, pastures,	Level of effort required (0–4) 4
and hay meadows. It can occasionally invade croplands (Whitson	Once established, perennial pepperweed can be very difficult to
et al. 2000).	remove. Mechanical methods are unlikely to control perennial
Known level of impact in natural areas (0–6) 1	pepperweed because new plants quickly regenerate from pieces
Perennial pepperweed invades brackish to saline wetlands and	of rootstock. Chemical methods have been used successfully;
native hay meadows throughout California. It is well established	however, most effective herbicides cannot be applied near or
in marshes of the San Francisco Bay (Howald 2000).	over water. No biological control agents have been introduced
Role of anthropogenic and natural disturbance in 5	to control perennial pepperweed due to several important
establishment (0-5)	cultivated crops within this family (canola, mustard, cabbage,
Perennial pepperweed can established on disturbed areas and	and kale), and several threatened and endangered native species
may disperse into minimally managed or undisturbed habitats.	of <i>Lepidium</i> in the United States. Old stems and litter take several
This plant is known to establish in areas with no natural or	years to degrade, and it may be necessary to remove the litter,
anthropogenic disturbances (Howald 2000).	
Current global distribution (0–5) 3	which prevents germination and establishment of desirable plant
Perennial pepperweed is native to Southeastern Europe and	species. If soil salinities are dramatically increased, an intensive
Southwestern Asia. It is naturalized throughout Europe, North	soil remediation program may be necessary before native species
America, and Australia (Renz 2000).	can reestablish. Areas must be monitored since it can recover from
	dormant root fragments (Howald 2000, Renz 2000).
	Total for Feasibility of Control6/7Total score for 4 sections67/93
	Total score for 4 sections67/93

S

Leucanthemum vulgare Lam.

Ranking Summ	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	20
Biological Characteristics and Dispersal	25	15
Amplitude and Distribution	25	18
Feasibility of Control	10	8
Relative Maximum		61
Climatic Compa	Collected in	CLIMEX
	Alaska regions?	
South Coastal	Yes	
Interior Boreal	Yes	_
Arctic Alpine	No	Yes
Oxeye daisy has been collected in the so	outh coastal regi	on in
Juneau, Seward, Ketchikan and in the in	-	
Anchorage and Fairbanks (Hultén 1968		0
et al. 2001, Furbish et al. 2001, UAM 20		
matching program, climatic similarity b		
where the species is documented is high		
includes Kirov, Russia and Fort McMur		-
1968), which has a 66% and 63% climati	· · ·	
respectively.		onne,
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		5
Oxeye daisy increases the potential for s	oil erosion in he	eavily
infested areas (Densmore et al. 2001, No		
Board 2005).		
Impact on Natural Community Structure	e (0–10)	3
Oxeye daisy can form dense population	s (Noxious Wee	ed Control
Board 2005) and form a tall-forb layer al		
forb layer in Alaska (M. Carlson pers. ob	os.)	
Impact on Natural Community Composi	ition (0–10)	5
Oxeye daisy can decrease native plant sp	pecies diversity.	It is able
to replace up to 50% of the grass species	in pastures (Ro	yer and
Dickinson 1999, Warner et al. 2003).		
Impact on Higher Trophic Levels $(0-10)$		7
The entire plant has a disagreeable odor		mals
		mals
The entire plant has a disagreeable odor	olyacetylenes an	mals d
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po	olyacetylenes an ic to insect herb	mals d ivores.
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox	olyacetylenes an ic to insect herb tunt, aster yello	mals d ivores. ws, and
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a	mals d ivores. ws, and
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a	mals d ivores. ws, and
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962).	mals d ivores. ws, and nd several
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal	mals d ivores. ws, and nd several 20/40 Score 3
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S	mals d ivores. ws, and nd several <u>20/40</u> Score 3 ctevens
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S	mals d ivores. ws, and nd several <u>20/40</u> Score 3 ctevens
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains po thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head	mals d ivores. ws, and nd several <u>20/40</u> <u>Score</u> <u>3</u> ctevens s was 510.
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains por thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel (1932) found the number of seeds per pl	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head Welliams 1968)	mals d ivores. ws, and nd several 20/40 Score 3 Stevens s was 510. reported
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains por thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel (1932) found the number of seeds per pl Dorph-Peterson (cited in Howarth and	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head Welliams 1968)	mals d ivores. ws, and nd several 20/40 Score 3 Stevens s was 510. reported
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains por thiophenes that are generally highly tox Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel (1932) found the number of seeds per pl Dorph-Peterson (cited in Howarth and seed production of 1,300–4,000 fruits p	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head Welliams 1968)	mals d ivores. ws, and nd several 20/40 Score 3 Stevens s was 510. reported
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains por thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel (1932) found the number of seeds per pl Dorph-Peterson (cited in Howarth and seed production of 1,300–4,000 fruits p fruits for a vigorous plant.	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head Welliams 1968) per plant, and up	mals d ivores. ws, and nd several 20/40 Score 3 Getevens s was 510. reported to 26,000 2
The entire plant has a disagreeable odor avoid it. Moreover, the plant contains por thiophenes that are generally highly tox. Oxeye daisy can host chrysanthemum s tomato aspermy viruses (Royer and Dic nematode species (Townshend and Dav Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Oxeye daisy can spread both vegetativel (1932) found the number of seeds per pl Dorph-Peterson (cited in Howarth and seed production of 1,300–4,000 fruits p fruits for a vigorous plant. Long-distance dispersal (0–3)	olyacetylenes an ic to insect herb tunt, aster yello kinson 1999), a idson 1962). Dispersal ly and by seed. S ant with 3 head Welliams 1968) per plant, and up	mals d ivores. ws, and nd several 20/40 Score 3 Stevens s was 510. reported to 26,000 2 ut they are

common names: oxeye daisy

	common names. Oxeye daisy
	Spread by humans (0–3) 3
	The seeds can be dispersed with timber, contaminated forage
	grass, and legume seed. Plants also continue to appear for sale
	in nurseries (Noxious Weed Control Board 2005, Warner et al.
	2003).
	Allelopathic (0–2) 0
	Oxeye daisy is not allelopathic (USDA, NRCS 2002).
	Competitive Ability (0–3) 3
	Oxeye daisy is highly competitive for limiting factors (Rutledge
_	and McLendon 1996).
	Thicket-forming/Smothering growth form $(0-2)$ 2
	Oxeye daisy forms dense colonies up to 2 feet tall (Hultén 1968,
?	Royer and Dickinson 1999, Whitson et al. 2000).
	Germination requirements $(0-3)$ 2
	Studies indicate that 90 to 95% of germination occurs at 68 °F.
	Seedling germination is greater under increased moisture and
	is inhibited by continuous darkness. Dense ground cover can
	prevent establishment. Chilling and drought appear to have no
	effect on germination rates (Howarth and Welliams 1968).
	Other invasive species in the genus (0–3) 0 A number of <i>Leucanthemum</i> species has been introduced into
	United States. None of them are listed as a weed (USDA, NRCS
	2002).
	Aquatic, wetland or riparian species $(0-3)$ 0
	Oxeye daisy is common in pastures, waste areas, meadows, and
	roadsides (Hultén 1968, Welsh 1974).
	Total for Biological Characteristics and Dispersal 15/25
	Ecological Amplitude and Distribution Score
	Highly domesticated or a weed of agriculture $(0-4)$ 4
	Oxeye daisy was introduced to North America as an ornamental
	and it is currently used and often sold commercially. Oxeye daisy
	is also a serious weed of 13 crops in 40 countries (Warner et al.
	2003, Noxious Weed Control 2005). The flowers are showy,
	making the plant a popular ornamental species.
	Known level of impact in natural areas $(0-6)$ 4
	Oxeye daisy readily spreads into a variety of plant communities in
	California, including prairie, scrub, wet meadows, riparian forests,
	and open-canopy forests (Warner et al. 2003). It also is having
	minor impacts on ecological processes in natural communities
	in Rocky Mountain National Park, Colorado (Rutledge and
	McLendon 1996).
	Role of anthropogenic and natural disturbance in 0
	establishment (0–5)
	Oxeye daisy is a weed of disturbed areas. It requires disturbance for establishment and persistence (Densmore et al. 2001).
	Current global distribution (0–5) 5
	Oxeye daisy is native to Europe (Mediterranean to Scandinavia),
	and Siberia. Populations have established in eastern Asia, Iceland,
	Greenland, North and South America, Hawaii, Australia, and
	New Zealand (Hultén 1968).
	Extent of the species U.S. range and/or occurrence of 5
	formal state or provincial listing $(0-5)$
'	Oxeye daisy is noxious in Colorado, Indiana, Kentucky,
	Minnesota (Secondary Noxious Weed), Montana (Cat. 1), Ohio
2	(Cat.1), Washington (Class B), and Wyoming. In the U.S. it is
-	found in every state. It is a noxious weed in Canada (Alberta,
	British Colombia, Manitoba, and Quebec) (Invaders Database
	System 2003, Royer and Dickinson 1999, USDA, NRCS 2002).
	Total for Ecological Amplitude and Distribution18/25

Feasibility of Control	Score	Level of effort required (0–4)	3
Seed banks (0–3)	3	If infestations are small one or two chemical or mechanical	
The seeds of oxeye daisy may survive extended periods in the	he soil.	treatments are required. Eradication of a large, well established	ed
Bossard et al. (2000) suggest that most oxeye daisy seeds re	emain	populations can be difficult because of the abundant seed	
viable for 20 years in the soil. Toole (1946) determine the v	iability	production and ability of rhizomes to resprout (Densmore et	al.
of oxeye daisy seeds as 39 years. Chippindale and Milton (1	934)	2001, Warner et al. 2003).	
found 8-, 22-, 24-, 50-, and 68-years old seeds in the soil ber	neath	Total for Feasibility of Control 8	/10
pastures.		Total score for 4 sections61/	/100
Vegetative regeneration (0–3)	2	Ø	
According to the PLANTS Database (USDA, NRCS 2002)), oxeye	J.	
daisy has no resprout ability. However, Densmore et al. (20	01)		
report that it sprouts from roots and stumps.			

Linaria dalmatica L.

Ranking Sumn	nary	
Ecoregion known or expected to occu	ır in	
South Coastal		No
Interior Boreal		Yes
Arctic Alpine	D ((1))	No
Easlagical Immedi	Potential Max. 40	Score 16
Ecological Impact Biological Characteristics and Dispersal	25	10
Amplitude and Distribution	25	14
Feasibility of Control	10	9
Relative Maximum		58
Climatic Compa	rison	
•	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	No	No
Interior Boreal	No	Yes
Arctic Alpine	N0	No
Linaria dalmatica has not been docume		
1968, AKEPIC 2004, UAM 2004). It w	,	
southeastern Yukon Territory, Canada		,
The native range of Linaria dalmatica en		
Moldavia, and Romania, southward and	d eastward arou	nd the
Black Sea in the countries of Bulgaria, A	Albania, Greece,	Crete,
Turkey, Syria, Iran, and Iraq (Alex 1962). The CLIMEX	K matching
program shows that climatic similarity	between Ancho	rage and
areas where the species is documented i	is high. Anchora	ge has
a 56% and 52% overlap of climate simila	arity with Erzur	um and
Sivas, Turkey, and 74% and 73% with Ba		
Canada, respectively. The introduced ra		
includes Saskatoon and Regina, Saskato	e *	
Wein 1977), which have a 65% and 63%	. ,	
Fairbanks, respectively. Climatic simila		
and Juneau and areas where the species		
This suggests that establishment of Dal		
possible in the interior boreal ecogeogra		
	apine region or r	Score
Heological Impact		
Ecological Impact Impact on Ecosystem Processes (0–10)		
Impact on Ecosystem Processes $(0-10)$	soil moisture an	3
Impact on Ecosystem Processes (0–10) Dalmatian toadflax stands may reduce s		3 d nutrient
Impact on Ecosystem Processes $(0-10)$	oadflax lead to t	3 d nutrient he

common names: Dalmatian toadflax

Impact on Natural Community Structure (0–10) 5
The plant is capable of forming dense colonies by creeping
rhizomes (Carpenter and Murray 1998). On disturbed sites it can
form a new vegetation layer.
Impact on Natural Community Composition (0–10)3
Dense colonies of Dalmatian toadflax can push out native grasses
and other perennials, thereby altering the species composition in
native communities (Carpenter and Murray 1998).
Impact on Higher Trophic Levels (0–10)5
Dalmatian toadflax is considered unpalatable for grazing
animals. Severe infestations likely reduces forage quality.
Flowers are attractive to bumblebee and halictid bees and may
alter pollination ecology of sites where it occurs (Carpenter and
Murray 1998). It hybridizes with other members of the genus
(Vujnovic and Wein 1977).
Total for Ecological Impact16/40
Biological Characteristics and Dispersal Score
Mode of Reproduction (0–3) 3
Dalmatian toadflax reproduces by seed and by vegetative buds on
the roots. New infestations usually originate from seed. Robocker
(1970) found that the plant produces from 140 to 250 seeds
per capsule and one Dalmatian toadflax plant could potentially
produce 500,000 seeds. New plants can be produced when
vegetative buds sprout from lateral roots that are found in the
upper 2-12 inches of soil (Alex 1962).
Long-distance dispersal (0–3) 2
Most of the seeds fall within short distances of the parent plant.
When seeds fall onto crusted snow, they can be blown across the
surface (Zouhar 2003). Dalmatian toadflax may also be dispersed
by cattle, deer, and other browsing animals (Robocker 1970,
Vujnovic and Wein 1997).
Spread by humans (0–3) 2
Dalmatian toadflax was probably introduced to North America as
an ornamental, and it is still used as a garden plant in many areas
(Alex 1962, Vujnovic and Wein 1997).
Allelopathic (0–2) 0
No records were found concerning allelopathy.

Dalmatian toadflax seedlings are easily outcompeted by established perennial species; however, once it is established toadflax suppresses other vegetation by competition for limited soil moisture (Carpenter and Murray 1998, Robocker 1970). The taproots of mature Dalmatian toadflax may reach depths of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket forming/Smothering growth form (0–2) 1 Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002). Other invasive species in the genus (0–3) Other invas
 established perennial species; however, once it is established toadflax suppresses other vegetation by competition for limited soil moisture (Carpenter and Murray 1998, Robocker 1970). The taproots of mature Dalmatian toadflax may reach depths of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket-forming/Smothering growth form (0–2) 1 Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination requirements (0–3) 0 Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002). Other invasive species in the genus (0–3) 3 Other invasive species in the genus (0–3) 4 Datatian to deflax invasion and it may be necessary for establishment requires open ground with reduced to group and Asia, and it has been introduced to Japan, Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995). Extent of the species U.S. range and/or occurrence of 5 formal state or provincial listing (0–5) 5 This species occurs throughout the continental U.S. and in almost every Canadian province (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995, USDA 2002). <i>Linaria dalmatica</i> is declared
toadflax suppresses other vegetation by competition for limited soil moisture (Carpenter and Murray 1998, Robocker 1970). The taproots of mature Dalmatian toadflax may reach depths of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket-forming/Smothering growth form (0–2) 1 Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002). Other invasive species in the genus (0–3) Other invasive species in the genus (0–3) Oth
soil moisture (Carpenter and Murray 1998, Robocker 1970). The taproots of mature Dalmatian toadflax may reach depths of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket-forming/Smothering growth form (0–2) 1 Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002). Other invasive species in the genus (0–3) Other invasive species in the genus (0–3) Other invasive species in the genus (0–3) Other invasive species in the genus (0–3) Current global distribution (0–5) Saner et al. 1995, USDA 2002). <i>Linaria dalmatica</i> is declared
The taproots of mature Dalmatian toadflax may reach depths of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995).disturbances. However, once it is established, toadflax readily spreads into adjacent nondisturbed areas (Beck 2001, Zouhar 2003).Thicket-forming/Smothering growth form (0–2)1Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998).3Germination requirements (0–3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).0Other invasive species in the genus (0–3)3Uncenter of the species occurs throughout the continental U.S. and in almost every Canadian province (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995, USDA 2002). <i>Linaria dalmatica</i> is declared
of 4–10 feet, and lateral roots can extend 12 feet from the plant (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket-forming/Smothering growth form (0–2) Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination requirements (0–3) Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).spreads into adjacent nondisturbed areas (Beck 2001, Zouhar 2003). Current global distribution (0–5) Dalmatian toadflax is native of Southeastern Europe and Southwestern Asia. The present world distribution includes most of Europe and Asia, and it has been introduced to Japan, Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) This species occurs throughout the continental U.S. and in almost every Canadian province (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995, USDA 2002). Linaria dalmatica is declared
 (Zouhar 2003). This extensive root system improves water resource efficiency and provides an effective anchor, preventing destruction by grazing animals or cultivation (Saner et al. 1995). Thicket-forming/Smothering growth form (0–2) Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998). Germination requirements (0–3) Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002). Other invasive species in the genus (0–3) Other invasive species in the genus
destruction by grazing animals or cultivation (Saner et al. 1995).Dalmatian toadflax is native of Southeastern Europe and Southwestern Asia. The present world distribution includes most of Europe and Asia, and it has been introduced to Japan, Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Germination requirements (0-3)0 Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).0 Saner et al. 1995, USDA 2002). <i>Linaria dalmatica</i> is declaredOther invasive species in the genus (0-3)3 Linaria dalmatica is declared3
Thicket-forming/Smothering growth form (0-2)1Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998).Southwestern Asia. The present world distribution includes most of Europe and Asia, and it has been introduced to Japan, Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Germination requirements (0-3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).0Other invasive species in the genus (0-3)3Unit in the genus (0-3)4Unit in the genus (0-3)4Unit in the genus (0-3)5Unit in the genus (0-3)5<
Thicket-forming/Smothering growth form (0–2)1Dalmatian toadflax is capable of forming dense colonies through adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998).Southwestern Asia. The present world distribution includes most of Europe and Asia, and it has been introduced to Japan, Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Germination requirements (0–3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).1Other invasive species in the genus (0–3)3Limit and the genus (0–3)3
adventitious buds from creeping root systems; however, it does not have a climbing or smothering growth habit (Carpenter and Murray 1998).Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Germination requirements (0–3)0 Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).Australia, New Zealand, South Africa, and South and North America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Other invasive species in the genus (0–3)3I invasi
not have a climbing or smothering growth habit (Carpenter and Murray 1998).America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Germination requirements (0-3)0 Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).America (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995).Other invasive species in the genus (0-3)3Unit of the species in the genus (0-3)
Murray 1998).1995).Germination requirements (0-3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).1995).Defense in the genus (0-3)0Other invasive species in the genus (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3
Murray 1998).1995).Germination requirements (0-3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).1995).Defense in the genus (0-3)0Other invasive species in the genus (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3Image: Invasive species (0-3)3
Germination requirements (0-3)0Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0-5)Other invasive species in the genus (0-3)3Unit of the species in the genus (0-3)3
Germination and seedling establishment requires open ground with reduced competition from native vegetation (Grieshop and Nowierski 2002).formal state or provincial listing (0–5) This species occurs throughout the continental U.S. and in almost every Canadian province (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995, USDA 2002). Linaria dalmatica is declared
with reduced competition from native vegetation (Grieshop and Nowierski 2002).This species occurs throughout the continental U.S. and in almost every Canadian province (Alex 1962, Royer and Dickinson 1999, Saner et al. 1995, USDA 2002). Linaria dalmatica is declared
Nowierski 2002). every Canadian province (Alex 1962, Royer and Dickinson 1999, Other invasive species in the genus (0–3) 3 Image: Second se
Other invasive species in the genus (0–3) 3 Saner et al. 1995, USDA 2002). <i>Linaria dalmatica</i> is declared
$T = 1 + D = M^{-1} = 1$ $T = M^{-1} = M^{-1} = M^{-1} = 1$
<i>Linaria vulgaris</i> P. Mill. and <i>L. genistifolia</i> (L.) P. Mill. (Royer and a noxious weed in nine American states and three Canadian
Dickinson 1999, USDA 2002, Whitson et al. 2000). provinces (Invader Database System 2003).
Aquatic, wetland or riparian species (0–3) 1 Total for Ecological Amplitude and Distribution 19/25
Dalmatian toadflax is most commonly found on roadsides, waste Feasibility of Control Score
areas, clearcuts, overgrazed pastures, and rangelands, and in plant Seed banks (0–3)
communities that are open or disturbed (Beck 2001). It also has Seeds stored at room temperature remain viable for 13 years,
been reported from gravel bars and riparian pastures in Colorado under field conditions in Washington seed longevity was 10 years
and Utah (Carpenter and Murray 1998, Zouhar 2003). (Robocker 1970).
Total for Biological Characteristics and Dispersal 14/25 Vegetative regeneration (0–3) 2
Ecological Amplitude and Distribution Score This species is capable of resprouting from the vegetative buds in
Highly domesticated or a weed of agriculture (0–4) 4 lateral roots that are found in the upper 2–12 inches of soil (Alex
Cultivation of the Dalmatian toadflax in England occurred as 1962). Vegetative spread is possible from root fragments as short
early as the 19th century. The species is still sold in Europe and as 0.5 inches (Zouhar 2003).
Asia (Alex 1962). Level of effort required (0–4) 4
Known level of impact in natural areas (0-6)4Successful control can be obtained by pulling or herbicide
Dalmatian toadflax invades shrub-steppe communities in applications. Five insect species have been approved by the USDA
Washington and likely displaces native grass and forbs. It is found for release as biological control agents. Since the seeds can remain
in ponderosa pine communities in Washington and Idaho. In dormant for up to 10 years and the plant also spreads through
Oregon, Dalmatian toadflax is found in grasslands and on gravel vegetative propagation, control measures must be repeated every
bars in riparian communities. In Colorado, this species invades year for at least 10 years to completely remove a stand (Beck 2001,
gravel bars, riparian pastures, and open meadows, and spreads Carpenter and Murray 1998).
along rivers. It may compete with cottonwood seedlings for Total for Feasibility of Control 9/10
establishment sites on gravel bars. It may also invade mountain Total score for 4 sections 58/100
shrubland and shortgrass prairie communities adjacent to
riparian corridors (Rutledge and McLendon 1996). In Utah,
Dalmatian toadflax is found in oak, quaking aspen, sagebrush,
mountain brush, and riparian communities (Carpenter and
Murray 1998, Saner et al. 1995, Zouhar 2003).

Linaria vulgaris P. Miller. common names: yellow toadflax, butter and eggs, wild snapdragon

			wind Shup drugon
Ranking Summ			Biological Characteristics and Dispersal Score
Ecoregion known or expected to occu	r in		Mode of Reproduction $(0-3)$ 3
South Coastal		Yes	Yellow toadflax reproduces by seeds and vegetatively. Seed count
Interior Boreal		Yes	per individual is difficult as the definition of individual is unclear
Arctic Alpine		Yes	due to its clonal propagation. Darwent et al. (1975) in Alberta
	Potential Max.	Score	recorded up to 824 seeds per stem. Stevens (1932) reported 2,280
Ecological Impact	40	22	seeds per plant with nine stems. Nadeau and King (1991) found
Biological Characteristics and Dispersal	25	17	seed production of 210,000 seed per m ² . Common toadflax also
Amplitude and Distribution	25	21	has the ability to reproduce vegetatively from adventitious buds
Feasibility of Control	10	9	on the roots (Bakshi and Coupland 1960, Nadeau et al. 1991,
Relative Maximum		61	Nadeau et al. 1992).
Climatic Compar	Collected in	CLIMEX	Long-distance dispersal $(0-3)$ 3
	Alaska regions?		Seeds can be carried by the wind (Royer and Dickinson 1999);
South Coastal	Yes	simumiy:	however, Nadeau and King (1991) report that 80% of seeds
Interior Boreal	Yes	_	fell within 50 cm and a tiny fraction fell more than 1.5 m of the
Arctic Alpine	No	Yes	parent plant. This species may also be dispersed by water and ants
<i>Linaria vulgaris</i> has been collected in the			(Rutledge and McLendon 1996). The seeds are small (1–2 mm
Sitka, Juneau, and Skagway (Hultén 196			
interior boreal [Anchorage, Wasilla, and			long), flattened with papery wings.
2003, Hultén 1968, UAM 2004)] ecoreg			Spread by humans (0-3)3Yellow toadflax is an ornamental plant and has escaped
not been documented in the arctic alpine			cultivation (Rutledge and McLendon 1996). Toadflax can spread
*	0	0	
CLIMEX matching program, climatic si			along highways (Densmore et al. 2001). It has been found as a
and areas where the species is document	0		contaminant in commercial seed, hay, and ship ballast. It is still
range of the species includes Røros, Nor			sold by some nurseries (Beck 2001, Zouhar 2001).
Stensele, Sweden (Hultén 1968), which l		, and 70%	Allelopathic (0–2) 0
climatic match with Nome, respectively.			None
Ecological Impact		Score	Competitive Ability (0–3) 3 This species is a strong competitor for soil moisture with
Impact on Ecosystem Processes (0–10)	1	5	
Yellow toadflax likely reduces soil moist			established perennials and winter annuals. It is adapted to a wide
availability and appears to alter soil textu			range of environmental conditions (Carpenter and Murray 1998,
obs.) This rhizomatous plant often grow			Rutledge and McLendon 1996).
dry and nutrient poor soils in Alaska and		0	Thicket-forming/Smothering growth form $(0-2)$ 1
essential resources for other species. Add	litionally, a larg	ge volume	Yellow toadflax is capable of forming colonies through buds from
of below ground biomass is produced in	generally organ	nic poor	creeping rhizomes (Carpenter and Murray 1998). However, in
soils, which also tends to bind the soils.			general, it is not taller than the surrounding vegetation (M.L.
Impact on Natural Community Structure	(0–10)	5	Carlson pers. obs.). In a study of common toadflax in Alberta, a
Yellow toadflax is capable of forming der	nse colonies the	rough	density of 180 stems per m ² was recorded; but, in most areas this
adventitious buds on creeping rhizomes	(Carpenter and	d Murray	plant occurs at densities of 20 stems per m^2 or less (Darwent et al.
1998). Along trails and other disturbed s	sites in south-co	entral	1975).
Alaska it forms a new layer apparently ex	cluding both ta	all	Germination requirements (0–3) 0
herbaceous and shorter graminoid nativ	-		Yellow toadflax requires open soil for germination (Densmore et
pers. obs.).			al. 2001). Germination success is generally low, especially with
Impact on Natural Community Composi	tion (0–10)	7	competition (Rutledge and McLendon 1996, Zouhar 2003).
This plant can displace native perennial		nter and	Other invasive species in the genus $(0-3)$ 3
Murray 1998, Whitson et al. 2000).			<i>Linaria dalmatica</i> (L.) P. Mill. is declared noxious in some
Impact on Higher Trophic Levels (0–10)		5	American states and Canadian provinces (Invader Database
Yellow toadflax produces a poisonous glu	acoside that is a	reported	System 2003, USDA, NRCS 2002).
to be unpalatable to moderately poisono			Aquatic, wetland or riparian species $(0-3)$ 1
can reduce foraging sites (Whitson et al.			Yellow toadflax is most commonly found along roadsides, fences,
alternate host for tobacco mosaic virus (rangelands, croplands, clearcuts, and pastures (Carpenter and
1999). This species is highly attractive to	•		Murray 1998). But, it has been reported from cottonwood and
spp.) and halictid bee (<i>Halictus</i> spp.) pol			spruce dominated riparian habitats in Colorado (Carpenter and
			Murray 1998, Zouhar 2003); and it is found along the shoreline
obs.). Flowers are also attacked by numb			of Cook Inlet and Turnagain Arm (AKEPIC 2004, M. Shephard
(Arnold 1982, M.L. Carlson pers. obs., C	~	ual013	pers. comm.).
	JUILZ 1900)	22/40	Total for Biological Characteristics and Dispersal 17/25
Total for Ecological Impact		22/40	

Ecological Amplitude and Distribution Score	Extent of the species U.S. range and/or occurrence of 5
Highly domesticated or a weed of agriculture $(0-4)$ 4	formal state or provincial listing $(0-5)$
The species was introduced to North America in the late 1600s as	This weed is declared noxious in nine states and four Canadian
a garden ornamental (Beck 2001, Carpenter and Murray 1998).	provinces (Invader Database System 2003). This species is a
At present, it is a weed of rangeland and pastures (Darwent et al.	restricted noxious weed in Alaska (Alaska Administrative Code).
1975, Whitson et al. 2000).	It is found throughout the continental United States and in every
Known level of impact in natural areas (0–6) 4	Canadian province (Carpenter and Murray 1998, USDA 2002).
Yellow toadflax invades high quality areas with no known	Total for Ecological Amplitude and Distribution21/25
disturbance for the last 100 years in Rocky Mountain National	Feasibility of Control Score
Park, Colorado and has the potential to modify existing native	Seed banks (0–3) 3
communities (Rutledge and McLendon 1996). This invasive	The seeds can remain dormant for up to 10 years (Carpenter and
species has invaded Coconino National Forest in northern	Murray 1998, Rutledge and McLendon 1996).
Árizona (Zouhar 2001). Yellow toadflax was found in jack pine–	Vegetative regeneration $(0-3)$ 2
lichen woodland of the upper boreal forest in northern Quebec;	Vegetative regeneration is possible from root fragments as short as
and in a ponderosa pine–bluebunch wheatgrass community in	1 cm (Carpenter Murray 1998, Rutledge and McLendon 1996).
Montana (Zouhar 2001	Level of effort required $(0-4)$ 4
Role of anthropogenic and natural disturbance in 3	Successful control can be obtained by mechanical and chemical
establishment (0–5)	treatment. The treatments must be repeated every year for at least
Disturbance may be necessary for establishment to occur. Once	10 years due to vegetative propagation and longevity of the seed
established, it readily spreads into adjacent nondisturbed areas	bank (Carpenter and Murray 1998).
(Beck 2001). It can invade communities with naturally-occurring	Total for Feasibility of Control9/10
disturbances (Arnold 1982). This taxon persisted for at least	Total score for 4 sections69/100
30 years in Manitoba, following an initial disturbance (Zouhar	S
2003).	
Current global distribution (0–5) 5	
<i>Linaria vulgaris</i> is a native of Southeastern Europe and	
Southwestern Asia. The present world distribution includes	
most of Europe and Asia, Australia, New Zealand, South Africa,	
Jamaica, Chile, and North and South America, including	
subarctic regions (Hultén. 1968).	
cacarene regione (rinnen: 1700);	

Lolium perenne ssp. multiflorum (Lam.) Husnot

	Yes Yes		
	Vac		
	162		
	Yes		
al Max.	Score		
40	14		
25	10		
25	15		
10	2		
	41		
Climatic Comparison			
cted in	CLIMEX		
regions?	similarity?		
Yes	_		
Yes	-		
Yes	_		
Lolium perenne ssp. multiflorum has been collected in all			
ecogeographic regions of Alaska (Hultén 1968, UAM 2004).			
	40 25 25 10 teted in regions? Yes Yes Yes Yes Yes Steed in al		

common names: annual ryegrass, Italian ryegrass, perennial ryegrass

_	-
Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	3
Despite being widely planted for erosion control, see	ding of this
species may increase erosion in the following years. I	t addition,
Italian ryegrass may increase the frequency and seven	rity of fire
(Carey 1995, Zedler et al. 1983). Observations in Ala	ska indicate
that its impacts are minimal. Seedings in Denali Nati	ional Park
do not persist. No reduction in native species is recor	ded at
intermediate densities (Densmore et al. 2000).	
Impact on Natural Community Structure (0–10)	3
Some varieties of ryegrass are capable of forming dem	ise stands
(Densmore et al. 2000, Facelli et al. 1987).	
Impact on Natural Community Composition (0–10)	3
In seeded plots in burned chaparral California, there	was a 40%
reduction in species diversity relative to unseeded plo	ots. Italian
ryegrass can hinder woody species establishment thr	ough
resource competition and increased fire potential (C	arey 1995,
Facelli et al. 1987). However, in numerous habitats in	the West
(including Alaska), it appears that this species is read	ily replaced
by tall herbaceous and woody species (Carey 1995 ar	nd references
therein, Densmore et al. 2000).	

Impact on Higher Trophic Levels (0–10) 5	Ecological Amplitude and Distribution Score
This species is highly palatable and nutritious for all types of	Highly domesticated or a weed of agriculture $(0-4)$ 4
livestock and most wild ruminants (Carey 1995). It is highly	Ryegrass is widely planted as an agricultural crop and for lawns in
desirable to moose (M. Shephard pers. com., J. Snyder pers.	North America. Numerous cultivars have been developed (Carey
com.). It hybridizes with other ryegrass species (Beddows	1995, USDA 2002).
1973, Wilken 1993, Rutledge and McLendon 1996). Gopher	Known level of impact in natural areas $(0-6)$ 1
populations increase in areas seeded with Italian ryegrass,	Italian ryegrass causes a reduction of plant diversity in
possibly because of increased cover (Carey 1995). A number of	California's chaparral (Zedler et al. 1983). It does not appear to
animal herbivores and parasites have been recorded for Italian	invade intact communities.
ryegrass (Beddows 1973).	Role of anthropogenic and natural disturbance in 0
Total for Ecological Impact 14/40	establishment (0–5)
Biological Characteristics and Dispersal Score	Italian ryegrass readily colonizes disturbed areas and adjacent
Mode of Reproduction $(0-3)$ 1	border habitats (Beddows 1973).
Italian ryegrass regenerates entirely by seed (Beddows 1973,	Current global distribution (0–5) 5
Royer and Dickinson 1999). In two seasons in California	Italian ryegrass is native to Central and Southern Europe,
fecundity ranged from 6.5 to 15 seeds per plant (Gulmon 1979).	Northwest Africa and Southwest Asia. It now occurs in nearly
Long-distance dispersal (0–3) 1	all states of the United States. It has been introduced into South
Seeds are relatively heavy and compact, and dispersal is limited	America, New Zealand, Tasmania, and Central and Southern
(Beddows 1973, Rutledge and McLendon 1996).	Africa (Beddows 1973, Hultén 1968, USDA 2002).
Spread by humans $(0-3)$ 2	Extent of the species U.S. range and/or occurrence of 5
Ryegrass is often used for soil stabilization, a rotation crop, range,	formal state or provincial listing $(0-5)$
pasture, hay, and turf. Many cultivars have been developed	Italian ryegrass now occurs in nearly all of the United States
(Carey 1995, USDA 2002). Italian ryegrass is a problematic weed	(USDA 2002). This species is not considered noxious in North
in cereal crops and grass seed crops (Carey 1995).	America (Invaders Database System 2003).
Allelopathic (0–2) 2	Total for Ecological Amplitude and Distribution 15/25
Ryegrass releases some allelopathic chemicals that reduce the	Feasibility of Control Score
growth of other species (McKell et al. 1963).	Seed banks (0–3) 0
Competitive Ability (0–3) 1	The seed bank for ryegrass is limited and transient (Thompson
Italian ryegrass competes well with native species (Carey 1995,	and Grime 1979). Percent germination rapidly dropped off after 4
McKell et al. 1969). However, it is highly shade intolerant and	years for stored seeds (Beddows 1973, Rutledge and McLendon
is quickly replaced if overtopped by tall herbaceous or shrubby	1996). Vegetative regeneration (0–3) 0
vegetation. This last form in a /Smooth origin a growth form $(0, 2)$	Italian ryegrass does not spread by vegetative means (Beddows
Thicket-forming/Smothering growth form $(0-2)$ 0 Some varieties of ryegrass form dense stands (Facelli et al. 1987),	1973, USDA 2002).
but it generally does not form thickets.	Level of effort required (0–4) 2
Germination requirements (0–3) 0	In crops herbicides have been used to control established plants
Italian ryegrass is a shade intolerant species. Seedling survival	and prevent seed production, but this species is gaining resistance
was poor under the oak canopy in experiments in California	to several herbicides (Carey 1995). In Alaska, this species does
(Maranon and Bartolome 1993).	not appear to persist in sites where it was planted.
Other invasive species in the genus $(0-3)$ 3	
10 the minimum species in the genus $(0-3)$	Iotal for Feasibility of Control 2/10
	Total for Feasibility of Control2/10Total score for 4 sections41/100
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen.,	Total score for 4 sections41/100
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen., and L. temulentum L. (Hultén 1968, USDA 2002).	
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen., and L. temulentum L. (Hultén 1968, USDA 2002). Aquatic, wetland or riparian species (0–3) 0	Total score for 4 sections41/100
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen., and L. temulentum L. (Hultén 1968, USDA 2002). Aquatic, wetland or riparian species (0–3) 0 Italian ryegrass is cultivated in pastures, hayfields, and lawns. It	Total score for 4 sections41/100
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen., and L. temulentum L. (Hultén 1968, USDA 2002). Aquatic, wetland or riparian species (0–3) 0	Total score for 4 sections41/100
Lolium perenne ssp. perenne L., Lolium persicum Boiss. & Hohen., and L. temulentum L. (Hultén 1968, USDA 2002). Aquatic, wetland or riparian species (0–3) 0 Italian ryegrass is cultivated in pastures, hayfields, and lawns. It escapes from cultivation and becomes naturalized on disturbed	Total score for 4 sections41/100

Lonicera tatarica L.common names: bush honeysuckle, Tatarian honeysuckle

Ranking Summary	Competitive Ability (0–3) 3
Ecoregion known or expected to occur in	Tatarian honeysuckle is able to outcompete native forbs for light
South Coastal Yes	and other resources (ODNR 2003, WDNR 2003). Honeysuckles
Interior Boreal Yes Arctic Alpine No	begin photosynthizing earlier in the spring than most other
Arctic Alpine No Potential Max. Score	plants, giving them an advantage over other species (Batcher and
Ecological Impact 40 22	Stiles 2001).
Biological Characteristics and Dispersal 23 19	Thicket-forming/Smothering growth form $(0-2)$ 2
Amplitude and Distribution 25 18	Tatarian honeysuckle is a shrub that grows up to 10 feet tall and
Feasibility of Control 10 6	forms a dense layer (Welsh 1974, DCR 2004).
Relative Maximum 66	Germination requirements (0–3) 2
Climatic Comparison	Seedlings of Tatarian honeysuckle establish most readily on
Collected in CLIMEX	barren ground or in areas with a sparse understory. It also
Alaska regions? similarity	establishes in late-successional sites (Butterfield et al. 1996).
South Coastal Yes –	Light promotes germination but is not necessary (Batcher and
Interior Boreal Yes –	Stiles 2001).
Arctic Alpine No No	Other invasive species in the genus $(0-3)$ 3
Cultivated ornamental in southern Alaska (Welsh 1974). Planted	Lonicera maackii (Rupr.) Maxim, L. morrowii A. Gray, and
as ornamental in Anchorage (I. Lapina pers. obs.). In the Arctic	L. x bella Zabel (Batcher and Shelly 2001).
Alpine ecoregion, there is a high climatic match between Nome	Aquatic, wetland or riparian species (0–3) 1
and areas where the species occurs such as Kirov (66%), Russia.	Tatarian honeysuckle occurs most often along roadsides and
However, the minimum temperatures and number of frost-free	forest edges, pastures, and abandoned fields (DCR 2004). It is
days are too low for those required by Lonicera tatarica (120 frost-	recorded as occurring in marshes in Ohio (ODNR 2004)
free days, -38 °F; USDA 2002).	Total for Biological Characteristics and Dispersal 19/23
Ecological Impact Score	Ecological Amplitude and Distribution Score
Impact on Ecosystem Processes (0–10) 5	Highly domesticated or a weed of agriculture $(0-4)$ 4
Tatarian honeysuckle can decrease light availability and deplete	Tatarian honeysuckle has been cultivated as an ornamental in the
soil moisture and nutrients (DCR 2004). It can reduce tree	United States since the 1800s. Some varieties were developed and
regeneration in early to mid-successional forests (Batcher and	planted for wildlife food source and revegetation (DCR 2004).
Stiler 2005).	Many state and private nurseries sell bush honeysuckles (Batcher
Impact on Natural Community Structure (0–10) 7	and Stiles 2001).
Tatarian honeysuckle forms a dense layer that shades many native	Known level of impact in natural areas (0–6) 3 Tatarian honeysuckle occurs along forest edges in Iowa, where
woody and herbaceous species (Charles 2001, DCR 2004).	it has the potential to modify existing native plant communities
Impact on Natural Community Composition (0–10) 5	(Butterfield et al. 1996). It is found in the understory of
Tatarian honeysuckle reduces the richness and cover of	woodlands and marshes in Ohio (ODNR 2004).
herbaceous communities, and may entirely replace native species	
(Batcher and Stiles 2005). It is potentially allelopathic, preventing	establishment (0–5)
the growth of other species (Charles 2001, WDNR 2004).	Tatarian honeysuckle can invade disturbed sites as well as intact
Impact on Higher Trophic Levels (0–10) 5	forests (Batcher and Stiles 2001). Areas with disturbances are
Fruits of Tatarian honeysuckle are highly attractive to birds. All	
honeysuckles are relatively free of known significant diseases and	most vulnerable to invasion (WDNR 2003).Current global distribution (0-5)3
insect or other predators (Batcher and Stiles 2001).	Tatarian honeysuckle is a native of Europe and Eastern Asia,
Total for Ecological Impact 22/40	occurring in North America more recently (DCR 2004).
Biological Characteristics and Dispersal Score	Extent of the species U.S. range and/or occurrence of 5
Mode of Reproduction (0–3) 2 Tatarian honouruckle has moderate seed production and is	formal state or provincial listing $(0-5)$
Tatarian honeysuckle has moderate seed production and is	Tatarian honeysuckle is common in most northeastern and mid-
capable of vegetative spread (Batcher and Stiles 2001, Butterfield	Atlantic states and in some midwestern and western states, and
et al. 1996, ODNR 2003).	
Long-distance dispersal (0–3) 3	in south-central Canada (Batcher and Stiles 2001). This species is listed as noxious in Vermont and declared as an invasive weed in
The seeds of Tatarian honeysuckle are dispersed by birds and	
perhaps, small mammals (Batcher and Stiles 2001, Charles 2001,	Wisconsin (USDA 2002).
Hoppes 1988).	Total for Ecological Amplitude and Distribution 18/25 Ecosibility of Control Score
Spread by humans (0–3) 3 Tatarian hannysuch la has been widely used in herticultural	Feasibility of ControlScoreSeed banks (0-3)1
Tatarian honeysuckle has been widely used in horticultural	The seeds of Tatarian honeysuckle can remain viable for 2 or
plantings (Batcher and Shelly 1985, WDNR 2003).	
Allelopathic (0–2) U Tatarian honovsuchla has been recorded as nonallalonathic	more years (Butterfield et al. 1996).Vegetative regeneration (0-3)2
Tatarian honeysuckle has been recorded as nonallelopathic	Cutting of Tatarian honeysuckle facilitates vigorous resprouting
(USDA 2002), but possible allelopathy potential has been	(Batcher and Stiles 2001, WDNR 2004).
reported (WDNR 2004, Charles 2001).	

Level of effort required (0–4)	3
Mechanical and chemical control methods can be used f	for
control of Tatarian honeysuckle. Treatment must be rep	eated
for at least 3–5 years in order to stop new plants emergin	g from
the seed bank (Batcher and Stiles 2001, Butterfield et al.	1996,
WDNR 2004).	
Total for Feasibility of Control	6/10
Total score for 4 sections	65/98
S	

Lupinus polyphyllus ssp. polyphyllus Lindl.

Ranking Summary Ecoregion known or expected to occur in South Coastal Yes Interior Boreal Yes Arctic Alpine Yes Potential Max. Score Ecological Impact 40 14 **Biological Characteristics and Dispersal** 25 16 Amplitude and Distribution 25 17 Feasibility of Control 10 8 **Relative Maximum** 55 **Climatic Comparison** Collected in **CLIMEX** Alaska regions? similarity? South Coastal Yes Interior Boreal Yes Arctic Alpine No Yes Special Note-nativity: Lupinus polyphyllus is native to western North America (USDA, ARS 2004) and has now become naturalized in Europe (Jennersten et al. 1988, Lid & Lid 1994). Most authors consider bigleaf lupine to be non-native in Alaska (Hultén 1968, Welsh 1974, Densmore et al. 2001). It has been widely seeded on roadsides in south-central Alaska (Densmore et al. 2001). It is well-established in open to dense mixed forests, often near habitations from Fairbanks to southern Alaska where it is especially common in the Anchorage vicinity (Hultén 1968, Welsh 1974). This species is particularly abundant in burns in Matanuska-Susitna Valley (Lapina pers. obs.). It is present in disturbed areas in Seward (Densmore et al. 2001), has been reported from Mitkof Island and the Kenai Peninsula (UAM 2003). Greater study, using collection records, molecular and morphological markers, and paleoecological methods are necessary to confirm the suspected non-nativity of this species in Alaska. Lupinus polyphyllus has been collected in Seward, Denali National Park and Preserve, (Densmore et al. 2001), Kenai Peninsula, Mitkof Island, Matanuska–Susitna Valley (UAM 2004). It has been reported established in mixed forest from Fairbanks to Anchorage (Welsh 1974). Using the CLIMEX matching program, climatic similarity between Nome and areas where the species is documented is high. Range of the species includes Anchorage and Fairbanks (Welsh 1974), which has a 61% and 56% climatic match

with Nome respectively.

common names: bigleaf lupine, marsh lupine

	marshrupme
	Ecological Impact Score
1	Impact on Ecosystem Processes (0–10) 5
	Bigleaf lupine is likely to delay the establishment of native species
	in disturbed sites (Densmore et al. 2001). As a nitrogen-fixer, it
	likely alters soil conditions (USDA 2002).
	Impact on Natural Community Structure (0–10)3
	Bigleaf lupine establishes in an existing layer and increases the
	density of the layer (Lapina pers. obs.).
	Impact on Natural Community Composition (0–10) 1
_	Bigleaf lupine appears to integrate into native populations at a
-	relatively low density. Other species do not seem to be strongly
.	impacted by its presence (M.L. Carlson pers. obs.)
	Impact on Higher Trophic Levels (0–10)5
	Bigleaf lupine hybridizes freely with Nootka lupine $(L.$
	nootkatensis Donn ex Sims) (Welsh 1974). Bigleaf lupine is an
	important floral resource for bumblebees (Jennersten et al. 1988),
	potentially impacting other native plants.
	Total for Ecological Impact 14/40
	Biological Characteristics and Dispersal Score
	Mode of Reproduction (0–3) 2
	The plant reproduces from moderate amounts of seed and also
	forms extensive clones from creeping rhizomes (Densmore et al.
	2001).
	Long-distance dispersal (0–3) 0
	The pods open explosively, scattering seeds a few meters. There is
	no potential for long-distance dispersal (Densmore et al. 2001).
	Spread by humans (0–3) 3
	Bigleaf lupine is cultivated as an ornamental, often escaping and
	becoming locally well-established (Densmore et al. 2001, Welsh
	1974). It is spreading along the roads in Alaska (Hultén 1968).
	Allelopathic (0–2) 0
	Unknown
	Competitive Ability (0–3) 3
	Bigleaf lupine is moderately competitive for limiting factors; also
	it has the ability to fix nitrogen (Densmore et al. 2001, USDA
	2002).
	Thicket-forming/Smothering growth form $(0-2)$ 0
	Bigleaf lupine is a perennial herb with stems to 5-feet tall (Pojar
	and MacKinnon 1994). In Alaska it rarely grows that tall and does
	not grow very densely (M.L. Carlson pers. obs.)
	Germination requirements (0–3) 2
	Bigleaf lupine can germinate in vegetated areas (Densmore et
	al. 2000, I. Lapina pers. obs.). The seeds require scarification for
	successful germination.

Other invasive species in the genus $(0-3)$ 3	Extent of the species U.S. range and/or occurrence of 4
Lupinus arboreus Sims is considered as an invasive wildland pest	formal state or provincial listing $(0-5)$
plant in California (CalEPPC 1999). Lupinus nootkatensis Donn	Bigleaf lupine is found in the Pacific states, the upper Midwest,
ex Sims is a North American species that is invasive in Northern	and northeastern states. The species is not considered noxious in
Europe (Lid and Lid 1994).	North America (Invaders Database System 2003, USDA 2002).
Aquatic, wetland or riparian species (0–3) 3	Total for Ecological Amplitude and Distribution17/25
This species can be found in moist to wet, open habitats (seashore	Feasibility of Control Score
streamside, and wet meadows), and disturbed sites (Pojar and	Seed banks (0–3) 3
MacKinnon 1994). It may invade sandy river terraces in south-	The seeds of bigleaf lupine remain viable for many years (M. Gisler
central Alaska (M.L. Carlson pers. obs.).	pers. com.).
Total for Biological Characteristics and Dispersal 16/25	Vegetative regeneration $(0-3)$ 2
Ecological Amplitude and Distribution Score	Bigleaf lupine has the ability to resprout after removal of
Highly domesticated or a weed of agriculture $(0-4)$ 4	aboveground growth (Densmore et al. 2001).
Bigleaf lupine is cultivated as an ornamental (Densmore et al.	Level of effort required $(0-4)$ 3
2001, Welsh 1974).	Bigleaf lupine can be eradicated when the populations are small
Known level of impact in natural areas $(0-6)$ 3	by digging up rhizomes. However, several weedings may be
It is well-established in open to dense mixed forests in Alaska	necessary to eliminate plants sprouting from rhizomes and the
(Hultén 1968, Welsh 1974). It may invade sandy river terraces in	seed bank (Densmore et al. 2001).
southcentral Alaska (M.L. Carlson pers. obs.).	Total for Feasibility of Control8/10
Role of anthropogenic and natural disturbance in 3	Total score for 4 sections 55/100
establishment (0–5)	§.
Bigleaf lupine establishes in disturbed sites along roadways. This	U U
species has been observed in areas with natural disturbances	
(M.L. Carlson pers. obs., I. Lapina pers. obs.).	
Current global distribution $(0-5)$ 3	
Bigleaf lupine is native to the western United States and western	
Canada (USDA, ARS 2004). It has naturalized in Scandinavia	
(Jennersten et al. 1988, Lid & Lid 1994), Austria, France,	
Germany, and Russia (Gubanov et al. 1995, Flora Europaea	
2004). It has been recorded from Asia (Pakistan), South America	
(Chile) and Navy Zooland (ILDIS 2002)	

(Chile), and New Zealand (ILDIS 2003).

B-72

Lythrum salicaria L. & Lythrum virgatum L.

common names: purple loosestrife

Ranking Summ	nary	
Ecoregion known or expected to occu		
South Coastal		No
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	34
Biological Characteristics and Dispersal	25	20
Amplitude and Distribution	25	21
Feasibility of Control	10	8
Relative Maximum		83
Climatic Compa		
	Collected in	CLIMEX
South Countral	Alaska regions? No	
South Coastal Interior Boreal	Yes	No
Arctic Alpine	No	Yes
<i>Lythrum salicaria</i> has been planted in ga		
(M.L. Carlson pers. obs., J. Riley pers. o		0
	,	
in Westchester Lagoon, Anchorage (M.	~	-
Snyder pers. obs.). Climatic similarity is		
Coastal ecoregion and where this specie		
1999). Climatic similarity between Nor		
ecoregion) and areas where the species		is high.
The survey of the survey is a include a Description		
The range of the species includes bogolo	ovsk and Kirov,	Russia
(Gubanov et al. 1995), which has a 67%	and 66%, clima	tic match
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr	and 66%, clima nination require	tic match es "high
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is a	and 66%, clima nination requir not found in tru	tic match es "high ly Arctic
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is 1 or alpine regions in its native range (Blo	and 66%, clima nination requir not found in tru ossey 2002). We	tic match es "high ly Arctic suggest
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is or alpine regions in its native range (Blo that it may be possible for loosestrife to	and 66%, clima nination requir not found in tru ossey 2002). We establish in som	tic match es "high ly Arctic suggest ne portions
The range of the species includes Bogold (Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although v	tic match es "high ly Arctic suggest ne portions we did
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is a or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although to cen the South Co	tic match es "high ly Arctic suggest ne portions we did oastal
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is a or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although to cen the South Co	tic match es "high ly Arctic suggest ne portions we did oastal
Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr emperatures" (WDNR 2004) and it is a or alpine regions in its native range (Blo hat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco with this species in that region.	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although to cen the South Co	tic match es "high ly Arctic suggest ne portions we did oastal n be taken
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco with this species in that region. Ecological Impact	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although to cen the South Co	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10)	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although v een the South Co ommend caution	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although v cen the South Co ommend caution	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr remperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although v cen the South Co ommend caution l and hydrologic es in the summo	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr remperatures" (WDNR 2004) and it is r or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact (mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in	and 66%, clima nination requir not found in tru ossey 2002). We establish in som nally, although v een the South Co ommend caution and hydrologic es in the summe n the fall resultin	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat leaves of the plant decompose quickly in a nutrient flush, whereas leaves of native	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although we en the South Co commend caution I and hydrologic es in the summe n the fall resulting species decom	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is is or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat leaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although we cen the South Co ommend caution and hydrologic es in the summent the fall resulting species decom- alterations of we	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat leaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a communities adapted to decomposition	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution al and hydrologic es in the summon the fall resulting especies decom- alterations of we of plant tissues	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring.
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution al and hydrologic es in the summon the fall resulting especies decom- alterations of we of plant tissues	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring.
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition hot observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact (mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002).	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co commend caution I and hydrologic es in the summe the fall resulting species decom- alterations of we of plant tissues vare altered by it	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence
Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr emperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo hat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). mpact on Natural Community Structur	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution alternations of we alterations of we of plant tissues r are altered by it e (0–10)	tic match es "high ly Arctic suggest he portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence
Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr emperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo hat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). mpact on Natural Community Structur This species forms very dense monospe	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution and hydrologic es in the summon the fall resulting species decom- alterations of we of plant tissues rare altered by in e (0–10) cific stands that	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr remperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo hat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact (mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). mpact on Natural Community Structur This species forms very dense monospe	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution and hydrologic es in the summon the fall resulting species decom- alterations of we of plant tissues rare altered by in e (0–10) cific stands that	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat leaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). Impact on Natural Community Structur This species forms very dense monospe- other emergent and submerged layers (I	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although ven the South Co ommend caution and hydrologic es in the summon the fall resulting species decom- alterations of we of plant tissues rare altered by in e (0–10) cific stands that	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr remperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact (mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). Empact on Natural Community Structur This species forms very dense monospe- other emergent and submerged layers (I Mann 1991).	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although v een the South Co ommend caution I and hydrologid es in the summon the fall resulting species decom- alterations of wa of plant tissues v are altered by it e (0–10) cific stands that Bender and Ren	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is is for alpine regions in its native range (Blo that it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwe ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat leaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although v een the South Co ommend caution alternations of we not fall resulting species decomp alterations of we not plant tissues v are altered by it e (0–10) cific stands that Bender and Ren ition (0–10)	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing dall 1987, 8
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr remperatures" (WDNR 2004) and it is r or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact (mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). Impact on Natural Community Structur This species forms very dense monospe- other emergent and submerged layers (I Mann 1991). Impact on Natural Community Compos	and 66%, clima nination require not found in tru ossey 2002). We establish in som nally, although venthe South Co ommend caution alternation caution at the fall resulting especies decom- alterations of we not plant tissues vare altered by it e (0–10) cific stands that Bender and Ren wition (0–10) ductions in nativ	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing dall 1987, 8 re plant
(Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr temperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo chat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact Impact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native n the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology (Blossey 2002). Impact on Natural Community Structur This species forms very dense monospe- other emergent and submerged layers (I Mann 1991). Impact on Natural Community Compos Purple loosestrife infestations cause reco	and 66%, clima mination require not found in tru ossey 2002). We establish in som nally, although venthe South Co ommend caution alternations of we and hydrologic es in the summe n the fall resulting species decome alterations of we on of plant tissues vare altered by it e (0–10) cific stands that Bender and Ren sition (0–10) ductions in native of pond weeds, for	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing dall 1987, 8 re plant for
Gubanov et al. 1995), which has a 67% with Nome, respectively. However, gerr emperatures" (WDNR 2004) and it is to or alpine regions in its native range (Blo hat it may be possible for loosestrife to of the Arctic Alpine ecoregion. Addition not observe a high climate match betwee ecoregion and known locations, we reco with this species in that region. Ecological Impact mpact on Ecosystem Processes (0–10) Purple loosestrife alters biogeochemica processes in wetlands (lowers phosphat eaves of the plant decompose quickly in a nutrient flush, whereas leaves of native in the spring. This results in significant a communities adapted to decomposition Wetland bird communities and ecology Blossey 2002). mpact on Natural Community Structur This species forms very dense monospe- other emergent and submerged layers (1 Mann 1991). mpact on Natural Community Compos Purple loosestrife infestations cause reco	and 66%, clima mination require not found in tru ossey 2002). We establish in som nally, although venthe South Co ommend caution alternations of we and hydrologic es in the summe n the fall resulting species decome alterations of we on of plant tissues vare altered by it e (0–10) cific stands that Bender and Ren sition (0–10) ductions in native of pond weeds, for	tic match es "high ly Arctic suggest ne portions we did oastal n be taken Score 8 cal er). The ng in pose etland s in spring. ts presence 8 displacing dall 1987, 8 re plant for

Impact on Higher Trophic Levels (0–10)10
Purple loosestrife likely is degrading salmon and waterfowl
habitats (M. Carlson pers. com.). Native animals avoid nesting
and foraging in stands of purple loosestrife (Bender 1987). But
moose has been observed browsing on this plant (J. Riley pers.
obs.). It has been reported as an alternate host for cucumber
mosaic virus (Royer and Dickinson 1999).
Total for Ecological Impact 34/40
Biological Characteristics and Dispersal Score
Mode of Reproduction (0–3) 3 Plants are capable of producing over 100,000 seeds (Shamsi and
Whitehead 1974). It can spread vegetatively by resprouting from
cut stems and regenerating from root fragments and pieces of the
stem (Bender and Rendall 1987, Royer and Dickinson 1999).
Long-distance dispersal $(0-3)$ 3
The seeds are small, weighing 0.06 mg each (Shamsi and
Whitehead 1974). Thus, dispersal is mainly by wind, but seeds
can also be transported by waterfowl or other wetland animals.
Further, seeds and seedlings are buoyant and can be dispersed by
water (Bender and Rendall 1987, Blossey 2002).
Spread by humans (0–3) 3
Introductions into North America have occurred through ship
ballast, wool, and most likely as ornamental plantings. Humans
carry seeds inadvertently on clothing and shoes, and beekeepers
have purposely sown seeds to provide a source of nectar. It was
and continues to be widely planted in gardens (Bender and
Rendall 1987, Royer and Dickinson 1999).
Allelopathic (0–2) 0
There is no known allelopathic potential.
Competitive Ability (0–3) 3
Purple loosestrife is competitively superior over native wetland
plant species (Blossey 2002).
Thicket-forming/Smothering growth form (0–2) 2 Purple loosestrife forms dense stands that shade out other plants
(Bender and Rendall 1987). Densities as high as 80,000 stalks/
acre have been recorded (Heidorn 1991).
Germination requirements (0–3) 0
Germination of purple loosestrife is restricted to open soils and
requires high temperature (WDNR 2004). Seedlings are not able
to survive in the dense shade of the grass cover (Thompson 1991).
Other invasive species in the genus $(0-3)$ 3
Lythrum hyssopifolia L., L. maritimum Kunth, L. portula (L.) D.A.
Webber, L. thymifolia L., L. tribracteatum Salzm. ex Spreng, and
L. virgatum L.
Aquatic, wetland or riparian species (0–3) 3
Purple loosestrife is found in cattail marshes, sedge meadows,
and open bogs, and it along stream and riverbanks and lakeshores
(Bender and Rendall 1987, WDNR 2003).
Total for Biological Characteristics and Dispersal 20/25
Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4
Highly domesticated or a weed of agriculture (0-4)4In North America, it was first reported in 1814. Further
introductions have occurred most likely as ornamental plantings.
It continues to be widely planted in gardens (Royer and
Dickinson 1999).
DIGRIHOUH 1777].

Known level of impact in natural areas (0–6) 4	Extent of the species U.S. range and/or occurrence of 5
Purple loosestrife displaced grass cover in aquatic communities	formal state or provincial listing $(0-5)$
in New York State (Thompson 1991). In wetlands in Wisconsin it	Purple loosestrife occurs in nearly all states of the United States
forms monospecific stands that reduce biotic diversity (WDNR	(USDA 2002). It is a noxious weed in 25 states and 2 Canadian
2003).	provinces (Invaders Database System 2003).
Role of anthropogenic and natural disturbance in 3	Total for Ecological Amplitude and Distribution 21/25
establishment (0–5)	Feasibility of Control Score
Purple loosestrife flourishes in disturbed and degraded habitats,	Seed banks (0–3) 2
for example, wetlands that suffered from draining, natural	Viability of seeds decreased from 99% to 80% after 2 years of
drawdown, bulldozing, siltation, shore manipulation, cattle	storage in a natural body of water (Bender and Rendall 1987).
trampling, or dredging (Bender and Rendall 1987, WDNR	Seeds under cold dry storage remain highly viable for at least
2003). But it also can colonize undisturbed wetland (Bossard et	3 years, but longevity under field conditions is unknown
al. 2000). J. Snyder (pers. com.) observed this plant establishing	(DiTomaso and Healy 2003).
in a pond and stream system in Michigan with no perceived	Vegetative regeneration (0–3) 2
disturbances.	Purple loosestrife can resprout from cut stems and regenerate
Current global distribution (0–5) 5	from root fragments and pieces of the stem (Bender and Rendall
This species is distributed all over the world except in the	1987, Heidorn 1991, Royer and Dickinson 1999).
extremely cold and arctic regions. Purple loosestrife is native to	Level of effort required $(0-4)$ 4
Eurasia, extending from Great Britain across Western Europe into	Current methods for eradication of large, dense populations of
Central and Southern Europe along the Mediterranean Basin.	loosestrife are not totally effective. Mechanical control methods
Japan is the core of the species native range in Asia; populations	are ineffective, and most herbicides are nonselective. Follow-up
extend to Southeast Asia and India (Blossey 2002). It is present	treatments are recommended for 3 years after plants are removed
in North Africa and North America. It also is found in southeast	(Bender and Rendall 1987). Biological controls have been
	developed in North America (Swearing 2002).
temperate Australia (Bender and Rendall 1987).	Total for Feasibility of Control 8/10
	Total score for 4 sections 84/100
	8
	J.

Marticaria discoidea DC. common names: disc mayweed, pineappleweed

Ranking Summ	nary		Ecological Impact Sco	ore
Ecoregion known or expected to occu	ir in		Impact on Ecosystem Processes (0–10)	1
South Coastal		Yes	Though pineappleweed is only found in highly disturbed	
Interior Boreal		Yes	environments (Densmore et al. 2001, Hultén 1968, Welsh 197	74)
Arctic Alpine		Yes	it has potential to retard natural succession in sites after it has	,
	Potential Max.	Score	established (J. Conn pers. com.).	
Ecological Impact	40	5	Impact on Natural Community Structure (0–10)	1
Biological Characteristics and Dispersal	25	9	Pineappleweed establishes in an existing layer and changes th	I I
Amplitude and Distribution	25	15	density of the layer (M.L. Carlson pers. obs., I. Lapina pers. ob	
Feasibility of Control	10	3		DS.).
Relative Maximum		32	Impact on Natural Community Composition (0–10)	0
Climatic Compa	rison		None. Pineappleweed has not been observed in undisturbed a	
	Collected in	CLIMEX	in Alaska, no perceived impact on native populations has been	n
	Alaska regions?	similarity?	documented (Densmore et al. 2001).	
South Coastal	Yes	_	Impact on Higher Trophic Levels (0–10)	3
Interior Boreal	Yes	_	Pineappleweed may have possible minor alterations due to dis	sease
Arctic Alpine	Yes	_	transference (Royer and Dickinson 1999).	
Marticaria discoidea has been collected i	in Fairbanks, A	nchorage,	0 1	/40
Iditarod, Seward, Juneau, Kodiak, and E		0.	Biological Characteristics and Dispersal Sco	ore
University of Alaska Museum 2003, We			Mode of Reproduction (0–3)	3
			Pineappleweed reproduces by seeds only. A single plant is cap	able
from Denali National Park and Preserve			of producing as many as 850 seeds (Stevens 1932).	
Park, Katmai National Park and Preserv			Long-distance dispersal (0–3)	3
National Park and Preserve (Densmore			The seeds are gelatinous when wet, and may be dispersed by	
in right-of-way of the Trans Alaska Pipe	<u>line (McKendri</u>	ick 1987).	rainwash (Rutledge and McLendon 1996).	
			Spread by humans (0–3)	3
			The achenes disperse in mud attached to motor vehicles and	2
			can contaminate topsoil (Baker 1974, Densmore et al. 2001,	
			Hodkinson and Thompson 1997).	

I)	Current global distribution (0–5)	5
None		Pineappleweed is a native of western North America, no	
() ())	found in Europe, Asia, Greenland, Iceland, South Ameri	ca, and
Pineappleweed does not compete well with native species		New Zealand (Hultén 1968).	
(Densmore et al. 2001, Royer and Dickinson 1999).		Extent of the species U.S. range and/or occurrence of	5
8, 88)	formal state or provincial listing $(0-5)$	
Pineappleweed is an annual with leafy stems up to 1 foot tall.		Pineappleweed is found in 45 states. It is listed as a weed	in
Usually it does not form dense stands and if formed they do not		Kentucky and Nebraska in the United States and Manito	oba,
shade other species (I. Lapina pers. obs.).		Canada (Royer and Dickinson 1999, USDA 2002).	/
)	Total for Ecological Amplitude and Distribution	15/25
Pineappleweed requires open soil and disturbance to germinate	.	Feasibility of Control	Score
Disturbance is necessary for breaking of seed dormancy		Seed banks (0–3)	3
(Densmore et al. 2001).		Roberts and Neilson (1981) found 7.8% to 9.6% of seeds	remain
Other invasive species in the genus $(0-3)$)	viable after 5 years in the soil. Viability of seeds was 20%	
None		6.7 years, and 1% after 9.7 years in seed viability experim	
influence) in estimate of input an operation (or o))	conducted in Fairbanks (Conn and Deck 1995).	
Pineappleweed can be found in grains fields, farms, farm yards,		Vegetative regeneration $(0-3)$	0
waste places, and roadsides (Royer and Dickinson 1999, Rutled	ge	Pineappleweed has no resprouting ability following remo	
and McLendon 1996).		aboveground growth (Densmore et al. 2001).	o var or
Total for Biological Characteristics and Dispersal 9/2.		Level of effort required (0–4)	0
Ecological Amplitude and Distribution Scor	e	This species does not persist without repeated anthropog	e
Highly domesticated or a weed of agriculture $(0-4)$	4	disturbance. However, multiple weeding treatments acro	
Pineappleweed is a weed of cultivated fields (Rutledge and		may be necessary to eliminate plants germinating from b	
McLendon 1996). This is the most common weed in Alaska (J.			
Conn pers. com.).		seeds. Hand pulling may be inefficient and ineffective for	
I. Contraction of the second se	1	and dense populations. It is resistant to a number of stand	
Pineappleweed appears to be having minor effects on native		herbicides (J. Conn pers. com., Densmore et al. 2001, Ru	itledge
communities in Rocky Mountain National Park, Colorado		and McLendon 1996).	- (
(Rutledge and McLendon 1996).		Total for Feasibility of Control	3/10
)	Total score for 4 sections	32/100
establishment (0–5)		S	
Soil disturbance breaks seed dormancy. Plants emerge from site	s		
altered by construction or trampling, especially if the area has a			
history of previous human use (Densmore et al. 2001).			
motor y or previous numan use (Densmore et al. 2001).			

Medicago lupulina L.

Ranking Summ	nary		
Ecoregion known or expected to occu	ur in		Impact o
South Coastal		Yes	Black me
Interior Boreal		Yes	atmosph
Arctic Alpine		Yes	observed
	Potential Max.	Score	significat
Ecological Impact	40	10	presence
Biological Characteristics and Dispersal	25	18	1
Amplitude and Distribution	25	15	Impact o Black me
Feasibility of Control	10	5	
Relative Maximum		48	density o
Climatic Compa	rison		Impact o
-	Collected in	CLIMEX	Black me
	Alaska regions?	similarity?	and pres
South Coastal	Yes	_	composi
Interior Boreal	Yes	_	Impact o
Arctic Alpine	Yes	_	Flowers
Medicago lupulina has been documente	d in all ecogeog	raphic	insects (
regions of Alaska (Hultén 1968, AKEP	IC 2005, UAM	2004).	number
			Total for

common names: black medick

Ecological Im		•
Impact on Ecosystem Processes (0		
Black medick alters edaphic cond	itions due to fixation of	
atmospheric nitrogen (USDA 200	02). This species has not been	
observed in undisturbed areas in .	Alaska. It is unlikely that	
significant impacts to ecosystem	processes occur due to its	
presence.		
Impact on Natural Community St		
Black medick establishes in an exi	isting layer and increases the	
density of the layer to a minor deg	gree (I. Lapina pers. obs.).	
Impact on Natural Community Co	omposition $(0-10)$ 1	
Black medick has been observed of	only on disturbed ground	
and presumably has little or no im	pact on natural community	
composition (I. Lapina pers. obs.)).	
Impact on Higher Trophic Levels (
Flowers of black medick are visite	ed by bees and other pollinating	5
insects (Lammerink 1968). Black	medick is an alternate host for	
number of viruses and fungus (Re	oyer and Dickinson 1999).	
Total for Ecological Impact	10/40	

Highly domesticated or a weed of agriculture (0-4)2Black medick is a weed of roadsides and pastures. It isoccasionally found in cultivated crops and gardens (Royer andDickinson 1999).Known level of impact in natural areas (0-6)0No documented negative impacts on natural areas were found.Role of anthropogenic and natural disturbance in3establishment (0-5)Seedlings of black medick are most likely to survive on bare soilor in small areas of disturbance created by animals or erosion(Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997,Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971).Current global distribution (0-5)5The native range of black medick includes Europe, temperate andtropical Asia, and northern Africa (USDA, ARS 2005). Todaythis species is now established in North America, Central Africa,Australia, New Zealand, and the Philippines (Hultén 1968).
occasionally found in cultivated crops and gardens (Royer and Dickinson 1999). Known level of impact in natural areas (0–6) 0 No documented negative impacts on natural areas were found. Role of anthropogenic and natural disturbance in 3 establishment (0–5) Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Dickinson 1999). Known level of impact in natural areas (0–6) 0 No documented negative impacts on natural areas were found. Role of anthropogenic and natural disturbance in 3 establishment (0–5) Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Known level of impact in natural areas (0–6) 0 No documented negative impacts on natural areas were found. Role of anthropogenic and natural disturbance in 3 establishment (0–5) Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
No documented negative impacts on natural areas were found. Role of anthropogenic and natural disturbance in 3 establishment (0–5) Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Role of anthropogenic and natural disturbance in3establishment (0–5)Seedlings of black medick are most likely to survive on bare soilor in small areas of disturbance created by animals or erosion(Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997,Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971).Current global distribution (0–5)5The native range of black medick includes Europe, temperate andtropical Asia, and northern Africa (USDA, ARS 2005). Todaythis species is now established in North America, Central Africa,
establishment (0–5) Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Seedlings of black medick are most likely to survive on bare soil or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
or in small areas of disturbance created by animals or erosion (Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
(Wolfe-Bellin and Maloney 2000, Turkington and Cavers 1997, Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Pavone and Reader 1985, Pavone and Reader 1982, Sidhu 1971). Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
Current global distribution (0–5) 5 The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
The native range of black medick includes Europe, temperate and tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
tropical Asia, and northern Africa (USDA, ARS 2005). Today this species is now established in North America, Central Africa,
this species is now established in North America, Central Africa,
Australia, New Zealand, and the Philippines (Hultén 1968).
Extent of the species U.S. range and/or occurrence of 5
formal state or provincial listing $(0-5)$
Black medick is found throughout United States and Canada
(USDA 2002, Royer and Dickinson 1999). <i>Medicado lupulina</i> is
listed as a weed in Manitoba, and it is declared a noxious weed
seed in Alaska (Alaska Administrative Code 1987).
Total for Ecological Amplitude and Distribution 15/25
Feasibility of Control Score
Seed banks (0–3) 3
Most seeds germinate within 2 or 2.5 years (Van Assche et al.
2003, Leishman et al. 2000, Pavone and Reader 1982, Chepil
1946, Brenchley and Warington 1930). Medvedev (1973, cited
in Turkington and Cavers 1979) reported that storage for 10–11
years had little effect on viability of seeds. Less than 1% seeds
were viable after 20 years (Lewis 1973).
Vegetative regeneration $(0-3)$ 0
Black medick showed no vegetative regeneration in natural
conditions (Sidhu 1971).
Level of effort required $(0-4)$ 2
Black medick can be controlled easily by the use of herbicides
(Turkington and Cavers 1997).
Total for Feasibility of Control5/10
Total score for 4 sections48/100

Medicago sativa ssp. falcata (L.) Arcang. common names: yellow alfalfa

Ranking Summ		
coregion known or expected to occu	urin	
South Coastal		Yes
nterior Boreal		Yes
arctic Alpine		Yes
	Potential Max.	Score
cological Impact	30	15
iological Characteristics and Dispersal	25	17
mplitude and Distribution	19	15
easibility of Control	10	7
elative Maximum		64
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
nterior Boreal	Yes	-
Arctic Alpine	No	Yes
<i>Aedicago sativa</i> ssp. <i>falcata</i> has been col		
Seward and Exit Glacier) and interior l		
Fairbanks, Wasilla, Palmer, Gakona, an	d Haines Juncti	on)
ecogeographic regions in Alaska (Hulte	én 1968, AKEPI	C 2005,
JAM 2005). The CLIMEX matching p		
limatic similarity between Nome and		
lfalfa is well established is moderately	/	
lfalfa includes Røros, Norway, and Zla		
Gubanov et al. 2003, Hultén 1968). Th		
nas a 76%, 71%, and 66% match with N	~	•
imilar climates suggest that the establi		
arctic alpine ecogeographic region of A	laska may be pos	ssible.
Ecological Impact		Score
mpact on Ecosystem Processes (0–10)		5
Tellow alfalfa in symbiosis with the bac	teria <i>Rhizobia</i> , in	ncreases
oil nitrogen levels by fixing atmospher	ic nitrogen (USI	DA
2002). The alteration of soil condition r	nay facilitate col	onization
by other plant species. Alfalfa increases	the growth of as	spen
eedlings (Powell and Bork 2004). In S	askatchewan rar	nchlands
seeded with alfalfa were susceptible to r		
prickly rose (<i>Rosa acicularis</i>) (Bowes 19		
mpact on Natural Community Structure		3
Tellow alfalfa establishes in an existing		-
subsequently increases the density of th	, 0	
obs., Klett et al. 1984, Duebbert et al. 19		
concerning the elimination of existing	layers of vegetati	ion by the
presence of alfalfa.		
mpact on Natural Community Compos		U
Documentation specific to the alteratio		r
omposition was not found in this revie	èW.	

*	
	7
A total of 27 species of birds and 46 mammals are known to	
use alfalfa (Graham 1941). Yellow alfalfa is consumed by most	
big game animals, including moose and mule deer (Kufeld	
1973, Leach 1956). Many small mammals, including marmots,	
mice, and ground squirrels graze alfalfa. Waterfowl such as	
the American wigeon and mallards eat the leaves, flowers, or	
seeds. Seeds are also consumed by rodents, rabbits, and upland	
birds. Yellow alfalfa is a source of nectar and pollen for insects	
(Graham 1941, Stanton 1974) and it is particularly attractive to	
solitary bees (Carlson pers. obs.). Dabbling ducks (mallards, bl	
winged teals, northern pintail, northern shovelers, and America	
wigeons) will nest in yellow alfalfa stands (Klett et al. 1984).	
Undisturbed alfalfa fields provide food and cover for a variety of	f
birds, including sharp-tailed grouse, American bitterns, marsh	1
hawks, short-eared owls, and passerines (Duebbert et al. 1981).	
Alfalfa is a host for numerous pathogens (Sullivan 1992).	0
Total for Ecological Impact 15/3 Biological Characteristics and Dispersal Score	
Biological Characteristics and Dispersal Scor Mode of Reproduction (0–3)	е 3
Yellow alfalfa reproduces by seed only (USDA 2002). The mean	~
number of seeds produced by an individual plant has been	.4
documented at 5,320 (Stevens 1932). Long-distance dispersal (0–3)	2
Yellow alfalfa seeds are large and not easily dispersed. Herbivor	-
likely facilitate the spread of the plant's seeds (Duebbert et al.	
1981, Kufeld 1973, Leach 1956).	
	3
Yellow alfalfa is cultivated worldwide and is used in erosion-	5
control projects, for rangeland and wildlife habitat restoration,	
and for hay production. The utility of the plant probably	
contributes to its spread (Klett et al. 1984, McLean et al. 1971).	
	0
Yellow alfalfa is not allelophathic (USDA 2002).	Ũ
	3
Yellow alfalfa seedlings have faster root extension and greater	
total root length than other perennial legumes (Bell 2004).	
Established alfalfa plants can be very competitive (Sullivan 199	92).
However, in Saskatchewan ranchlands seeded with alfalfa were	
outcompeted by aspen and prickly rose (<i>Rosa acicularis</i>) (Bowe	
1981).	-
	1
Yellow alfalfa can grow very densely from 3 to 5 feet high and ca	an
be taller than surrounding forbs and grasses (USDA 2002, Roy	
and Dickinson 1999).	
	2
Although seed germination can be inhibited by the presence of	
pine and juniper litter (Sullivan 1992), seeding in undisturbed	
rangelands and woodlands can be successful (MAFRI 2004).	
	3
Medicago sativa ssp. sativa L., Medicago lupulina L., M. polymorp	oha
L., and <i>M. minima</i> (L.) L. (USDA 2002, Royer and Dickinson	
1999, Hultén, E. 1968).	
	0
Yellow alfalfa has established along roadsides, in waste areas,	
(Hitchcock and Cronquist 1973, Hultén 1968) and in active an	d
abandoned agricultural fields (Royer and Dickinson 1999). It is	
not known to invade wetlands or riparian communities.	
Total for Biological Characteristics and Dispersal 17/2	5

Ecological Amplitude and Distribution Score	e
Highly domesticated or a weed of agriculture $(0-4)$	1
Yellow alfalfa is one of the most widely grown forage crops in	
the world (Powell and Bork 2004, Sullivan 1992). A number of	
agricultural varieties have been developed.	
Known level of impact in natural areas $(0-6)$ U	J
The ecological impact of yellow alfalfa in other natural areas is	
unknown.	
Role of anthropogenic and natural disturbance in	L
establishment (0–5)	
Yellow alfalfa readily establishes on natural rangelands and	
burned areas (MAFRI 2004). This species failed to establish in	
areas disturbed by grazing (Sullivan 1992, Smith 1963).	
Current global distribution (0–5)	5
Yellow alfalfa is native to Southwestern Asia and northern Afric	a
(USDA, ARS 2005). It was first cultivated in Iran, and now has a	a
worldwide distribution as an agricultural crop (Sullivan 1992).	
Extent of the species U.S. range and/or occurrence of	5
formal state or provincial listing $(0-5)$	
Yellow alfalfa is planted in all 50 states and is widely planted in	
Canada (USDA 2002, Sullivan 1992).	
Total for Ecological Amplitude and Distribution 15/19)

Feasibility of Control	Score
Seed banks (0–3)	3
A study of crop and weed seed longevity showed that s	eeds of
alfalfa can remain viable for 20 years in the soil (Lewis	1973).
Vegetative regeneration $(0-3)$	2
Alfalfa is capable of sprouting from stumps. In Utah, in	ncreased
herbivore access was correlated with increased lateral s	shoots
sprouting (Rosenstock and Stevens 1989).	
Level of effort required (0–4)	2
Control measures have not been developed due to the	value of
this plant as an agricultural crop. It is known to persist	on fields
that were previously cultivated for forage or hay (Roye	r and
Dickinson 1999). Alfalfa is susceptible to herbicides (H	Bowes
1982, Cogliastro et al. 1990).	
Total for Feasibility of Control	7/10
Total score for 4 sections	54/84
S	34/84

Medicago sativa ssp. sativa L.

Ranking Summary		
Ecoregion known or expected to occur in		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
Pot	tential Max.	Score
Ecological Impact	30	13
Biological Characteristics and Dispersal	25	17
Amplitude and Distribution	25	16
Feasibility of Control	10	7
Relative Maximum		59
Climatic Compariso		
0	ollected in	CLIMEX
	ska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	No	Yes
Medicago sativa ssp. sativa has been collected		oastal
(Seward, Exit Glacier, and Juneau) and inter	rior boreal	
(Anchorage, Wasilla, and Palmer) ecogeogr	aphic region	15
in Alaska (Hultén 1968, AKEPIC 2005, UA	M 2005). T	he
CLIMEX matching program indicates the o	climatic sim	ilaritv
between Nome and areas where alfalfa is we		
moderately high. The range of alfalfa includ		
and Zlatoust and Kirov, Russia (Gubanov et al. 2003, Hultén		
1968). The climate of these towns has a 76%, 71%, and 66% match		
with Nome, respectively. The similar climates suggest that the		
establishment of alfalfa in arctic alpine ecogeographic region of		
Alaska may be possible.		

common names: alfalfa

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	5
Alfalfa in symbiosis with the bacteria Rhizobia, increases	soil
nitrogen levels by fixing atmospheric nitrogen (USDA 20	002). The
alteration of soil condition may facilitate colonization by	other
plant species. Alfalfa increases the growth of aspen seedl	ings
(Powell and Bork 2004). In Saskatchewan ranchlands see	eded
with alfalfa were susceptible to regrowth of aspen and pri	ickly rose
(Rosa acicularis) (Bowes 1981, Sullivan 1992).	
Impact on Natural Community Structure (0–10)	1
Alfalfa establishes in an existing layer of vegetation and	
subsequently increases the density of the layer (I. Lapina	pers.
obs., Klett et al. 1984, Duebbert et al. 1981). There are no	records
concerning the elimination of existing layers of vegetatio	on by the
presence of alfalfa.	
Impact on Natural Community Composition (0–10)	U
Documentation specific to the alteration of community	
composition was not found in this review.	

rangelands and woodlands can be successful (MAFRI 2004).	Ś
of pine and juniper litter (Sullivan 1992), seeding undisturbed	Total score for 4 sections 53/90
Although seed germination can be inhibited by the presence	Total for Feasibility of Control 7/10
- 1	1982, Cogliastro et al. 1990).
and Dickinson 1999). Germination requirements (0–3) 2	Dickinson 1999). Alfalfa is susceptible to herbicides (Bowes
taller than surrounding forbs and grasses (USDA 2002, Royer	that were previously cultivated for forage or hay (Royer and
	this plant as an agricultural crop. It is known to persist on fields
Thicket-forming/Smothering growth form $(0-2)$ 1 Alfalfa can grow very densely from 3 to 5 feet high and can be	Control measures have not been developed due to the value of
	Level of effort required $(0-4)$ 2
1981)	sprouting (Rosenstock and Stevens 1989).
outcompeted by aspen and prickly rose (<i>Rosa acicularis</i>) (Bowes	herbivore access was correlated with increased lateral shoots
However, in Saskatchewan ranchlands seeded with alfalfa were	Alfalfa is capable of sprouting from stumps. In Utah, increased
alfalfa plants can be very competitive (Sullivan 1992).	Vegetative regeneration $(0-3)$ 2
length than other perennial legumes (Bell 2004). Established	alfalfa remain viable for 20 years in soil (Lewis 1973).
Alfalfa seedlings have faster root extension and greater total root	A study of crop and weed seed longevity showed that seeds of
Competitive Ability (0–3) 3	Seed banks (0–3) 3
Alfalfa is not allelophathic (USDA 2002).	Feasibility of Control Score
Allelopathic $(0-2)$ 0	Total for Ecological Amplitude and Distribution 16/25
spread (Klett et al. 1984, McLean et al. 1971).	(USDA 2002, Sullivan 1992).
hay production. The utility of the plant probably contributes to its	It is planted in all 50 states and is widely planted in Canada
projects, for rangeland and wildlife habitat restoration, and for	formal state or provincial listing $(0-5)$
Alfalfa is cultivated worldwide and is used in erosion-control	Extent of the species US range and/or occurrence of 5
Spread by humans (0–3) 3	crop (Sullivan 1992).
Kufeld 1973, Leach 1956).	in Iran, and now has a worldwide distribution as an agricultural
facilitate the spread of the plant's seeds (Duebbert et al. 1981,	Alfalfa originates from Southwestern Asia. It was first cultivated
Alfalfa seeds are large and not easily dispersed. Herbivores likely	Current global distribution $(0-5)$ 5
Long-distance dispersal $(0-3)$ 2	not persist (J. Conn pers. com.).
5,320 (Stevens 1932).	by grazing (Sullivan 1992, Smith 1963). In Alaska this taxon does
of seeds produced by an individual plant has been documented at	(MAFRI 2004). This species failed to establish in areas disturbed
Alfalfa reproduces by seed only (USDA 2002). The mean number	Alfalfa readily establishes on natural rangelands and burned areas
Mode of Reproduction (0–3) 3	
Biological Characteristics and Dispersal Score	establishment (0–5)
Total for Ecological Impact 13/30	Role of anthropogenic and natural disturbance in 1
numerous pathogens (Sullivan 1992).	in sagebrush deserts of the Great Basin (Carlson pers. obs.)
owls, and passerines (Duebbert et al. 1981). Alfalfa is a host for	Modest impacts of <i>Medicago sativa</i> ssp. <i>sativa</i> have been observed
sharp-tailed grouse, American bitterns, marsh hawks, short-eared	Known level of impact in natural areas (0–6) 1
fields provide food and cover for a variety of birds, including	varieties have been developed.
will nest in alfalfa stands (Klett et al. 1984). Undisturbed alfalfa	(Powell and Bork 2004, Sullivan 1992). A number of agricultural
northern pintail, northern shovelers, and American wigeons)	Alfalfa is one of the most widely grown forage crops in the world
pers. obs.). Dabbling ducks (mallards, blue-winged teals,	Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4
1941) and it is particularly attractive to solitary bees (Carlson	Total for Biological Characteristics and Dispersal17/25Ecological Amplitude and DistributionScore
source of nectar and pollen for insects (Stanton 1974, Graham	invade wetlands or riparian communities.
also consumed by rodents, rabbits, and upland birds. Alfalfa is a	agricultural fields (Royer and Dickinson 1999). It is not known to
wigeon and mallards eat the leaves, flowers, or seeds. Seeds are	
ground squirrels graze alfalfa. Waterfowl such as the American	and Cronquist 1973, Hultén 1968) and active and abandoned
1956). Many small mammals, including marmots, mice, and	Alfalfa has established along roadsides, in waste areas, (Hitchcock
animals, including moose and mule deer (Kufeld 1973, Leach	Dickinson 1999, Hultén, E. 1968). Aquatic, wetland or riparian species (0–3) 0
alfalfa (Graham 1941). Alfalfa is consumed by most big game	<i>M. polymorpha</i> L., and <i>M. minima</i> (L.) L. (USDA 2002, Royer and D: $1 \le 1000$ JL $1 \le 1000$)
A total of 27 species of birds and 46 mammals are known to use	Medicago sativa ssp. falcata (L.) Arcang., M. lupulina L.,

Ranking Sumr	nary	
Ecoregion known or expected to occ		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	29
Biological Characteristics and Dispersal		22
Amplitude and Distribution	25	21
Feasibility of Control	10	9
Relative Maximum Climatic Compa		81
Chinade Compa	Collected in	CLIMEX
	Alaska regions?	
South Coastal	Yes	
Interior Boreal	Yes	_
Arctic Alpine	Adjacent	Yes
Melilotus alba has been collected in the		kagway
(Hultén 1968)] and interior boreal [An		e ,
(UAM 2004, Hultén 1968); Wasilla (A	0	
River Bridge (AKEPIC 2006)], ecoged		
It has been collected at the edge of the	0 x 0	
region near Coldfoot (AKEPIC 2006).		
between Nome and areas where the spo		*
a moderate match (CLIMEX 1999). Th		
between Nome and the high elevation,	, ,	
Östersund, Jämtland, Sweden, where r		
(Natur Historiska Riksmuseet Databas		•
Melilotus alba has been collected from		
		l- : -l-
Churchill, Manitoba; and Kirov, Russi	· · ·	
have high climatic matches with Nome	. This, in additio	n to
	. This, in additio	n to
have high climatic matches with Nome	e. This, in additio Circle on the Da	n to Iton
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible.	e. This, in additio Circle on the Da	n to Iton
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact	e. This, in additio Circle on the Da	n to Iton
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10)	e. This, in additio Circle on the Da n arctic and alpin	n to Ilton ne regions Score 10
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so	e. This, in additio Circle on the Da n arctic and alpin il conditions due	n to Ilton ne regions Score 10 to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). If	n to Ilton ne regions Score 10 to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). If	n to Ilton ne regions Score 10 to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). In l presence of earl	n to Ilton ne regions Score 10 to to to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). It l presence of earl Lendon 1996). It	n to lton ne regions Score 10 to to to to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and successional habitats (Rutledge & McI	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). It l presence of earl Lendon 1996). It	n to lton ne regions Score 10 to to to to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and successional habitats (Rutledge & McI potential to alter sedimentation rates o	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). If l presence of earl Lendon 1996). It f river ecosystem	n to lton ne regions Score 10 to to to to
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and successional habitats (Rutledge & McI potential to alter sedimentation rates o Shephard pers. obs.). Impact on Natural Community Structure	e. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). If l presence of earl Lendon 1996). It f river ecosystem re (0–10)	n to lton ne regions Score 10 to to to to s y has is (M. 7
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and successional habitats (Rutledge & McI potential to alter sedimentation rates o Shephard pers. obs.). Impact on Natural Community Structur White sweetclover forms dense monos	2. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). It l presence of earl Lendon 1996). It f river ecosystem re (0–10) pecific stands in	n to lton ne regions Score 10 to to to to s (M. 7 Alaska
have high climatic matches with Nome known populations north of the Arctic Highway, suggests that establishment i of Alaska may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) White sweetclover is known to alter so nitrogen fixation and reducing erosion is possible it may affect the ecology and successional habitats (Rutledge & McI potential to alter sedimentation rates o Shephard pers. obs.). Impact on Natural Community Structure	2. This, in additio Circle on the Da n arctic and alpin il conditions due (USDA 2002). It l presence of earl Lendon 1996). It f river ecosystem re (0–10) pecific stands in is known to degr	n to lton ne regions Score 10 to to to ts (M. 7 Alaska ade

2003) Impact on Natural Community Composition (0–10) 5 No known documentation of alteration of community composition, but based on personal observation (I. Lapina pers. obs., M. Carlson pers. obs.) very few native species occur under the canopy of white sweetclover. Experimental studies suggest that early successional plants along interior rivers in Alaska are negatively affected by shading (Spellman 2007). Spellman (2007) showed reduced growth and survivorship of forbs and Salix alaxensis when grown under similar light conditions in the greenhouse.

common names: white sweetclover

Impact on Higher Trophic Levels (0–10)	7
White sweetclover is reported to be toxic to horses, catt	
sheep when improperly dried (CUPPID 2003). This sp	
high palatability for wildlife herbivores (birds as well as	
large mammals) (Uchytil 1992). Though moose do not	
on white sweetclover (Conn pers. obs., Shephard pers.	obs. D.
Spalinger unpublished data). In the Yukon Territory th	ere are
reports of moose, elk, and deer eating the dried stems in	n late
spring (B. Bennett pers. com.). White sweetclover is vis	sited by
introduced honeybees, native solitary bees, wasps, and	flies
(Eckardt 1987). It is associated with over 28 viral disea	ses (Royer
and Dickinson 1999). It contains coumarin and dicour	
Total for Ecological Impact	29/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
White sweetclover produces 14,000 to 350,000 seeds p	er plant,
no vegetative reproduction (Royer and Dickinson 1999	-
and McLendon 1996, USDA 2002).	, 0
Long-distance dispersal $(0-3)$	2
Rainwater runoff and streamflow are probably the mos	t
important means of seed dispersal (Eckardt 1987, Ruth	
McLendon 1996, Shephard pers. com.).	0
Spread by humans $(0-3)$	3
White sweetclover has spread from cultivation (Eckhar	rdt 1987,
Wisconsin DNR 2003). It also contaminates cereal gra	
& Dickinson 1999) and can spread from vehicle tires (I	
et al. 2001). Used as forage crop, soil builder, erosion st	
and nectar source for honeybees.	,
Allelopathic (0–2)	2
White sweetclover is allelopathic (USDA, NRCS 2002). The
original source of this information could not be located	
literature search.	
Competitive Ability (0–3)	3
White sweetclover competes for resources with native	species
and has high nitrogen-fixing ability (Eckardt 1987, USI	DA, NRCS
2002).	
Thicket-forming/Smothering growth form $(0-2)$	2
White sweetclover forms dense tall thickets elsewhere	(Lloyd
1912, Westgate and Vinall 1912) and in Alaska (I. Lapin	na pers.
obs.).	-
Germination requirements (0–3)	1
White sweetclover has only been observed in areas with	h
predominantly mineral soil (Conn 2003, I. Lapina pers	s. obs., M.
Carlson pers. obs.). Plants are shade intolerant as well (USDA
2002). Experimental studies show that seed germination	on
is possible (but at much reduced rates) in vegetated hur	
substrates (Rzeczycki T., unpublished data).	
Other invasive species in the genus $(0-3)$	3
Melilotus officinalis (L.) Lam is listed as a weed (Eckard	t 1987,
USDA, NRCS 2002).	

Aquatic, wetland or riparian species $(0-3)$ 3	Current global distribution (0–5) 5	
White sweetclover has been observed invading thousand of acres	White sweetclover is native to the Mediterranean area through	
along river systems: Nenena, Stikine, and Matanuska (Conn	Central Europe to Tibet. It is introduced into South Africa, North	
2003, Shephard pers. com.). The tendency of seed to disperse	and South America, New Zealand, Australia, and Tasmania	
by water indicates that herbaceous riverine communities can be	(Hultén 1968).	
altered by invasion of <i>M. alba</i> . However, this taxon is intolerant	Extent of the species U.S. range and/or occurrence of 5	
of consistently wet, non-well drained substrates (Heffernan et al.	formal state or provincial listing $(0-5)$	
2001)	White sweetclover is found in all 50 states and all but two	
Total for Biological Characteristics and Dispersal 22/25	Canadian provinces. It is listed as "exotic pest" in Tennessee,	
Ecological Amplitude and Distribution Score	"ecologically invasive" in Wisconsin, "weed" in Kentucky and	
Highly domesticated or a weed of agriculture (0–4) 4	Quebec, Canada (Royer and Dickinson 1999, USDA, NRCS	
White sweetclover has been extensively used as a forage crop,	2002).	
soil builder, and a nectar source for honeybees (Turkington	Total for Ecological Amplitude and Distribution21/25	
1978, Eckardt 1987). A cold tolerant variety has been bred and is	Feasibility of Control Score	
establishing in Alaskan parks (Densmore et al. 2001)	Seed banks (0–3) 3	
Known level of impact in natural areas (0–6) 4	Seeds of white sweetclover can remain viable in the soil for	
White sweetclover has invaded sand dunes and gravel bars	11–50 years and up to 81 years (Stoa 1933, Butterfield et al. 1996,	
along the Stikine River, Tongass National Forest (Stensvold	J. Conn pers. com., Royer and Dickinson 1999, Rutledge and	
2000, Spencer pers. obs.); and Nenena and Matanuska River	McLendon 1991).	
in south-central (Conn 2003). It has invaded rivers systems in	Vegetative regeneration (0–3) 2	
Alaska and aspen woodlands in Rocky Mountain National Park,	White sweetclover resprouts readily when burn, cut, or grazed	
Colorado (Rutledge and McLendon 1996). It has been found in	(Butterfield et al., 1996, Wisconsin DNR 2003). However,	
mid-successional sites that were disturbed in the last 11–50 years	Densmore et al. (2001) reports that it does not resprout.	
(Pipestone National Monument, Minnesota Butterfield et al.	Level of effort required (0–4) 4	
1996).	Management requires a long-term investment due to long	
Role of anthropogenic and natural disturbance in 3	seed viability and density patches. Plant can be managed using	
establishment (0–5)	mechanical and chemical control methods. Several treatments	
White sweetclover readily invades open areas. Natural or human-	may be necessary. Sites must be monitored. Remote sites	
caused fires promote invasion by scarifying seeds and stimulating	especially difficult to control (J. Conn pers. com., Eckardt 1987).	
germination. The clearings in forested land are easily colonized by	Total for Feasibility of Control 9/10	
Melilotus. It resprouts readily when cut or grazed (Eckardt 1987,	Total score for 4 sections81/100	
Wisconsin DNR 2003). Soil disturbance from road construction	S	
is known to facilitate invasion of this species (Parker 1993).		

Melilotus officinalis (L.) Lam

Ranking Summ		-	
Ecoregion known or expected to occu	r in		
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
v. 1 . 1v	Potential Max.	Score	
Ecological Impact	40	24	
Biological Characteristics and Dispersal	25	18	
Amplitude and Distribution	25	19	
Feasibility of Control	10	8	
Relative Maximum		69	
Climatic Compa	Collected in	CLIMEX	
	Alaska regions?		
South Coastal	Yes		
Interior Boreal	Yes	_	
Arctic Alpine	No	Yes	
Yellow sweetclover has been collected in Anchorage, Fairbanks,			
and McCarthy [interior boreal ecoregio	0		
Seward and Whittier [south coastal econ			
UAM 2004)]. It does not appear to have	e		
arctic alpine ecoregion. The climatic sim			
and areas where the species is document	,		
*			
high match (CLIMEX 1999). There is a 76% similarity between			
Nome and Røros, Norway, (CLIMEX 1999) where the species is			
documented (Hultén 1968). The range of <i>M. officinalis</i> includes			
Zlatoust, Russia and Stensele, Sweden (Hultén 1968) which			
have 71% and 70% of climatic matches with Nome respectively.			
Additionally, there is a 57% similarity between Nome and			
Östersund, Sweden where this species has been collected			
(NI-to-uIII) -to-ui-loo Dilamana -t Datalana	2004) This		

(Natur Historiska Riksmuseet Database 2004). This suggests that establishment in arctic and alpine regions of Alaska may be possible. Ecological Impact Score

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	7
Yellow sweetclover is known to alter soil conditions due	to
nitrogen fixation and reducing erosion. It has the potenti	al to
inhibit natural succession processes (Rutledge and McL	endon
1996). Sweetclover appears to promote the establishmen	t of other
non-native plants (Wolf et al. 2003)	
Impact on Natural Community Structure (0–10)	5
Yellow sweetclover is known to degrade natural grassland	d
communities (Wisconsin DNR 2003) and is a persistent	part of
the understory vegetation in cottonwood and juniper wo	odlands,
but does not form a major component of the ground cove	er
(Sullivan 1992). Yellow sweetclover can form a new high	forb
layer in grassland prairies (Lesica and Deluca 2003)	
Impact on Natural Community Composition (0–10)	5
Yellow sweetclover has the ability to shade out native her	baceous
species (Townsend 2001). Sites with established sweetcle	over had
lower numbers of native species (Wolf et al. 2003).	

common names: yellow sweetclover

/	
Impact on Higher Trophic Levels (0–10)	7
Yellow sweetclover is eaten by elk, deer, and domestic livestocl	ζ
(Sullivan 1992). It is visited by introduced honeybees, native	
solitary bees, wasps, and flies (Eckardt 1987).It is moderately	
toxic to animals (Whitson et al. 2000) and allelopathic (USDA	A
2002). Yellow sweetclover provides cover for upland gamebird	S
and ducks and is highly palatable to grazing wildlife (Lesica an	d
DeLuca 2000)	
Total for Ecological Impact 24/4	-0
Biological Characteristics and Dispersal Sco	re
Mode of Reproduction (0–3)	3
Yellow sweetclover reproduces copious amounts of seeds. Plan	t
can produce 14,000–350,000 seeds per year (Rutledge and	
McLendon 1996). It does not reproduce vegetatively.	
Long-distance dispersal (0–3)	2
Seeds of yellow sweetclover may be dispersed by water, although	gh
wind can blow seeds up to several meters (Eckardt 1987, Rutle	dge
and McLendon. 1996).	
Spread by humans (0–3)	3
Yellow sweetclover has spread from cultivation (Densmore et	
al. 2001, Welsh 1974). It may contaminate cereal grains and	
can spread from vehicle tires. (Densmore et al. 2001). Yellow	
sweetclover is sometimes promoted for soil stabilization or soi	l
improvement (Whitson 2000). It is used as a forage crop, soil	
builder, erosion stabilizer, and nectar source for honeybees.	
Allelopathic (0–2)	2
Yellow sweetclover is listed as an allelopathic in PLANTS	
Database (USDA 2002). Sweetclover roots contain substances	
allelopathic to Agropyron cristatum, Bromus inermis, and Phleu	
pratense (Sullivan 1992).	
Competitive Ability (0–3)	2
Yellow sweetclover may compete with native species (Densmo	re
et al. 2001, Eckardt 1987), and has high nitrogen-fixing ability	
(USDA 2002). Yellow sweetclover reduced the yield of crested	
wheatgrass when grown together, probably due to competition	
soil moisture (Lesica and DeLuca 2000)	
Thicket-forming/Smothering growth form $(0-2)$	2
Yellow sweetclover is a plant with stems up to 6 feet tall (Welsh	ı
1974, Whitson 2000), forming dense monospecific stands that	
shade all other vegetation of open or grassland sites (Lesica and	
Deluca 2000).	
Germination requirements (0–3)	0
Yellow sweetclover requires open soil for germination (Densm	ore
et al. 2001).	
Other invasive species in the genus $(0-3)$	3
Melilotus alba Medikus	
Aquatic, wetland or riparian species $(0-3)$	1
Yellow sweetclover is a weed of pastures, roadsides, neglected	
fields, and waste places. It can be found in open disturbed, upla	nd
habitats such as prairies, savannas, and dunes (Wisconsin DN)	R
2003, Whitson 2000). However, one site of infestation was an	
acidic wetland in the lower Susitna Valley, Alaska (AKEPIC	
2005, I. Lapina pers. obs.)	
Total for Biological Characteristics and Dispersal 18/2	25

Ecological Amplitude and Distribution Score	Extent of the species U.S. range and/or occurrence of 5
Highly domesticated or a weed of agriculture $(0-4)$ 4	formal state or provincial listing $(0-5)$
Yellow sweetclover is an important forage, hay, and pasture	The species is found in all 50 states (Wisconsin DNR 2003). It is
species and has spread from cultivation Also it is widely used for	declared noxious in Quebec (Invaders Database System 2003).
stabilization of disturbed sites (Densmore et al. 2001, Sullivan	Total for Ecological Amplitude and Distribution 19/25
1992, Whitson 2000). It has been recommended for grassland	Feasibility of Control Score
revegetation by a number of federal agencies (Lesica and DeLuca	Seed banks (0–3) 3
2000).	Seeds can remain viable in the soil for 11–50 years (Cole 1991,
Known level of impact in natural areas $(0-6)$ 4	Eckardt 1987, Rutledge and McLendon 1996).
Yellow sweetclover invades valleys and prairies in Illinois, Iowa,	Vegetative regeneration $(0-3)$ 1
Minnesota, Missouri, North Dakota, and Wisconsin (Eckardt	Plants usually do not resprout when the stems are cut close to the
	ground (Cole 1991).
1987) as well as Douglas fir, lodgepole pine, and grasslands of the	Level of effort required (0–4) 4
West and Midwest (Sullivan 1992)	Yellow sweetclover can be managed using mechanical or
Role of anthropogenic and natural disturbance in 3	burning methods. Due to the long viability of seeds, sites must be
establishment (0–5)	managed on continuous basis (Cole 1991, Wisconsin DNR 2003).
Yellow sweetclover tends to be eliminated in shaded sites,	Total for Feasibility of Control 8/10
although it will persist on sites with periodic disturbances	Total score for 4 sections65/100
(Sullivan 1992). Burning stimulates germination by scarifying	_
seeds and yellow sweetclover will colonize areas disturbed by fire	\$
(Wisconsin DNR 2003).	
Current global distribution (0–5) 3	
Yellow sweetclover is a native to the Mediterranean area through	
Central Europe to Tibet (Eckardt 1987). It was introduced into	
North and South America (Hultén 1968).	

Mycelis muralis (L.) Dumort.

nijeens muruns (Er) Dunierer			ccuee	
Ranking Summ	ary		Ecological Impact	Score
Ecoregion known or expected to occu	r in		Impact on Ecosystem Processes (0–10)	1
South Coastal		Yes	Wall lettuce is an early successional species with minin	nal cover
Interior Boreal		No	(Clabby and Osborne 1999), which is likely to have mi	nimal
Arctic Alpine		No	impacts on ecosystem processes.	
	Potential Max.	Score	Impact on Natural Community Structure (0–10)	2
Ecological Impact	40	7	Wall lettuce cover in vegetation is low, often less then 1	
Biological Characteristics and Dispersal	23	11	can approach 40%. The numbers of plants ranged from	
Amplitude and Distribution	25	8	m^2 in Irish woodland (Clabby and Osborn 1999).	1 to 10 per
Feasibility of Control	10	4	Impact on Natural Community Composition (0–10)	1
Relative Maximum		31	There are no records concerning the alteration of comr	I
Climatic Compa	rison		Ŭ	nunnty
-	Collected in	CLIMEX	composition.	2
	Alaska regions?	similarity?	Impact on Higher Trophic Levels (0–10)	3
South Coastal	Yes	_	A number of insects and parasites have been observed	
Interior Boreal	No	No	lettuce. Mycorrhizal relationships are known to occur	
Arctic Alpine	No	No	lettuce. Latex production may act as an antiherbivory d	levice
Mycelis muralis has been reported from H	Ketchikan, Wra	angell, and	(Clabby and Osborn 1999).	
Kuiu Island in south coastal Alaska (AK			Total for Ecological Impact	7/40
range includes Røros and Dombås, Norv		*	Biological Characteristics and Dispersal	Score
which has a 76% and 63% climatic match			Mode of Reproduction (0–3)	3
	,		Wall lettuce reproduces exclusively by seed. A plant ma	y produce
and 52% climatic match with Fairbanks,	- · ·		up to 500 seeds in shaded sites and up to 11,500 seeds i	n more
1999). However, its northern limit in Europe approximately		open sites (Clabby and Osborne 1999).		
follows the 19.4 °F mean January isotherm (Clabby and		Long-distance dispersal (0–3)	3	
Osborne 1958). These conditions are not typical for arctic alpine		Achenes possess pappus and may by dispersed by wind	(Douglas	
and interior boreal ecogeographic regions. We suggests that		1955).	(_ 0	
establishment of Mycelis muralis in inter-			Spread by humans (0–3)	2
alpine ecogeographic regions is unlikely.		Wall lettuce can be dispersed along the transportation	-	
	-			connuors
			(M. Shephard pers. com.).	

common names: wall lettuce

Allelopathic (0–2) U	Current global distribution (0–5) 5
There is no data concerning allelopathy. The small volume of	Wall lettuce is native to most of temperate continental Europe.
literature on this species suggests that it has not been tested.	Its distribution extends eastward to Turkey and the Caucasus
Competitive Ability (0–3)	Mountains and north in Norway at 68.5°N. Wall lettuce also
Wall lettuce almost always occurs as a component of sparse	occurs in North Africa, North America, and New Zealand
vegetation and is rarely found in closed swards. It may compete	(Clabby and Osborn 1999).
with co-occurring species in closed woodland vegetation (Clabby	Extent of the species U.S. range and/or occurrence of 2
and Osborn 1999).	formal state or provincial listing (0–5)
Thicket-forming/Smothering growth form $(0-2)$ 0	Wall lettuce has been found in Maine, Massachusetts, Michigan,
Wall lettuce does not form thickets or patches. It usually occurs	Minnesota, New Hampshire, New York, Oregon, Vermont, and
in small groups or as scattered individuals (Clabby and Osborne	Washington (USDA 2002). Mycelis muralis is exotic to North
1999).	America but is not listed as noxious (Invaders Database System
Germination requirements (0–3) 2	2003, USDA 2002).
Wall lettuce germinates mainly on barren or sparsely vegetated	Total for Ecological Amplitude and Distribution 8/25
sites (Clabby and Osborn 1999).	Feasibility of Control Score
Other invasive species in the genus $(0-3)$ 0	Seed banks (0–3) 2
The genus <i>Mycelis</i> is monotypic (USDA 2002).	In laboratory experiments, dry seeds stored in a refrigerator
Aquatic, wetland or riparian species (0–3) 0	remained viable for at least 3 years. Seeds stored at room
Wall lettuce is a species of moist to mesic forests in the lowland	temperature lost viability after 2 years (Clabby and Osborne
and montane zones. It is commonly found in open woods, wood	1999). In Kellman's (1974) study the number of viable seeds
margins, and woodland clearings, but also occurs in scrub and on	declined during the 3 years of monitoring, suggesting a short
walls and rock outcrops (Clabby and Osborne 1999, Cronquist	
1955, Douglas et al. 1998, Gubanov et al. 1995).	period of seed viability. Vegetative regeneration (0–3) 0
Total for Biological Characteristics and Dispersal 11/23	Wall lettuce does not regenerate vegetatively (Clabby and Osborn
Ecological Amplitude and Distribution Score	1999).
Highly domesticated or a weed of agriculture $(0-4)$ 0	Level of effort required $(0-4)$ 2
The species is not known as an agricultural weed.	Control options have not been investigated. Kellman (1974)
Known level of impact in natural areas $(0-6)$ 1	
Though wall lettuce occurs mainly on disturbed sites (Clabby and	suggested that wall lettuce will not persist on sites with
Osborn 1999), it has been observed to invade forest communities	established perennials.
in Oregon (M.L. Carlson pers. obs.). Wall lettuce has been found	Total for Feasibility of Control 4/10 Total for Feasibility of Control 20/00
along old logging roads in southeast Alaska (AKEPIC 2004).	Total score for 4 sections 30/98
Role of anthropogenic and natural disturbance in 0	S
establishment (0–5)	
Wall lettuce habitats are often associated with natural or	
anthropogenic disturbances such as storms, fires, and clearcuts	
(Clabby and Osborne 1999).	
(Ontob) and Obborne 1///).	

Myriophyllum spicatum L.

- 1				
Ranking Summary				
Ecoregion known or expected to occur in				
South Coastal		Yes		
Interior Boreal		Yes		
Arctic Alpine		Yes		
	Potential Max.	Score		
Ecological Impact	40	38		
Biological Characteristics and Dispersal	22	20		
Amplitude and Distribution	25	20		
Feasibility of Control	10	9		
Relative Maximum		90		
Climatic Comparison				
^	Collected in	CLIMEY		

	Collected in Alaska regions?	similarity?
South Coastal	No	Yes
Interior Boreal	No	Yes
Arctic Alpine	No	Yes
C IN C. TI . C		

Special Note: This taxonomy and identification of Eurasian watermilfoil is problematic. It is often synonymized with *M. sibiricum* Komarov, which is native to Alaska (ITIS Database 2004) and the two taxa are known to hybridize (Moody and Les 2007). Hultén (1968) and the UAM database treat the native taxon in Alaska broadly and as *M. spicatum*; however, it appears that Eurasian watermilfoil in the strict sense is not known from any locations in Alaska.

The very closely related Myriophyllum sibiricum (synonymized by many authors) has been collected in the south coastal, interior boreal, and arctic alpine ecoregions in Alaska (Hultén 1968). The species' range includes the Norland province in Norway, where it is only occasionally found (Lid and Lid 1994), the climatic similarity of this region is similar to the interior boreal and arctic alpine ecoregions of Alaska (CLIMEX 1999). It is known from southwestern Norway which tends to have a strong climatic similarity with the Alaskan south coastal ecoregion (Bergen has a 73% climatic match with Juneau). Last, the closely related *M*. sibiricum has similar range in Europe and is widespread in Alaska. We suggests that establishment of *M. subspicatum* in the south coastal, interior boreal, and arctic alpine ecogeographic regions is possible. 1 . . 11 1 0

Ecological Impact Score	Ric	1
Impact on Ecosystem Processes (0–10) 8	Thi	
Dense Eurasian watermilfoil mats alter water quality by raising	Thi	
pH, decreasing dissolved oxygen under the mats, and increasing	(Ja	
temperature. The dense mats of vegetation can increase the	Ge	
sedimentation rate by trapping sediments (Jacono and Richerson	Ge	
2003, Washington State Department of Ecology 2003).	(Re	
Impact on Natural Community Structure (0–10) 10	Ot	
Eurasian watermilfoil forms dense floating mats of vegetation,	My	r
preventing light penetration for native aquatic plants (Jacono and	M.	
Richerson 2003, Remaley 1998, Washington State Department of		
Ecology 2003).	Aq	
Impact on Natural Community Composition (0–10) 10	The	
This aquatic plant is able to displace and reduce natural diversity	toł	
(Bossard 2004, Jacono and Richerson 2003, Washington State	res	eı
Department of Ecology 2003).	Ric	

common names: Eurasian watermilfoil, myriophylle en epi, spike watermilfoil

1		
	Impact on Higher Trophic Levels (0–10) 10	
	Monospecific stands of Eurasian watermilfoil provide poor	
	habitat for waterfowl, fish, and other wildlife (Jacono and	
	Richerson 2003). Loss of nutrient-rich native plants reduces food	1
	sources for waterfowl; it impacts fish spawning; and it disrupts	
	predator-prey relationships by fencing out larger fish. Stagnant	
L	water created by Eurasian watermilfoil mats provides good	
L	breeding grounds for mosquitoes (Bossard 2004).	
	Total for Ecological Impact 38/40	
	Biological Characteristics and DispersalScoreMode of Reproduction (0-3)3	
	Reproduction is by seeds, rhizomes, fragmentation, and winter	
	buds. Young populations of Eurasian watermilfoil averaged a see	d
	set of 112 seeds per stalk. Despite the high seed production, it is	u
	propagated predominantly by vegetative fragments (Aiken 1981)	
	Bossard 2004, Remaley 1998, Washington State Department of	
	Ecology 2003).	
	Long-distance dispersal (0–3) 3	
	Fragments can be spread by floating downstream, waterfowl,	
	and other wildlife. Fruits are buoyant for short period and can be	2
	dispersed by water (Bossard 2004).	-
	Spread by humans (0–3) 3	
	It is spread from lake to lake on boat trailers and fishing gear.	
	A number of populations found in Oklahoma were introduced	
	by earthworm farmers who packed their product in Eurasian	
	watermilfoil (Jacono and Richerson 2003, Washington State	
	Department of Ecology 2003). It could very likely be moved by	
	floatplanes and small boats used in Alaska.	
	Allelopathic (0–2) 0	
	No records of allelopathy.	
	Competitive Ability (0–3) 3	
	Eurasian watermilfoil competes aggressively with native aquatic	
	plants (Bossard 2004, Jacono and Richerson 2003). Eurasian	
	watermilfoil is an extremely adaptable plant, able to tolerate and	
	even thrive in a variety of environmental conditions. It grows in	
	still to flowing waters, survives under ice, tolerates pH from 5.4	
	to 11, and can grow over a broad temperature range. This plant	
	begins spring growth earlier than other aquatic plants, quickly	
$\left \right $	grows to the surface and forming dense canopies (Jacono and	
	Richerson 2003).	
	Thicket-forming/mothering growth form $(0-2)$ 2	
	This aquatic plant forms a large, dense canopy of vegetation	
	(Jacono and Richerson 2003, Remaley 1998).	
	Germination requirements (0–3) N/A	
	Germination of seed is not a significant factor in reproduction.	`
	(Remaley 1998, Washington State Department of Ecology 2003) Other investigation of Ecology 2003	
	Other invasive species in the genus (0–3) 3 <i>Myriophyllum exalbescens</i> Fern. (Royer and Dickinson 1999).	
	<i>M. aquaticum</i> (Vell.) Verdc. (Anderson and Spencer 1999).	4
	2002).	T
	Aquatic, wetland or riparian species (0–3) 3	
	The typical habitat for Eurasian watermilfoil includes fresh	
	to brackish water of fishponds, lakes, slow-moving streams,	
	reservoirs, estuaries, and canals (Bossard 2004, Jacono and	
	Richerson 2003).	
-	Total for Biological Characteristics and Dispersal20/22	

Ecological Amplitude and Distribution Score	Extent of the species U.S. range and/or occurrence of 5	
Highly domesticated or a weed of agriculture (0–4) 1	formal state or provincial listing $(0-5)$	
Myriophyllum spicatum is not an agricultural weed. It likely has	It had been found in 33 states of the United States, and the	
been used in aquatic gardens and aquariums (Bossard 2004).	Canadian provinces of British Columbia, Ontario, and Quebec	
Known level of impact in natural areas $(0-6)$ 6	(Jacono and Richerson 2004, USDA 2002). Myriophyllum	
Myriophyllum spicatum is abundant, aggressive, and caused	spicatum is declared noxious in 12 states of the United States and	
high impacts in streams, ponds, and lakes of Massachusetts,	1 Canadian province (Invaders Database System 2003).	
Connecticut, California, Minnesota, Virginia, Washington, and	Total for Ecological Amplitude and Distribution 20/25	
many other states (Anderson and Spenser 1999, Bossard 2004,	Feasibility of Control Score	
Jacono and Richerson 2003, Remaley 1998, Welling 2004).	Seed banks (0–3)	
Role of anthropogenic and natural disturbance in 3	Eurasian watermilfoil produces long-viable, often dormant seeds.	
establishment (0–5)	Despite the high seed production, it is thought that germination	
The plant thrives in areas that have been subjected to various	of seed is not a significant factor in reproduction (Bossard 2004,	
kinds of natural and manmade disturbance (Jacono and	Remaley 1998).	
Richerson 2003, Remaley 1998, Welling 2004). It is particularly	Vegetative regeneration $(0-3)$ 3	
troublesome in water bodies with nutrient loading, intense	New plants develop from fragments of former plants (Bossard	
plant management, and abundant motorboat use. Motorboat	2004).	
traffic contributes to natural seasonal fragmentation and	Level of effort required $(0-4)$ 4	
the distribution of fragments throughout lakes (Jacono and	Once milfoil becomes well-established within a water body, it is	
Richerson 2003).	difficult or impossible to remove. In smaller water bodies, there	
Current global distribution (0–5) 5	is some limited success using an aquatic herbicide. Other control	
Eurasian watermilfoil is native to Europe, Asia, and northern	methods include: harvesting, rotovation, installation of bottom	
Africa. It now occurs in North and South America, Australia,	barriers, and diver hand pulling (Anderson and Spenser 1999,	
Greenland, Central and South Africa (Hultén 1968).	Bossard 2004, Welling 2004).	
	Total for Feasibility of Control9/10	
	Total score for 4 sections87/97	
	S	

Nymphaea odorata ssp. odorata Ait.

Ecoregion known or expected to occur inSouth CoastalYesInterior BorealNoArctic AlpineNoPotential Max.ScoreEcological Impact40Biological Characteristics and Dispersal25Amplitude and Distribution25Feasibility of Control76Relative Maximum80	Ranking Summary			
Interior BorealNoArctic AlpineNoPotential Max.Ecological Impact40Biological Characteristics and Dispersal25Amplitude and Distribution25Feasibility of Control7	Ecoregion known or expected to occur in			
Arctic AlpineNoPotential Max.ScoreEcological Impact4036Biological Characteristics and Dispersal2518Amplitude and Distribution2518Feasibility of Control76	South Coastal		Yes	
Potential Max.ScoreEcological Impact4036Biological Characteristics and Dispersal2518Amplitude and Distribution2518Feasibility of Control76	Interior Boreal		No	
Ecological Impact4036Biological Characteristics and Dispersal2518Amplitude and Distribution2518Feasibility of Control76	Arctic Alpine		No	
Biological Characteristics and Dispersal2518Amplitude and Distribution2518Feasibility of Control76		Potential Max.	Score	
Amplitude and Distribution2518Feasibility of Control76	Ecological Impact	40	36	
Feasibility of Control76	Biological Characteristics and Dispersal	25	18	
	Amplitude and Distribution	25	18	
Relative Maximum 80	Feasibility of Control	7	6	
	Relative Maximum		80	

Climatic Comparison

F	Collected in Alaska regions?	CLIMEX similarity?
South Coastal	Yes	_
Interior Boreal	No	No
Arctic Alpine	No	No
Ope individual of Numphaga adorata sen	adarata bas ba	an

One individual of Nymphaea odorata ssp. odorata has been recorded in a muskeg pool on Baranof Island near Sitka in 1997 (UAM 2004). The site has been monitored since then and no spreading of the species has been observed (M. Shephard pers. com.). Nymphaea odorata ssp. odorata is native to eastern half of North America, including southern Canada. It has been introduced into British Columbia, Oregon, Washington, Idaho, Montana, and other western states. It also is documented in Manitoba and Saskatchewan (Wiersema 1997). The CLIMEX climate matching program indicates the climatic similarity between the interior boreal and arctic alpine ecoregions of Alaska and areas where the species occurs is low. Similarity between Anchorage, Fairbanks, and Nome, and areas of species native range is 25% to 35%. Similarity between the Anchorage, Fairbanks, and Nome climates with areas in Washington and British Columbia where waterlily has been introduced is 30% to 40%. Thus establishment of *Nymphaea odorata* in interior boreal and arctic alpine ecogeographic regions of Alaska is unlikely. Climatic similarity between Juneau and Grand Banks and St. Johns, Newfoundland where white waterlily occurs is high (55% and 54% respectively). White waterlily is expected to expand its range in the south coastal region of Alaska.

Ecological ImpactScoreImpact on Ecosystem Processes (0–10)8Macrophytes generally change water quality. Extensive8infestations of white waterlily creates low oxygen conditions8beneath the dense canopy. It has the ability to alter nutrient8dynamics by uptake from the sediments, and later release8(Moore et al. 1994). Infestations of waterlily may promote other

exotic species such as carp, which have the ability to tolerate low oxygen conditions (Frodge et al. 1995, Moore et al. 1994). Dense infestations may accelerate the natural siltation process in shallow bodies of water. Waterlily can clog irrigation ditches or streams, thus slowing waterflow and hastening water loss through transpiration (Else and Riemer 1984).

common names: white waterlily

Impact on Natural Community Structure (0–10)8White waterlily tends to form dense floating mats of vegetationthat prevent light penetration to native aquatic plants(Washington Department of Ecology 2005). Distribution ofmacrophytes mats influences the distribution of phyto- andzooplankton, aquatic insects, and fish populations (Frodge et al.1995, Moore et al. 1994). Frodge and others (1995) in a study offish mortality in two western Washington lakes observed that fishavoid heavily vegetated areas and move to unaffected parts of thelake.Impact on Natural Community Composition (0–10)10

White waterlily infestations may shift microorganism species composition toward anaerobic species. These infestations may cause a reduction of fish population size and lead to extirpation of fish species over the long term. Marcophyte beds create conditions favorable for rotifers and exotic fish species such as carp (Frodge et al. 1995, Moore et al. 1994). Impact on Higher Trophic Levels (0–10) 10

Impact on Higher Trophic Levels (0-10)White waterlily provides important habitat for fish, frogs, and invertebrates. However, a decline in the positive influences on fish production occurs once a threshold of approximately 40% of the surface area cover is exceeded. Wildlife including beaver, moose, muskrat, porcupine, and deer eat waterlily leaves and roots. Waterfowl eat the seeds (Washington Department of Ecology 2005). Aquatic and semiaquatic insects use this species both for habitat and food (Dorn et al. 2001, Cronin et al. 1998). Beetles and bees have been observed visiting the flowers of waterlily. Dead insects were frequently found in flowers of Nymphaea odorata (Schneider and Chaney 1981). A change in nutrient regime may alter phyto- and zooplankton community composition and productivity (Murray and Hodson 1986). Fish population distribution also appears to be strongly influenced by waterlily infestations. In addition, waterfowl utilization of lakes has declined with the expansion of the white waterlily. Aqueous extracts from leaves, petioles, and rhizomes of white waterlily have strong allelopathy potential (Quayyum et al. 1999, Spence 1998). Sometimes other noxious plants such as Hydrilla can be introduced to lakes when waterlilies are planted (Washington Department of Ecology 2005, Moore et al. 1994). A lake restoration diagnostic study in Washington indicated that game fish populations are stressed by high temperatures, low summer oxygen concentration, and predation from carp. The stress resulted in reproductive failure and lower growth rates, in contrast to a population typically observed in lakes with less macrophyte biomass (Moore et al. 1994). Concentrations of dissolved oxygen in dense beds of Nymphaea odorata in two western Washington lakes were measured below lethal limits for largemouth bass and steelhead trout. Although, no significant mortality occurred in the surface water, all the fish found at 1 m in dense macrophyte beds were dead within 12 hours (Frodge et al. 1995). Schneider and Chaney (1981) considered that insects may drown in fluid in the cup-like center of the flower. The death of the insects may be because of asphyxiation due to the heavy floral odor or the accumulation of carbonic acid. Insects also died from drowning in closed flowers. 36/40 Total for Ecological Impact

Biological Characteristics and Dispersal Mode of Reproductin (0-3)Known level of impact in natural areas (0-6) A number of small lakes in Washington Department of Ecology 20(5). Long-distance dispersal (0-3)Known level of impact in natural areas (0-6) A number of small lakes in Washington Department of Ecology 20(5). A number of small lakes in Washington Department of Ecology 20(5). Schneider and Chaney 1981). Spread by humans (0-3)Known level of impact in natural disturbance in established with sole on thropogenic and natural disturbance in established with sole on thropogenic and natural disturbance in established with eaver 1981. Spread by humans (0-3)Known level of impact in natural disturbance in established with sole on transported to the areas and other lakes by water currents and duck stat eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0-3)Known level of impact in natural disturbance in established with sole of number of small states be in intentionally introduced in ornamental in many parts of the world and it is expected in hubits eed germination and root growth of other aquatic plant (Quaryy met al. 1999, Spreae 1998). Aqueous extracts from leaves, petioles, and rhizomes of white waterily schibt high allelopathy potential and are reported to inhubits eed germination and root growth of other aquatic species. Inkcket forming//Smothering growth form (0-2) White waterily is able to dominate and replace native macriphytes (Washington Department of Ecology. 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are realy observed in the field, when the adult population is high. However, alarge number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (Dither invasis species in the	2005,
Waterilies reproduce through both seeds and rhizomes (Washington Department of Ecology 2005). Long distance dispersal (0-3)White wateriliy (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0-3)White wateriliy is and that alkes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0-3)White wateriliy has been introduced into lakes with foluent and the seen intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Alleopathic (0-2) Aqueous extracts from leaves, petioles, and rhizomes of white wateriliy exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic species. Thicket forming/Smothering growth form (0-2) Using the abelity of Nymphaca odorata were found. Since established white wateriliy is able to dominate and replace native macriptytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket forming/Smothering growth form (0-2) Using an umber of seeds germination (DiTomaso and Healy 2003, Lise and Riemer 1982). Other invasive species in the genus (0-3) Mite wateriliy is able to one ond, survey and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) Mite wateriliy is able to one of adul plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White wateriliy is able to one of adul plant when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White wateriliy is able to origo and in cult	2005,
 (Washington Department of Ecology 2005). Long-distance dispersal (0–3) Mature seeds are released into the water. The seeds are able to float for a few days, by retaining air in the aril. Seeds are transported to other areas and other lakes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by Jummas (0–3) White waterily is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultures with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Alleopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterilly exhibit high allelopathy potential and are reported to inhibit seed germination and root growth form (0–2) White waterilly is shibed white waterily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket forming/Smothering growth form (0–2) White waterilly forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) Germination requirements (0–3) Germination requirements (0–3) Mite waterilly is able to cesprout from rhizomes (V Department of Ecology, City of Federal Way 2004). Greating the species U.S. Mite waterilly can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (Dit Tomaso and Healy 2003, USDA 2002). Mite waterilly can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004). Washington Department of Ecology 2005, Woods 2005, Wiensem 1997). 	
Long. distance dispersal (0-3)3Mature seeds are released into the water. The seeds are able to float for a few days, by retaining air in the aril. Seeds are transported to other areas and other lakes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981).3Spread by humans (0-3)2White waterlily is an extremely popular plant for cultivation in ornamental nords. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005).2Allelopathic (0-2)2Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants. (Quayyum et al. 1999, Spence 1998).1Compettive Ability (0-3)1No studies on compettive ability of Nymphaea adorata were found. Since established white waterlily is able to odominate and replace native macryphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicketforming/Somotering growth form (0-2) Desertment of Ecology 2005).1Total for Ecology; Cuty of Seed germination requirements (0-3) White waterlily forms dense floating mats of vegetion (Washington Department of Ecology 2005). Germination requirements (0-3)1Total for Ecology; Cuty of Seed germination form frazes of seeding germination (DiTomaso and Healy 2003, UESA 2002). Cuter in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plant when light breaks dormancy and stimulates germination (D	v nutrient
Mature seeds are released into the water. The seeds are able to float for a few days, by retaining air in the aril. Seeds are transported to other areas and other lakes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0–3) White waterlily is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0–2) Allelopathic (0–2) Allelopathic (0–2) Alueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999), Spence 1998). Competitive Ability (0–3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), ti s likely to outcompete other aquatic species. Thicket forming//smothering growth form (0–2) Thicket forming /smothering growth form (0–3) Thicket form and particular and the growth of the species in the g	
to float for a few days, by retaining air in the aril. Seeds are transported to other areas and other lakes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0–3) White waterlily is an extremely popular plant for cultivation in ornamental ponds. It has been intertionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005). Thicket-forming//Smothering growth form (0–2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, al arge number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department 005). Level of effort required (0–4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department 005). Level of effort required (0–4) White waterlily kay able ot orsprout from rhizomes (V Department of Ecology 2005, Woods 2005, Washington Department 02005). Level of effort required (0–4) White waterlily graves	
transported to other areas and other lakes by water currents and ducks that eat the seeds (Washington Department of Ecology 2005, Schoder and Chaney 1981). Spread by humans (0–3) White waterility is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterility exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of Nymphaea adarata were found. Since established white waterility is able to dominate and replace native macrphytes (Washington Department of Ecology 2005). dist likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2005); it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2005); it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2005. Meter and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) White waterility can be controlled by cutting, harvess covering with bottom barrier materials, and aquatic (Cit y of Federal Way 2004, Washington Department of Ecology 2005), Woids 2005, Woids 2005, Woids 2005, Washington Department of Ecology 2005, Woids 2005, Washington Department of Ecology 2005, Words 2005, Washington Department of Ecology 2005, Woids 2005, Washington Department of Ec	oore et al.
ducks that eat the seeds (Washington Department of Ecology 2005, Schneider and Chaney 1981). Spread by humans (0–3) White waterily is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of <i>Nymphaca adorata</i> were found. Since established white waterility is able to dominate and replace native macrephytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket forming//Smothering growth form (0–2) White waterility forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterility crows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
 2005, Schneider and Chaney 1981). Spread by humans (0-3) White waterlily is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0-2) Algueous extracts from laves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants. (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of Nymphaea odorata were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Guetter invasive species in the genus (0-3) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiensem 1997). White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiensem 1997). 	3
Spread by humans (0-3)2White waterlily is an extremely popular plant for cultivationof human disturbances (Washington Department of 2005).Unite waterlily is an extremely popular plant for cultivationcurrent global distribution (0-5)White waterlily is native to the eastern half of Northcurrent global distribution (0-5)White waterlily is native to the eastern half of Northcurrent global distribution (0-5)Allelopathic (0-2)2Aqueous extracts from leaves, petioles, and rhizomes of whitecurrent global distribution includes nearly all AmericaCompetitive Ability (0-3)1No studies on competitive ability of Nymphaca odorata wereformal state or provincial listing (0-5)Cound. Since established white waterlily is able to dominate andnexicoma dorata sep. odorata is 1noxicus weat in the field, when the adult population is high. However,alarge number of Ecology 2005).Other invasive species in the genus (0-3)0The seeds require light for germination. Seedlings are rarely0Other invasive species in the genus (0-3)3Nymphaca mexicana Zucc. is a noxious weed in California0(DiTomaso and Healy 2003, USDA 2002).Current of Ecology. Cuty of Federal Way 2004, Washington DepartmerQuatic, wetland or riparian species (0-3)3White waterlily grows in shallow ponds, lakes, ditches, slow3White wat	
 White waterlily is an extremely popular plant for cultivation in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0-2) Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants. (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) White waterlily is able to adjuant provinces (Voods et al. 2005, USDA 2002). Germination requirements (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, 2005). Germination requirements (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, 2005). Germination requirements (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Departmer 2005). Level of effort required (0-4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Departmer 2005, Welker and Riemer 1982). Persistent picking versams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	rarious level
 in ornamental ponds. It has been intentionally introduced into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plates. (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of Nymphaea odorata were found. Since established white waterily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005). it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) White waterily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) Othe seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Chernet invasive species in the genus (0–3) White waterily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	Ecology
 into many lakes. Cultivars with color variations have been developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0-2) Aqueous extracts from leaves, petioles, and rhizomes of white waterily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants. (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of Nymphaea odorata were found. Since established white waterily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005). White waterily is balled white waterily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005). White waterily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, USDA 2002). Other invasive species in the genus (0-3) White waterily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Departmer 1982). Cuter of federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersem 1997). 	
developed and can be readily obtained at nurseries. (Washington Department of Ecology 2005). Allelopathic (0-2) Aqueous extracts from leaves, petioles, and rhizomes of white waterility exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterility is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterility forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, LEIse and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0-3) White waterility sords and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterility grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	0
Department of Ecology 2005). Allelopathic (0–2) Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming/Smothering growth form (0–2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) (Di Tomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Mymphaea mexicana Zucc. is a noxious weed in California (Di Tomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in markses (Washington Department of Ecology 2005, Wiords 2005, Wiersema 1997).	America,
Allelopathic (0-2)2Aqueous extracts from leaves, petioles, and rhizomes of white waterily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998).expand its range. It is naturalized in South America Department of Ecology 2005, Woods 2005, Wiersen Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0-5) White waterility distribution includes nearly all Ame and most Canadian provinces (Woods et al. 2005, U Wiersema 1997). Nymphaea odorata ssp. odorata is I noxious weed in Washington (Invaders Database Sy USDA 2002).2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) Deserved in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982).0Other invasive species in the genus (0-3) Winte wateriliy grows in shallow ponds, lakes, ditches, slow Witre wateriliy grows in shallow ponds	s an
Allelopathic (0-2)2Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998).expand its range. It is naturalized in South America Department of Ecology 2005, Woods 2005, Wiersen Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0-5) White waterlily distribution includes nearly all Ame and most Canadian provinces (Woods et al. 2005, U Wiersema 1997). Nymphaea odorata sep. odorata is I noxious weed in Washington (Invaders Database Sy USDA 2002).2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) O The seeds require light for germination. Seed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0-3) Mite waterlily grows in shallow ponds, lakes, ditches, slow Witre waterlily grows in shallow ponds, lakes, ditches, slow Witre waterlily grows in shallow ponds, lakes, ditches, slow Witre waterlily grows in shallow pols, lakes, ditches, slow Witre waterlily grows in shallow pols in markhes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).2Image: the state of province leaves and thizomes may form floating the state of province is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow p	ted to
Aqueous extracts from leaves, petioles, and rhizomes of white waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) <i>Nymphaea mexicana</i> Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	Washington
 waterlily exhibit high allelopathy potential and are reported to inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of <i>Nymphaea odorata</i> were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0-3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Berefort required (0-4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Berefort required (0-4) White waterlily kill the plants. After control treatment and decomposing leaves and thizomes may form float and decomposing leaves and thizomes may form float 	ia 1997).
 inhibit seed germination and root growth of other aquatic plants (Quayyum et al. 1999, Spence 1998). Competitive Ability (0-3) No studies on competitive ability of Nymphaea odorata were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0-2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0-3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Intersection of the plants. After control treatment and decomposine leaves and rhizomes may form floating the and decomposine leaves and rhizomes may form floating the and composine leaves and rhizomes may form floating the and decomposine leaves and rhizomes may form floating the an	5
 (Quayyum et al. 1999, Spence 1998). Competitive Ability (0–3) No studies on competitive ability of Nymphaea odorata were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Nymphaea mexicama Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) Mitte waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	
Competitive Ability (0-3)1No studies on competitive ability of Nymphaea odorata were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming/Smothering growth form (0-2)and most Canadian provinces (Woods et al. 2005, U Wiersema 1997). Nymphaea odorata is 1 noxious weed in Washington (Invaders Database Sy USDA 2002).2005), it is likely to outcompete other aquatic species. Thicket-forming/Smothering growth form (0-2)2 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3)0 The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982).White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). a frazient of Ecology, City of Federal Way 2004). drinzomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Departmer 2005). Level of effort required (0-4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Departmer 2005, Welker and Riemer 1982). Persistent picking of leaves every other day during two to three growing every and decomposing leaves and rhizomes may form floa	ican states
No studies on competitive ability of Nymphaea odorata were found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) 0 The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
found. Since established white waterlily is able to dominate and replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) 0 The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
replace native macrphytes (Washington Department of Ecology 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) 2 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) 0 The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
 2005), it is likely to outcompete other aquatic species. Thicket-forming//Smothering growth form (0–2) White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0–3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Total for Ecological Amplitude and Distribution Feasibility of Control Seed banks (0–3) Unknown Vegetative regeneration (0–3) White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Departmer 2005). Level of effort required (0–4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	
Thicket-forming//Smothering growth form (0–2)2White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005).Seed banks (0–3) UnknownGermination requirements (0–3)0The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982).White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Departmer 2005).Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3)3White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).2	18/25
 White waterlily forms dense floating mats of vegetation (Washington Department of Ecology 2005). Germination requirements (0-3) The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0-3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Seed banks (0-3) Unknown Vegetative regeneration (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Department 2005). Level of effort required (0-4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	Score
Germination requirements (0-3)0The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982).Vegetative regeneration (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Department 2005).Other invasive species in the genus (0-3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).Vegetative regeneration (0-3) White waterlily is able to resprout from rhizomes (V Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Department 2005). Level of effort required (0-4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department 2005, Welker and Riemer 1982). Persistent picking of leaves every other day during two to three growing s will eventually kill the plants. After control treatment and decomposing leaves and rhizomes may form flo	U
The seeds require light for germination. Seedlings are rarely observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
observed in the field, when the adult population is high. However, a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982).Department of Ecology, City of Federal Way 2004). of rhizomes into 4 inches or larger pieces is recomm propagation in cultivation (Washington Department 2005).Other invasive species in the genus (0–3)3Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002).3Aquatic, wetland or riparian species (0–3)3White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).3	2
a large number of seeds germinate after removal of adult plants when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	
 when light breaks dormancy and stimulates germination (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). propagation in cultivation (Washington Department 2005). Level of effort required (0–4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department 2005, Welker and Riemer 1982). Persistent picking of leaves every other day during two to three growing s will eventually kill the plants. After control treatment and decomposing leaves and rhizomes may form flo 	Cutting
 (DiTomaso and Healy 2003, Else and Riemer 1984, Welker and Riemer 1982). Other invasive species in the genus (0–3) Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). I and decomposing leaves and rhizomes may form floored and the streams and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 	nded for
Riemer 1982). Other invasive species in the genus (0–3) 3 Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). Level of effort required (0–4) White waterlily can be controlled by cutting, harves covering with bottom barrier materials, and aquatic (City of Federal Way 2004, Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	ofEcology
Other invasive species in the genus (0-3)3Nymphaea mexicana Zucc. is a noxious weed in California3(DiTomaso and Healy 2003, USDA 2002).3Aquatic, wetland or riparian species (0-3)3White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).3	
Nymphaea mexicana Zucc. is a noxious weed in California (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0–3) 3 White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	4
 (DiTomaso and Healy 2003, USDA 2002). Aquatic, wetland or riparian species (0-3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). (City of Federal Way 2004, Washington Department and decomposing leaves and rhizomes may form floored and the stress of the stress of	
Aquatic, wetland or riparian species (0–3) White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). 3 2005, Welker and Riemer 1982). Persistent picking leaves every other day during two to three growing s will eventually kill the plants. After control treatment and decomposing leaves and rhizomes may form flo	nerbicides
White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	of Ecology
White waterlily grows in shallow ponds, lakes, ditches, slow streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997).	femerging
streams, sloughs, and pools in marshes (Washington Department of Ecology 2005, Woods 2005, Wiersema 1997). will eventually kill the plants. After control treatment and decomposing leaves and rhizomes may form flo	
of Ecology 2005, Woods 2005, Wiersema 1997).	asons
Total for Biological Characteristics and Dispersal 18/25 in the lake Removing all dead materials from the w	ts dead
Ecological Amplitude and Distribution Score	ts dead ting mats
linging domesticated of a weed of agriculture (0-4)	ts dead ting mats ter is
intervation in ormanicitation in ormanicitation in ormanicitation in the second s	ts dead ting mats ter is ting and
	ts dead ting mats ter is ting and rol agents
(Washington Department of Ecology 2005). Total for Feasibility of Control	ts dead ting mats ter is ting and rol agents
Total score for 4 sections	ts dead ting mats ter is ting and rol agents

\$

common names: spotted ladysthumb

Persicaria maculosa Gray (Polygonum persicaria L.) Persicaria lapathifolia (Linnaeus) Gray (Polygonum lapathifolium L.)

curlytop knotweed

Ranking Summa			Impact on Higher Trophic Levels (0–10) 5	,
Ecoregion known or expected to occur	in		Both spotted ladysthumb and curlytop knotweed provide	
South Coastal		Yes	important cover and food source for many species of birds and	
Interior Boreal		Yes	mammals (DiTomaso and Healy 2003, Wilson et al. 1999).	
Arctic Alpine	D-44: -1 M	Yes	Flowers are frequently visited by insects (Simmons 1945a). Thes	
	Potential Max. 40	Score 6	weeds are also a host for number of fungi, viruses, and nematode	5
Ecological Impact Biological Characteristics and Dispersal	40 25	16	species (Edwards and Taylor 1963, Townshend and Davidson	
Amplitude and Distribution	23 19	15	1962). Hybrids of Polygonum persicaria with P. lapathifolium and	ĺ
Feasibility of Control	10	7	P. hidropiper have been recorded (Simmons 1945a, b).	
Relative Maximum	10	47	Total for Ecological Impact 6/40	
Climatic Compari	son		Biological Characteristics and Dispersal Score	e
I	Collected in	CLIMEX	Mode of Reproduction (0–3) 3	5
l A	Alaska regions?		Spotted ladysthumb plant can produce up to 1,550 seeds per	
South Coastal	Yes	_	season (Mertens and Jansen 2002, Stevens 1932). Curlytop	
Interior Boreal	Yes	-	knotweed is capable of producing up to 19,300 seeds per season	
Arctic Alpine	No	Yes	(Stevens 1932). Askew and Wilcut (2002) estimated achene	
Polygonum persicaria has been documente	ed in south coa	astal	production of curlytop knotweed as $63,000$ to $25,000$ per m ² .	
and interior boreal ecogeographic regions	s of Alaska (W	leeds of	Long-distance dispersal (0–3) 3	3
Alaska Database 2005, Hultén 1968, UAI	M 2004). Poly	gonum	Achenes can be dispersed by birds and animals after ingestion.	
lapathifolium has been documented in sou	1th coastal, in	terior	Seeds also can be carried in mud on the feet of birds and animals	s.
boreal, and arctic alpine ecogeographic re	gions of Alasl	ka (Weeds	The seeds can float for one day and thus can be dispersed by	
of Alaska Database 2005, Hultén 1968, U	AM 2004).		irrigation water, rain, streams, and watercourses (Simmonds	
Polygonum persicaria and P. lapathifolia ar	e known to oc	cur	1945a, b).	
as far north in Europe as the northern pro			Spread by humans (0–3) 3	3
(Finnmark) at 70°N (Lid and Lid 1994).			Seeds of spotted ladysthumb and curlytop knotweed can be	
as having arctic tundra vegetation (CAFF		· · · · · · · · · · · · · · · · · · ·		ls
Vegetation Map), Using the CLIMEX ma	-			
climatic similarity between Nome and ar	0 4 0			
documented is fairly high. The range of th		-	Simmonds 1945a, b). Seeds of these species also can contaminat	te
and Dombås, Norway, which have a 76% a			commercial seeds (Dorph-Petersen 1925) and soil (Hodkinson	
match with Nome respectively. It is possil			and Thompson 1997).	
to establish in the arctic alpine ecoregion		vo species	Allelopathic $(0-2)$ 0)
Ecological Impact	011111111111111111111111111111111111111	Score	Spotted ladysthumb has no allelopathy potential (USDA,	
Impact on Ecosystem Processes (0–10)		0	NRCS 2006). Curlytop knotweed is closely related to spotted	
Spotted ladysthumb and curlytop knotwo	ed reduce soi	-	ladysthumb and very likely it also is not allelopathic.	
and nutrient availability (Royer and Dick			Competitive Ability (0–3)	L
plants of these species may prevent the wa	,		Although spotted ladysthumb and curlytop knotweed are	
irrigated ditches (DiTomaso and Healy 2			extremely tolerant of a wide range of environmental conditions,	
on natural ecosystem processes has not be		-	they appear to require reduction of competition for successful	
Impact on Natural Community Structure		0	growth and persistence (Simmonds 1945b). Curlytop knotweed	1
Spotted ladysthumb and curlytop knotwe	. ,	colonize	was a weak competitor with crops in experiments of O'Donovan	1
disturbed ground and change the density			(1994) and Askew and Wilcut (2002).	
pers. obs.). No impact on the natural com		~	Thicket-forming/Smothering growth form $(0-2)$ 0)
been documented.			Spotted ladysthumb and curlytop knotweed do not form	
Impact on Natural Community Compositi	on $(0-10)$	1	dense thickets in Alaska. Both species do not have climbing or	
Spotted ladysthumb and curlytop knotwo			smothering growth habit (DiTomaso and Healy 2003).	
observed in native communities in Alaska			Germination requirements (0–3) 0)
pers. obs.). It is unlikely that measurable i		-	Since spotted ladysthumb and curlytop knotweed are always	
community composition occur due to its	~		found in disturbed communities (Simmonds 1945a, b, Staniforth	h
composition occur due to its	p10001100.		and Cavers 1979), disturbed soil can be important requirement	
			for germination of seeds.	
			-	

Other invasive species in the genus $(0-3)$ 3	Role of anthropogenic and natural disturbance in 3		
Polygonum cuspidatum Sieb. & Zucc., P. perfoliatum L.,	establishment (0–5)		
P. polystachyum Wallich ex Meisn., and P. sachalinense F. Schmidt	Spotted ladysthumb and curlytop knotweed establish in		
ex Maxim. are declared noxious in a number of American states.	disturbed communities only (Simmonds 1945a, b). In Ontario		
Also Polygonum arenastrum Jord. ex Boreau, P. caespitosum	curlytop knotweed is commonly found in naturally disturbed		
Blume, P. convolvulus L., P. orientale L., and P. aviculare L. are	sites such as riverbanks, sandy beaches, exposed mud (Staniforth		
listed as weeds in the PLANTS Database (USDA, NRSC 2006).	and Cavers 1979).		
A number of <i>Polygonum</i> species are native to North America.	Current global distribution (0–5) 3		
Polygonum species have a weedy habit and are listed as noxious	Spotted ladysthumb and curlytop knotweed are distributed		
weeds in some of the American states. Although the latest	throughout Europe to 70°N in Norway (Lid and Lid 1994) and		
taxonomy considers these species as members of three different	Russia; and in Asia, North Africa, North and South America,		
genus: Polygonum, Fallopia, and Persicaria (FNA 1993+), they are	Australia and New Zealand (Hultén 1968).		
closely related taxa and can be considered as congeneric weeds.	Extent of the species U.S. range and/or occurrence of 5		
Aquatic, wetland or riparian species (0–3) 3	formal state or provincial listing (0–5)		
Although spotted ladysthumb and curlytop knotweed are	Spotted ladysthumb and curlytop knotweed are found		
typically plants of fields, roadsides, gardens, and waste grounds,	throughout the United States and Canada (Royer and Dickinson		
they often occur together on riverbanks, edges of ponds, lakes,	1999, USDA, NRCS 2006). <i>Polygonum lapathifolium</i> is declared a		
streams, and marshes (DiTomaso and Healy 2003, Staniforth and	and weed in Manitoba and Quebec (Royer and Dickinson 1999).		
Cavers 1979).	Total for Ecological Amplitude and Distribution 15/19		
Total for Biological Characteristics and Dispersal16/25	Feasibility of Control Score		
Ecological Amplitude and Distribution Score	Seed banks $(0-3)$ 3		
Highly domesticated or a weed of agriculture (0-4)4	Dorph-Petersen (1925) found that seeds of spotted ladysthumb		
Both, spotted ladysthumb and curlytop knotweed have long been	and curlytop knotweed remained viable for up to 5–7 years. Toole		
associated with agricultural activities (Staniforth and Cavers	(1946) reported 30 years of viability for spotted ladysthumb seeds		
1979).	buried in the soil. Chippindale and Milton (1934) found seeds		
Known level of impact in natural areas (0–6) U	remaining viable in different fields for 6 8 77 and 68 years		
	remaining viable in different fields for 6, 8, 22, and 68 years.		
Spotted ladysthumb and curlytop knotweed are commonly found	Vegetative regeneration (0–3) 2		
on naturally disturbed sites, such as riverbanks, lakeshores, or	Vegetative regeneration (0–3) 2 Vegetative regeneration has not been recorded for both species.		
on naturally disturbed sites, such as riverbanks, lakeshores, or exposed mud (DiTomaso and Healy 2003, Staniforth and Cavers	Vegetative regeneration (0–3) 2 Vegetative regeneration has not been recorded for both species. However, Simmonds (1945a) reported its ability to persist into a		
on naturally disturbed sites, such as riverbanks, lakeshores, or exposed mud (DiTomaso and Healy 2003, Staniforth and Cavers 1979). However, ecological impact in natural communities is	Vegetative regeneration (0–3) 2 Vegetative regeneration has not been recorded for both species. However, Simmonds (1945a) reported its ability to persist into a second year after cutting.		
on naturally disturbed sites, such as riverbanks, lakeshores, or exposed mud (DiTomaso and Healy 2003, Staniforth and Cavers	Vegetative regeneration (0-3)2Vegetative regeneration has not been recorded for both species.However, Simmonds (1945a) reported its ability to persist into asecond year after cutting.Level of effort required (0-4)2		
on naturally disturbed sites, such as riverbanks, lakeshores, or exposed mud (DiTomaso and Healy 2003, Staniforth and Cavers 1979). However, ecological impact in natural communities is	Vegetative regeneration (0-3)2Vegetative regeneration has not been recorded for both species.However, Simmonds (1945a) reported its ability to persist into asecond year after cutting.Level of effort required (0-4)2Mechanical methods (hand pulling and mowing) can control		
on naturally disturbed sites, such as riverbanks, lakeshores, or exposed mud (DiTomaso and Healy 2003, Staniforth and Cavers 1979). However, ecological impact in natural communities is	Vegetative regeneration (0-3)2Vegetative regeneration has not been recorded for both species.However, Simmonds (1945a) reported its ability to persist into asecond year after cutting.Level of effort required (0-4)2		

S

7/10 44/94

Total for Feasibility of Control Total score for 4 sections

Phalaris arundinacea L.

Ranking Summary			
Ecoregion known or expected to occur in			
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
	Potential Max.	Score	
Ecological Impact	40	33	
Biological Characteristics and Dispersal	25	20	
Amplitude and Distribution	25	24	
Feasibility of Control	10	6	
Relative Maximum		83	

Climatic Comparison

r i i i i i i i i i i i i i i i i i i i	Collected in Alaska regions?	CLIMEX similarity?
South Coastal	Yes	_
Interior Boreal	Yes	_
Arctic Alpine	Yes	_
C. INT. C. C. C. L.C.		1:

Special Note-nativity: Some populations of Phalaris arundinacea L. are possibly native in Alaska. Four sites that may harbor native forms are from hot springs of interior Alaska (Big Windy, Kanuti, Kilo, and Manley Hot Springs; "N?" in figure). Active mining occurred in these areas in the early 20th century and seeds may have been brought in with livestock. If these populations are native they represent important and likely unique components to the biodiversity and biogeographic history of Alaska and Beringia. Phalaris arundinacea in these remote locations should not be removed. However, monitoring may be critical as introgression with other cultivated and weedy forms can result in substantial increases in invasiveness (Merigliano and Lesica 1998). Populations south of the Alaska Range are generally associated with anthropogenic disturbance and are most likely introduced or introgressed genotypes as in the Pacific Northwest (see Merigliano and Lesica 1998). These introduced populations pose a serious threat to communities and ecosystem function. Phalaris arundinacea has been documented in the south coastal [Skagway, Craig, and Petersburg (Hultén 1968) and Juneau, Seward, Sitka, and Ketchikan (UAM 2004)], interior boreal [Fairbanks, Anchorage, and Talkeetna (Hultén 1968) and Circle, Tanana, Big Windy, Kilo, Manley, and Kanuti (UAM 2004)], and arctic alpine [Bettles (UAM 2004)] ecoregions in Alaska.

Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	9
Reed canarygrass promotes silt deposition and causes se	rious
constrictions of waterways and irrigation canals. Additic	onally,
it may alter soil hydrology (Lyons 1998) and increase wa	ter
temperatures (Lantz. 2000).	
Impact on Natural Community Structure (0–10)	7
Reed canarygrass can form dense, persistent, monospeci	fic stands
(Lyons 1998), eliminating low herbaceous layers and inh	ibiting
woody seedling growth (M.L. Carlson pers. obs.).	
Impact on Natural Community Composition (0–10)	9
The stands of Phalaris arundinacea exclude and displace	native
plants and animals (Hutchison 1992, Lyons 1998, WSD)	E 2003).
It apparently inhibits the growth of other species for 3-5	months,
eventually eliminating these species (Rutledge and McL	endon
1996). Canarygrass has invaded the emergent vascular p	lant
communities in Iowa. Eleven species disappeared on the	se sites
(Apfelbaum and Sams 1987).	

common names: reed canarygrass

/8-	
Impact on Higher Trophic Levels (0–10)	8
Waterfowl, upland game birds, riparian mammals, and fish all	
use reed canarygrass for cover and food (Snyder 1992). Lyons	
(1998) suggested that reed canarygrass grows too densely to	
provide adequate cover for small mammals and waterfowl. It o	
also overgrow irrigation ditches and small natural watercourse	es,
impacting aquatic species. Reed canarygrass contributes to	
increased water temperatures and decreased habitat values for	-
salmon and other wildlife. Dense stands can form a physical	`
barrier to migrating salmon (Lantz 2000, Whatcom Weeds 20	
Total for Ecological Impact 33/ Biological Characteristics and Dispersel 500	
Biological Characteristics and Dispersal Sco Mode of Reproduction (0–3)	2
Reproduction is from seed and vegetatively by stout creeping	2
rhizomes (Lyons 1998, Rutledge and McLendon 1996).	
Long-distance dispersal (0–3)	2
The seeds have no adaptations for long-distance dispersal. Bot	
rhizome fragments and seeds may wash downstream along	
streams and rivers (Rutledge and McLendon 1996).	
Spread by humans (0–3)	3
Reed canarygrass has been planted widely for forage and for	
erosion control (Lyons 1998, WSDE 2003). It also is a seed	
contaminant (USDA, ARS).	
Allelopathic (0–2)	0
Reed canarygrass is not known to be allelopathic.	
Competitive Ability (0–3)	3
Reed canarygrass is highly competitive with other species (Ly	
1998, Rutledge and McLendon 1996). Phalaris arundinacea is	
tolerant of freezing temperatures and begins to grow very earl	y in
the spring.	
Thicket-forming/Smothering growth form $(0-2)$	2
Reed canarygrass forms dense and impenetrable mats of	L
vegetation (Lyons 1998). It can reach 3–6 feet in height (Wels 1974).	11
Germination requirements (0–3)	2
The seeds of reed canarygrass germinate immediately after	
ripening, there are no known dormancy requirement (Apfelba	aum
and Sams 1987).	
Other invasive species in the genus $(0-3)$	3
Phalaris aqatica L., P. brachystacys Link, P. canariensis L.,	
P. caroliana Walter, P. minor Retz., and P. paradoxa L.	
Aquatic, wetland or riparian species $(0-3)$	3
Reed canarygrass occurs in marshes, fens, wet meadows and	
prairies, flood plains, old fields, roadsides, and ditches (Hutch	ison
1992, Lyons 1998, Rutledge and McLendon 1996).	
Total for Biological Characteristics and Dispersal 20/	
Ecological Amplitude and Distribution Sco	
Highly domesticated or a weed of agriculture $(0-4)$	4
Reed canarygrass has a long agronomic history. It was cultivat	lea
for forage as early as 1830s. There are 11 reed canarygrass	
cultivars used as forage, ornamental, and for erosion control	
(Hutchison 1992, Lyons 1998, Merigliano and Lesica 1998). Known level of impact in natural areas (0–6)	6
Reed canarygrass may threaten populations of many species	0
in wetlands in Ohio, Oregon, and Montana (Lyons 1998). It	
threatens upland oak savannas in south-central Wisconsin (Snyder 1992). Canarygrass has invaded the emergent vascula	
(Singular 1992). Canarygrass has invaded the emergent vascula	tf.
	0.00
plant communities in Iowa. Eleven species disappeared on the sites (Apfelbaum and Sams 1987).	ese

Role of anthropogenic and natural disturbance in 4	Feasibility of Control Score
establishment (0–5)	Seed banks (0–3) 0
Reed canarygrass prefers disturbed areas, but can easily move	Seeds of reed canarygrass are short-lived. Some seeds germinated
into native wetlands. Invasion is promoted by disturbances such	after 10 days while others took 3 weeks. Rates of germination
as ditching of wetlands and stream channelization, overgrazing,	decrease through winter and are poor the following summer
intentional planting, and alteration of water levels (Lyons 1998,	(Rutledge and McLendon 1996, WSDE 2003). Seeds stored in
WDNR 2004).	damp sand germinated after a year of alternating temperatures
Current global distribution (0–5) 5	(Aphelbaum and Sams 1987).
Reed canarygrass is a native to Europe and some forms are likely	Vegetative regeneration $(0-3)$ 2
to be native to Asia and North America as well. The present	Rapid regrowth occurs from rhizomes after mechanical removal
range extends throughout the Old and New Worlds primarily in	(WSDE 2003). The species will also produce roots and shoots
northern latitudes (Hutchison 1992). It is introduced into New	from the nodes and culms (APMS 2004).
Zealand and Australia (Hultén 1968).	Level of effort required $(0-4)$ 4
Extent of the species U.S. range and/or occurrence of 5	Control is difficult due to its extensive rhizomes. Mechanical
formal state or provincial listing $(0-5)$	methods may be too labor intensive and require a long-term time
In the U.S. reed canarygrass is found from Alaska to Maryland,	commitment. No herbicides are selective enough to be used
and south to Kentucky, Illinois, Missouri, Oklahoma, New	in wetlands without the potential for injuring native species.
Mexico, and Arkansas. It is absent from Mississippi, Alabama,	Plants reestablish quickly from seeds after control methods are
Georgia, Florida, and Louisiana (Lyons 1998, USDA 2002). Reed	used (Apfelbaum and Sams 1987, Hutchison 1992, Lyons 1998,
canarygrass is a noxious weed in Washington (Class C). Invasive	Rutledge and McLendon 1996).
weed in Nebraska, Tennessee, Wisconsin (USDA 2002). It is a	Total for Feasibility of Control6/10
notorious global weed.	Total score for 4 sections83/100
Total for Ecological Amplitude and Distribution 24/25	S
	Ū.

Phleum pratense L.

Ranking Summ	ary	
Ecoregion known or expected to occu	ir in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	14
Biological Characteristics and Dispersal	25	14
Amplitude and Distribution	25	19
Feasibility of Control	10	7
Relative Maximum		54
Climatic Compa	rison	
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Phleum pratense has been collected in all	l ecogeographic	c regions
in Alaska (Hultén 1968, UAM 2004, AF	KEPIC 2004).	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		3
Timothy has the potential to inhibit sec	ondary successi	ional
processes, and may modify native comm	nunities (Rutled	dge and
		0
/	e (0–10)	3
		nd it can
		3
		U
	0	
obs., M. Shephard pers. obs.).		P
Timothy has the potential to inhibit sec processes, and may modify native comm McLendon 1996). Impact on Natural Community Structure Timothy is capable of creating a new her occur at very high densities (I. Lapina po Impact on Natural Community Composi Timothy often dominates areas, reducin diversity of native graminoid species (Es	nunities (Rutled e (0–10) rbaceous layer a ers. obs.). ition (0–10) ng the abundance	ional dge and and it can 3 ce and

common names: common timothy

	Impact on Higher Trophic Levels (0–10)5
	Timothy provides habitat and nesting cover for game birds, small
	mammals, and waterfowl. It is highly palatable and nutritious
	forage for big game animals, and the seeds are consumed by birds.
	(Esser 1993, Forage Information System 2004, USDA 2002).
	Timothy seedlings may hinder conifer seedlings establishment
	through resource competition, allelopathy, attraction of harmful
	insects and animals, and increased fire potential (Esser 1993).
	Pollen of timothy is known as an allergen (Ohio State University
	2004). Timothy is a host for a number of plant diseases and
11	nematodes, which may be a problem for other species (Forage
	Information System 2004).
	Total for Ecological Impact 14/40
	Biological Characteristics and Dispersal Score
	Mode of Reproduction (0–3) 2
	Timothy reproduces mainly by seeds, and is a prolific seeder
	(Esser 1993, USDA 2002)
	Long-distance dispersal (0–3) 2
	The small, hard seeds are dispersed by wind and livestock (Esser
	1993, Forage Information System 2004). However, there are no
	particular adaptations for long-distance dispersal.
	Spread by humans (0–3) 3
	Timothy is commonly grown for hay and escapes cultivation,
	becoming established in grasslands (Esser 1993, Rutledge and
	McLendon 1996, USDA 2002). It also is recommended for use in
	reclamation and erosion control (Elliott et al. 1987, USDA 2002).
	Allelopathic (0–2) 2
	Timothy is allelopathic. Allelochemicals in the pollen reduce
	pollen germination of other wind-pollinated grasses (Murphy
[and Aarssen 1995).

Competitive Ability (0–3) 2	Role of anthropogenic and natural disturbance in 2
Timothy has intermediate competitive abilities. It can suppress	establishment $(0-5)$
the growth of other grasses and dominate (Gasser 1968).	Timothy readily establishes in disturbed areas and may extend
Timothy has excellent cold tolerance and winter hardiness. It	to adjacent undisturbed areas. Natural and human induced fires
will tolerate high shade and thrives in partial shade (Esser 1993).	stimulate tilling (Esser 1993).
It will tolerate flooding and high soil salinity levels (Forage	Current global distribution (0–5) 5
Information System 2004).	Timothy is a native of Europe. It is now widespread in North
Thicket-forming/Smothering growth form $(0-2)$ 1	and South America, South Africa, New Zealand, and Australia,
This large grass can occur at high densities and shade out forbs	including subarctic regions (Hultén 1968).
and other grasses (I. Lapina pers. obs.).	Extent of the species U.S. range and/or occurrence of 5
Germination requirements (0–3) 1	formal state or provincial listing $(0-5)$
Open soil facilitates germination and establishment of timothy.	It is found in all 50 states and throughout Canada (Esser 1993).
Competition from other species may prevent seedlings	It is a restricted weed seed in New Jersey and Virginia (Invader
establishment (Forages 2004).	Database System 2004).
Other invasive species in the genus (0–3) 0	Total for Ecological Amplitude and Distribution19/25
Few introduced species of <i>Phleum</i> are recorded in North	Feasibility of Control Score
America, but they are not listed as invasive (USDA 2004).	Seed banks (0–3) 2
Aquatic, wetland or riparian species (0–3) 1	The seeds remain viable for 4–5 years in dry, cool places (Esser
Timothy can be found on roadsides, along waterways, and in dry	1993).
to wet meadows (Gubanov et al. 1995, Rutledge and McLendon	Vegetative regeneration (0–3) 2
1996).	Vegetative reproduction occurs through tilling. When plants
Total for Biological Characteristics and Dispersal 14/25	are cut or plowed, rooting stems may develop new plants (Esser
Ecological Amplitude and Distribution Score	1993).
Highly domesticated or a weed of agriculture $(0-4)$ 4	Level of effort required $(0-4)$ 3
Timothy was introduced to North America for use as hay and	Hand pulling can be used for timothy control, and frequent
continues to be widely used today (Rutledge and McLendon	cutting or mowing can weaken overall plant health (Rutledge
1996, USDA 2002).	and McLendon 1996). Timothy stands also become weak under
Known level of impact in natural areas (0–6) 3	continuous grazing (USDA 2002).
It is the most widely distributed non-native in Glacier National	Total for Feasibility of Control 7/10
Park (Montana), reducing graminoid species in native fescue	Total score for 4 sections54/100
grasslands and moist subalpine forests. It has become established	\$
at medium to high elevations grasslands and aspen and conifer	Ψ.
forests (Esser 1993). It can be found in aspen–spruce–fir	
communities, occasionally in oak–sagebrush, pinyon juniper,	
and mountain brush communities in Colorado (Rutledge and	

McLendon 1996).

Plantago major L. common names: common plantain, broadleaf plantain

			common prantani, provancar prantani	
Ranking Summa			Biological Characteristics and Dispersal Score	re
Ecoregion known or expected to occur	1n	37	Mode of Reproduction $(0-3)$	3
South Coastal Interior Boreal		Yes Yes	Common plantain reproduces by seeds and can resprout from	
Arctic Alpine		Yes	root and root fragments. Each plant is capable of producing	
	Potential Max.	Score	up to 14,000 seeds (Royer and Dickinson 1999, Rutledge and	
Ecological Impact	40	8	McLendon 1996, Sagar and Harper 1964).	2
Biological Characteristics and Dispersal	25	13	Long-distance dispersal $(0-3)$	3
Amplitude and Distribution	25	16	The seeds are sticky when wet, causing them to adhere to soil	
Feasibility of Control	10	7	particles, feathers, fur, skin, or vehicles (Ohio perennial and	
Relative Maximum		44	biennial weed guide 2004, Royer and Dickinson 1999, Rutledg	<i>s</i> e
Climatic Compar	ison		and McLendon 1996). Spread by humans (0–3)	2
	Collected in	CLIMEX		3
1	Alaska regions?	similarity?	The plant travels widely with humans. Seeds can be spread	
South Coastal	Yes	-	by vehicles, contaminated topsoil, and commercial seeds	
Interior Boreal	Yes	-	(Hodkinson and Thompson 1997).	0
Arctic Alpine	Yes	-	Allelopathic (0–2)	0
Special Note-Nativity: Many experts be			Common plantain has no allelopathic effects (USDA 2002). Competitive Ability (0–3)	1
originated in Europe (Dempster 1993, W			Common plantain is a moderate competitor if not overgrown	1
it is now cosmopolitan in distribution. He			by other vegetation (Densmore et al. 2001, Miao et al. 1991).	
USDA Plants Database and ITIS (2003)			It is known to suppress the growth of corn and oat seedlings	
native to Alaska, Hawaii, and the contine	ntal U.S. Hult	én (1968)		
reported a variety with upright leaves (va	r. <i>pilgeri</i>) as po	ssibly	(Manitoba Agriculture and Food 2002). Thicket-forming/Smothering growth form (0–2)	0
native to Alaska. Hitchcock and Cronqui	st (1973) reco	gnized	Common plantain does not form thickets. The stem is very sho	•
a native variety (var. pachyphylla Piper) o	f saline habitat	ts and	leafless flowering stalks grow to 2 feet tall (Royer and Dickinso	
introduced variety (var. major L.). Theref	ore, we treat th	nis as)11
a polymorphic taxon of primarily or exclu			1999). At high densities, common plantain responds by high	
genotypes. Greater study, using molecula	•		mortality (Palmblad 1968). Germination requirements (0–3)	0
markers and paleoecological methods is r	-	~	Common plantain is a colonizer of disturbed soil, requiring op	0 nen
the patterns of nativity of this species in A		L	soil for germination and establishment (Densmore et al. 2001)	
Plantago major has been collected in all e		regions of	In experiments in Massachusetts (Miao et al. 1991) germinatio	
Alaska (Hultén 1968, UAM 2004).	0 0 1	U		
Ecological Impact		Score	was significantly higher in open soil and seed germination was	
Impact on Ecosystem Processes (0–10)		1	greatly reduced in established grass stands. Sagar and Harper	
Common plantain has no perceivable effe	ect on ecosyste	em process	(1964) report germination and establishment only on bare soil	
(Densmore et al. 2001). Though this plan	t is only found	l in highly	and sparse plant communities. No establishment was observed	1 in
disturbed environments it has potential f	or retarding su	iccession	any vegetated or sites with leaf litter.	2
after sites have been invaded.			Other invasive species in the genus (0–3) Plantago media L., P. lanceolata L., and P. patagonica Jacq. (Roy	3 TOP
Impact on Natural Community Structure	(0–10)	3		CI
Common plantain establishes in a sparse	ly vegetated he	erbaceous	and Dickinson 1999, Whitson et al. 2000). Aquatic, wetland or riparian species (0–3)	0
layer, increasing the density of the layer in	n south-centra	l Alaska (I.	Common plantain is common on cultivated fields, lawns,	U
Lapina pers obs.).			pastures, gardens, roadsides, and waste areas (Parker 1990, Ro	ver
Impact on Natural Community Composit		1	and Dickinson 1999, Rutledge and McLendon 1996, Whitson	
Common plantain has not been observed	l in undisturbe	ed areas	al. 2000).	
in Alaska, little or no impact on native po	pulations has l	been	Total for Biological Characteristics and Dispersal 13/2	2.5
observed (Densmore et al. 2001).			Ecological Amplitude and Distribution Score	
Impact on Higher Trophic Levels $(0-10)$		3	Highly domesticated or a weed of agriculture $(0-4)$	4
Common plantain is an alternate host for			Common plantain is one of the most common weeds in garden	15,
fungi (MAFRI 2004, Royer and Dickins			pastures, lawns, and crop fields (MAFRI 2004, Ohio perennia	
species feed on this plant (Sagar and Har			and biennial weed guide 2004, Parker 1990, Royer and Dicking	
contain a high percentage of oil and are d			1999). A red-leaved form is occasionally grown as a cultivar	1
perennial and biennial weed guide 2004)	. It may hybrid	lize with	(J. Riley pers. com.).	
native species of Plantago.			Known level of impact in natural areas $(0-6)$	1
Total for Ecological Impact		8/40	This plant appears to be having little effect on native plant	
			communities or successional processes in Rocky Mountain	
			National Park in Colorado (Rutledge and McLendon 1996).	

Role of anthropogenic and natural disturbance in 1	Feasibility of Control Score
establishment (0–5)	Seed banks (0–3) 3
Soil disturbances by animals, vehicles, and natural erosion	Seeds buried in the soil remained viable for 3.5 years in Michigan
provide suitable open areas for germination and establishment of	(Duvel 1904). Chippendale and Milton's (1934) results suggest
this species (Densmore et al. 2000, Sagar and Harper 1964). This	that viability is maintained for 50–60 years.
plant usually does not persist without redisturbance. In Alaska	Vegetative regeneration (0–3) 2
it is found primarily on sites disturbed within the last 10 years	Common plantain has the ability to resprout from the crown,
(Densmore et al. 2001, AKEPIC 2004).	roots, or root fragments (Densmore et al. 2001, Rutledge and
Current global distribution (0–5) 5	McLendon 1996).
This taxon is generally believed to originate in Europe, but it is	Level of effort required (0–4) 2
now cosmopolitan in distribution. Range of distribution includes	This species does not persist without repeated anthropogenic
arctic regions. (Dempster 1993, Hultén 1968, Sagar and Harper	disturbance. However, multiple weeding treatments may be
1964, Whitson et al. 2000).	necessary to eliminate plants germinating from buried seeds and
Extent of the species U.S. range and/or occurrence of 5	root fragments. It is easily controlled by herbicides (Densmore et
formal state or provincial listing $(0-5)$	al. 2001, Rutledge and McLendon 1996).
Common plantain has been recorded from all states of the	Total for Feasibility of Control7/10
United States. It is listed as an invasive weed in Connecticut,	Total score for 4 sections44/100
Washington, Manitoba, and Quebec (USDA 2002). Plantago	S
species are restricted noxious weeds in Alaska (Alaska	
Administrative Code 1987).	
Total for Ecological Amplitude and Distribution 16/25	

Poa annua L.

	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	8
Biological Characteristics and Dispersal	25	13
Amplitude and Distribution	25	18
Feasibility of Control	10	7
Relative Maximum		46
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	–
<i>Poa annua</i> has been collected from all e	cogiographic re	gions in
Alaska (Hultén 1968).		
Ecological Impact		Score
Ecological Impact Impact on Ecosystem Processes (0–10)		1
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th		1 nant and
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec	ies by reducing a	1 nant and
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson	ies by reducing a 1990).	1 nant and available
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structure	ies by reducing a 1990). re (0–10)	1 nant and available 3
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense mats	ies by reducing a 1990). re (0–10) and dominate,	1 nant and available 3 reducing
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense mats the vigor of other plants (Hutchinson a	ies by reducing ; 1990). œ (0–10) and dominate, nd Seymour 198	1 nant and available 3 reducing 32). Field
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense mats the vigor of other plants (Hutchinson a experiments suggested that native seed	ies by reducing a 1990). re (0–10) and dominate, nd Seymour 198 germination an	1 nant and available 3 reducing 32). Field d seedling
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense mats the vigor of other plants (Hutchinson a experiments suggested that native seed survival is reduced in the presence of ar	ies by reducing a 1990). 'e (0–10) and dominate, nd Seymour 198 germination an inual bluegrass	1 nant and available 3 reducing 32). Field d seedling
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species the may hinder colonization by native spece nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense matss the vigor of other plants (Hutchinson a experiments suggested that native seed survival is reduced in the presence of an Impact on Natural Community Compose	ies by reducing a 1990). re (0–10) and dominate, nd Seymour 198 germination an nuual bluegrass 1 sition (0–10)	1 nant and available 3 reducing 82). Field d seedling litter 1
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species th may hinder colonization by native spec nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense mats the vigor of other plants (Hutchinson a experiments suggested that native seed survival is reduced in the presence of ar	ies by reducing a 1990). 'e (0–10) and dominate, nd Seymour 198 germination an nuual bluegrass 1 sition (0–10)	1 nant and available 3 reducing 82). Field d seedling litter 1
Ecological Impact Impact on Ecosystem Processes (0–10) Annual bluegrass is a pioneer species the may hinder colonization by native spece nutrients in the soil surface (Bergelson Impact on Natural Community Structur Annual bluegrass may form dense matss the vigor of other plants (Hutchinson a experiments suggested that native seed survival is reduced in the presence of ar Impact on Natural Community Compose	ies by reducing a 1990). re (0–10) and dominate, nd Seymour 198 germination an inual bluegrass sition (0–10) ther species ger	1 nant and available 3 reducing 32). Field d seedling litter 1 mination

common names: annual bluegrass

Impact on Higher Trophic Levels (0–10) 3	;
The seeds of annual bluegrass are eaten by various species of	
bird. The plants are probably eaten by deer. A wide range of	
invertebrates feed on annual bluegrass. It forms hybrids with	
<i>P. glauca</i> and <i>P. pratensis</i> in Britain. (Hutchinson and Seymour	
1982). Annual bluegrass is an alternate host for number of virus	es
(Royer and Dickinson 1999).	
Total for Ecological Impact 8/40)
Biological Characteristics and Dispersal Score	3
Mode of Reproduction (0–3) 3	5
Annual bluegrass reproduces primarily by seed, which is	
produced rapidly in the season. Seed production rate may excee	d
20,000 in a season under ideal conditions (Hutchinson and	
Seymour 1982, Rutledge and McLendon 1996).	
Long-distance dispersal (0–3) 2	2
The seeds have no special adaptation for long-distance dispersal	,
but are likely dispersed by rain, wind, and birds. Seeds remain	
viable after passing through the digestive tracts of some animals	5
such as cows, horses, and deer (Hutchinson and Seymour 1982,	
Rutledge and McLendon 1996).	
Spread by humans (0–3) 3	5
Seeds can be carried in mud on boots and vehicles. It is	
commonly transported as an impurity of lawn grass seed	
(Hodkinson and Thompson 1997, Hutchinson and Seymour	
1982, Rutledge and McLendon 1996, Whitson et al. 2000).	
Allelopathic (0–2) 0)
Annual bluegrass is not allelophathic (USDA 2002).	

Competitive Ability (0–3) 1	Role of anthropogenic and natural disturbance in 3
Annual bluegrass readily invades any available space. However,	establishment (0–5)
it generally does not compete strongly with established plants	Annual bluegrass persists on sites that are kept open by trampling
(Hutchinson and Seymour 1982, McNeilly 1981, Rutledge and	of livestock or by human activity (Hutchinson and Seymour
McLendon 1996). Annual bluegrass is a very adaptable species.	1982). This taxon readily establishes along introduced mineral
It has been found in a variety of climatic conditions. It tolerates	substrates in south-central and southeast Alaska (M.L. Carlson
trampling, mowing, and poorly aerated soils. It can grow and	and I. Lapina pers. obs.).
produce seeds almost all seasons, and several generations may	Current global distribution (0–5) 5
succeed one another in a single year	Annual bluegrass is a native of Europe but is now distributed
Thicket-forming/Smothering growth form $(0-2)$ 0	worldwide. It was introduced to North Africa, Mexico, Central
Since much of the seeds falls near the parent plant, it often forms	and South America, New Zealand, Australia. It also is found
continuous patches (Hutchinson and Seymour 1982, Royer and	above the Arctic Circle (Hultén 1968, Hutchinson and Seymour
Dickinson 1999). However, the plants are very small and easily	1982).
overtopped by other grasses and forbs.	Extent of the species U.S. range and/or occurrence of 5
Germination requirements (0–3) 1	formal state or provincial listing $(0-5)$
Annual bluegrass is found in open habitats. It can grow in closed	Annual bluegrass has been found in nearly all states of the United
turf in lawns and pastures if trampling or other disturbance is	States (USDA 2002). It is declared a noxious weed in Alaska,
severe (Hutchinson and Seymour 1982).	Connecticut, Kentucky, Massachusetts, New Jersey, New York,
Other invasive species in the genus $(0-3)$ 3	Texas, and Virginia (Alaska Administrative Code 1987, Invaders
Poa pratensis L., P. compressa L., and P. trivialis L. (Hultén 1968,	Database System 2003).
Royer and Dickinson 1999, Whitson et al. 2000).	Total for Ecological Amplitude and Distribution 18/25
Aquatic, wetland or riparian species (0–3) 0	Feasibility of Control Score
Annual bluegrass usually inhabits lawns, gardens, cultivated	Seed banks (0–3) 3
fields, pastures, roadsides, and other open areas (Hutchinson and	The longevity of seeds varies from about a year to about 6 years
Seymour 1982).	(Chippendale and Milton 1934, Hutchinson and Seymour 1982,
Total for Biological Characteristics and Dispersal 13/25	Roberts and Feast 1973).
Ecological Amplitude and Distribution Score	Vegetative regeneration $(0-3)$ 2
Highly domesticated or a weed of agriculture $(0-4)$ 2	Annual bluegrass can resprout after cutting or grazing
Annual bluegrass is one of the most common weeds of cultivated	(Hutchinson and Seymour 1982).
land. It also is a weed of lawns, gardens, and golf courses	Level of effort required $(0-4)$ 2
(Hutchinson and Seymour 1982, Royer and Dickinson 1999,	Manual control of annual bluegrass is very expensive and
Whitson et al. 2000).	inefficient. A number of herbicides are available, but they are not
Known level of impact in natural areas (0–6) 3	specific to this species (Rutledge and McLendon 1996).
(interver of impact in natural areas (0=0)	
Annual bluegrass has been recorded in sagebrush, oak–maple,	
Annual bluegrass has been recorded in sagebrush, oak-maple,	Total for Feasibility of Control7/10Total score for 4 sections46/100
	Total for Feasibility of Control7/10

Poa compressa L.

Ranking Summ	arv	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	6
Biological Characteristics and Dispersal	25	10
Amplitude and Distribution	25	17
Feasibility of Control	7	5
Relative Maximum		39
Climatic Compa	rison	
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Poa compressa is documented in all ecog	0 x 0	ons in
Alaska (Hultén 1968, UAM 2004, AKE	PIC 2005).	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		1
Canada bluegrass is generally restricted		
communities and likely has little impact	*	
communities and ecological processes (I. Lapina pers. c	obs.,
Rutledge and McLendon 1996).		
Impact on Natural Community Structure	e (0–10)	1
Canada bluegrass occurs in sparse stand	ls and likely doe	es not alter
the density of the layer (I. Lapina pers. o	bs., Sather 1996	5).
Impact on Natural Community Composi		1
In Alaska, Canada bluegrass is restricted	l to non-native	
10 10 1 · · · ·		
communities and it does not seem to be	changing specie	es
	changing speci	es
communities and it does not seem to be composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10)	changing specie	es 3
composition (I. Lapina pers. obs.).		3
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock	and wildlife spe	3 ecies
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil	and wildlife spe l 1980). Canada	3 ecies
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da	and wildlife spe l 1980). Canada	3 ecies
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact	and wildlife spe l 1980). Canada lle et al. 1975).	3 ecies a bluegrass
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da	and wildlife spe l 1980). Canada lle et al. 1975).	3 ecies a bluegrass 6/40
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	and wildlife spe l 1980). Canada ile et al. 1975). Dispersal	3 ecies a bluegrass <u>6/40</u> Score 2
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se	and wildlife spe l 1980). Canada ıle et al. 1975). Dispersal eds and rhizom	3 ecies a bluegrass <u>6/40</u> Score 2 ues
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala	and wildlife spe l 1980). Canada ıle et al. 1975). Dispersal eds and rhizom	3 ecies a bluegrass <u>6/40</u> Score 2 ues
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively.	and wildlife spe l 1980). Canada ıle et al. 1975). Dispersal eds and rhizom	3 ecies a bluegrass <u>6/40</u> Score 2 ues
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3)	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s	3 eccies a bluegrass $\frac{6/40}{\text{Score}}$ 2 esseem to be 2
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds of	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an	3 ecies a bluegrass <u>6/40</u> Score 2 ees seem to be 2 ad McNeill
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an	3 ecies a bluegrass <u>6/40</u> Score 2 ees seem to be 2 ad McNeill
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal.	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an	3 ecies a bluegrass <u>6/40</u> Score 2 ees seem to be 2 ad McNeill aptations
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3)	and wildlife spe l 1980). Canada ile et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad	3 ecies a bluegrass <u>6/40</u> Score 2 nes seem to be 2 ad McNeill aptations 3
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds v 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture grassively.	and wildlife spe l 1980). Canada ile et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad	3 ecies a bluegrass <u>6/40</u> Score 2 ees seem to be 2 ad McNeill aptations 3 ion control
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds v 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui	3 ecies a bluegrass <u>6/40</u> Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973).
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui	3 ecies a bluegrass <u>6/40</u> Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05).
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds of 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2)	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore ar any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200	3 ecies a bluegrass 6/40 Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore ar any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200	3 ecies a bluegrass <u>6/40</u> Score 2 ees seem to be 2 ad McNeill aptations 3 ton control ist 1973). 05). 0
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr. (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3)	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore ar any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 . (USDA 2002).	3 ecies a bluegrass <u>6/40</u> Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 0
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture grave (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c	and wildlife spe l 1980). Canada le et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 (USDA 2002). ompetitor with	3 ecies a bluegrass $\frac{6/40}{\text{Score}}$ 2 es seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 0 other
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr. (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c exotic plants (Turkington 1994). In expe	and wildlife spe l 1980). Canada ile et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 (USDA 2002). ompetitor with eriments by Tur	3 ecies a bluegrass <u>6/40</u> Score 2 tes seem to be 2 ad McNeill aptations 3 ton control ist 1973). 05). 0 other ckington
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds v 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c exotic plants (Turkington 1994). In exp (1994) Canada bluegrass was the poores	and wildlife spe l 1980). Canada ile et al. 1975). Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 . (USDA 2002). ompetitor with eriments by Tur st invader and it	3 ecies a bluegrass 6/40 Score 2 les seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 other ckington was less
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds v 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr. (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c exotic plants (Turkington 1994). In exp (1994) Canada bluegrass was the poores resistant to invasion by other species. In	and wildlife spe 1 1980). Canada 1 1980). Canada 1 1980). Canada 1 1980). Canada 1 1980). Canada 1 1980). Canada 1 1980). Dispersal reds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 (USDA 2002). ompetitor with eriments by Tur st invader and it vasive potential	3 ecies a bluegrass 6/40 Score 2 es seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 0 other ckington was less and
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds of 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c exotic plants (Turkington 1994). In exp- (1994) Canada bluegrass was the poores resistant to invasion by other species. In resistance to invasion by other species.	and wildlife spe 1980). Canada 1980). Canada 1980). Canada 1980). Canada 1980). Canada 1980 Dispersal eds and rhizom ska, it does not s widely (Dore an any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 (USDA 2002). ompetitor with eriments by Tur st invader and it vasive potential ecreases with th	3 ecies a bluegrass 6/40 Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 0 other ckington was less a and he age of
composition (I. Lapina pers. obs.). Impact on Higher Trophic Levels (0–10) Canada bluegrass is grazed by livestock (Gubanov et al. 2003, Dore and McNeil hybridizes with Kentucky bluegrass (Da Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) Canada bluegrass reproduces by both se (Rutledge and McLendon 1973). In Ala reproducing aggressively. Long-distance dispersal (0–3) Cattle and deer seem to carry the seeds v 1980). However, the grass does not have for long-distance dispersal. Spread by humans (0–3) Canada bluegrass is used as a pasture gr. (Rutledge and McLendon 1996, Hitcho It is also a common seed contaminant (I Allelopathic (0–2) This species is not listed as allelophathic Competitive Ability (0–3) Canada bluegrass appears to be a poor c exotic plants (Turkington 1994). In exp (1994) Canada bluegrass was the poores resistant to invasion by other species. In	and wildlife spe 1980). Canada 1980). Canada 1980). Canada 1980). Canada 1980). Canada 1980 Dispersal eds and rhizom ska, it does not s widely (Dore ar any specific ad ass and for erosi ck and Cronqui JSDA, ARS 200 (USDA 2002). ompetitor with eriments by Tur st invader and it vasive potential ecreases with th egrass is also less	3 ecies a bluegrass 6/40 Score 2 ues seem to be 2 ad McNeill aptations 3 ion control ist 1973). 05). 0 0 other ckington was less a and he age of

common names: Canada bluegrass

Thicket-forming/Smothering growth form $(0-2)$ 0	
Canada bluegrass does not form dense stands, and it does not	
possess climbing or smothering growth habit (Welsh 1974,	
Hultén 1968).	
Germination requirements (0–3) 0	
Canada bluegrass geminates better on bare soil (Turkington	
1994). It does not appear capable of germinating in areas where	
plants are already established.	
Other invasive species in the genus $(0-3)$ 3	
Poa annua L., P. pratensis L., and P. trivialis L. (USDA 2002,	
Whitson et al. 2000, Royer and Dickinson 1999, Hultén 1968).	
Aquatic, wetland or riparian species $(0-3)$ 0	
Canada bluegrass is a weed of waste places, roadsides, and yards	
(Gubanov et al. 2003, Hultén 1968).	
Total for Biological Characteristics and Dispersal 10/25	
Ecological Amplitude and Distribution Score	:
Highly domesticated or a weed of agriculture $(0-4)$ 4	1
Canada bluegrass is used as a pasture grass and for erosion contro	51
(Rutledge and McLendon 1996, Hitchock and Cronquist 1973).	
However, it is not used as widely as Kentucky bluegrass (USDA	
2002).	
Known level of impact in natural areas $(0-6)$ 3	
Canada bluegrass is known to cause little impact on native plant	
communities and successional processes in Rocky Mountain	
National Park, Colorado (Rutledge and McLendon 1996).	
Role of anthropogenic and natural disturbance in 0	
establishment (0–5)	
Canada bluegrass is much more capable of colonizing bare groun	d
(Turkington 1994).	
Current global distribution (0–5) 5	
Canada bluegrass is native to Europe, Western Asia, and	
Northern Africa (USDA, ARS 2005). It is introduced to North	
and South America, New Zealand, and Eastern Asia (Gubanov et	t
al. 2003, Hultén 1968).	
Extent of the species U.S. range and/or occurrence of 5	
formal state or provincial listing $(0-5)$	
Canada bluegrass is found in nearly all American states and	
Canadian provinces. This species is listed as an invasive weed in	
Connecticut (USDA 2002).	
Total for Ecological Amplitude and Distribution17/25	
Feasibility of Control Score	
Seed banks (0–3) U	
Unknown	
Vegetative regeneration $(0-3)$ 2	
Burning or grazing may result in increased resprouting (Rutledge	5
and McLendon 1996).	
Level of effort required (0–4) 3	
Chemical methods and burning might be useful. Practices that	
will damage bluegrass may often harm the native species more	
(Butterfield et al. 1996, Sather 1996).	
Total for Feasibility of Control 5/7 Tetal serve for Association 29/07	_
Total score for 4 sections 38/97	

S

Poa pratensis ssp. pratensis L.common names: Kentucky bluegrassPoa pratensis ssp. irrigata (Lindm.) Lindb. f.spreading bluegrassPoa trivialis L.rough bluegrass

7 1: 0			
Ranking Summary			Impact on Higher Trophic Levels (0–10) 3
Ecoregion known or expected to occur in			Bluegrasses can be an important part of the diets of elk, deer,
South Coastal		Yes	and sheep (Rutledge and McLendon 1996). The leaves and seeds
Interior Boreal		Yes	are eaten by numerous species of small mammals and birds.
Arctic Alpine		Yes	Kentucky-bluegrass-dominated grassland provide habitat for
Poten		ore	species of small mammals and birds. It naturally hybridizes with
Ma		10	several other native and exotic bluegrasses (Uchytil 1993, Dale
Ecological Impact	40	12	et al. 1975). It is a host for number of pest insects and diseases
Biological Characteristics and Dispersal	25 25	14 19	(Butterfield et al. 1996, Uchytil 1993).
Amplitude and Distribution Feasibility of Control	23 10	7	Total for Ecological Impact 12/40
Relative Maximum	10	52	Biological Characteristics and Dispersal Score
Climatic Comparison		32	Mode of Reproduction (0–3) 3
Poa Poa			Kentucky and spreading bluegrass reproduce from both seed and
pratensis ssp. pratensis Poa tri	ivialis CLII	MEX	rhizomes. Kentucky bluegrass can produce 100–200 seeds per
Pratensis ssp. Fratensis Fourth Pratensis ssp. Irrigate Colled		arity?	panicle in the first year, and as many as 800,000 seeds per square
Collected Collected	01001 Sinnin		
	Yes	_	meter. Production of 1,000 seeds per plant of rough bluegrass ha
		Yes	been documented (Froud-Williams and Ferris 1985). Rhizomes
Arctic Alpine Yes Yes		Yes	expand horizontal growth as much as 2 square meters in 2 years
Rough bluegrass (Poa trivialis): The CLIMEX ma	atching prog	gram	(Rutledge and McLendon 1996, Sather 1996).
indicates the climatic similarity between Fairban		-	Long-distance dispersal (0–3)
where rough bluegrass is documented is high. Ro			The seeds can spread short distances in clumps (Froud-Williams
is well established in Omsk, Tobolsk, and Tomsk,	e e	.00	and Ferris 1986), but they lack specific adaptations for long-
			distance dispersal.
(Malyschev and Peschkova 1990), which has 77%, 70% and			Spread by humans (0–3) 3
68% climatic matches with Fairbanks, respectively. <i>Poa trivialis</i>			Kentucky, spreading, and rough bluegrasses are commonly
is documented in arctic areas of Ust-Tsilma and A	0	-)	planted as lawn and pastures grasses (Butterfield et. al. 1996,
Russia (Tolmachev et al. 1995), which have 78% a			Liskey 1999). They are used in Alaska, Colorado, and Wisconsin
climate similarity with Nome, respectively. The establishment of			for soil stabilization along highway roadbanks (Uchytil 1993).
rough bluegrass in interior boreal and arctic alpine ecogeographic		aphic	They also contaminate commercial seeds (Liskey 1999).
regions of Alaska may be possible.			Hodkinson and Thompson (1997) found seeds of rough and
Ecological Impact	Sco	ore	spreading bluegrass on vehicles and with topsoil and horticultur
Impact on Ecosystem Processes (0–10)		3	stock.
Kentucky, spreading, and rough bluegrasses have			Allelopathic (0–2) 0
long-term modification or retardation of successi			These species are not listed as allelophathic (USDA 2002).
et al. 1996). In Alaska these grasses are restricted	l to non-nativ	ve	Competitive Ability (0–3)
communities (J. Conn pers. com.). Rough bluegr	rass likely		Bluegrass can outcompete native grasses and forbs and dominate
increases soil-water content in sod (Glenn and W	Velker 1996)).	on high nitrogen soils (Wisconsin DNR 2003). These grasses do
Impact on Natural Community Structure (0–10)		3	not appear to be competing with native species in Alaska (J. Cor
Poa pratensis is capable of creating uniform, dense	e mats, great	tly	pers. com.). Bluegrass is adapted to a wide range of environment
increasing the density of lower herbaceous layers	(Weaver and	d	conditions, and is marginally flood tolerant (Lenssen et al. 2004
Darland 1948). Poa trivialis rarely occurs in pure			Rutledge and McLendon 1996). It grows early in the season, who
capable of changing the density of the layer (Uch			most other species are still dormant. However, because it has a
Impact on Natural Community Composition (0-1		3	shallow root system it is susceptible to high soil temperatures
Kentucky and rough bluegrass have the ability to			and low soil moisture (Wisconsin DNR 2003). In experimental
communities, replace prairie plant species, reducing species			
diversity, and altering the natural floristic composition (Marriott			conditions rough bluegrass appeared to compete strongly with
et al. 2003, Wisconsin DNR 2003, Rutledge and McLendon			ryegrass (<i>Lolium perenne</i>) during first weeks of establishment
1996, Sather 1996). However, these species are no			(Haggar 1979).
in undisturbed areas in Alaska, and negative effect			Thicket-forming/Smothering growth form $(0-2)$ 0
	eto are likely		Bluegrass is capable of forming dense sod in highly fertile soils
minimal (J. Conn pers. com.).			(Sather 1996, Uchytil 1993). In Alaska, naturalized populations
			bluegrass do not form dense stands (J. Conn pers. com.).

Germination requirements (0–3) 2	Role of anthropogenic and natural disturbance in 2	
Generally, Kentucky and rough bluegrass requires light and open	establishment (0–5)	
soil for germination and establishment (Butterfield et al. 1996,	Bluegrasses readily establish by seeds on disturbed sites.	
Sather 1996). However, some rough bluegrass cultivars do not	Kentucky bluegrass increases with grazing and burning (Sather	
equire open surface and are recommended for overseeding in [1996, Weaver and Darland 1948).		
established lawns (Liskey 1999).	Current global distribution (0–5) 5	
Other invasive species in the genus $(0-3)$ 3	These taxa are native to Europe. They have been introduced into	
Poa annua L. and P. compressa L. (Hultén 1968, Royer and	North and South America, New Zealand, and Australia (Gubanov	
Dickinson 1999, Whitson et al. 2000).	et al. 2003, Hultén 1968).	
Aquatic, wetland or riparian species (0–3) 1	Extent of the species U.S. range and/or occurrence of 5	
These grasses often invade wetland and riparian habitats	formal state or provincial listing $(0-5)$	
in addition to gardens, pastures, roadways, meadows, open	Kentucky, spreading, and rough bluegrasses are found naturalized	
woodlands, and prairies (Rutledge and McLendon 1996). In its	in nearly all American states and in Canada from Labrador to the	
native range Kentucky and rough bluegrass inhabits swamps and	west coast. Poa pratensis is listed as an invasive weed in Nebraska	
marshes, wet meadows, and streambanks (Gubanov et al. 2003,	and Wisconsin. Poa trivialis is a restricted weed seed in New	
Tolmachev et al. 1995, Malyschev and Peschkova 1990).	Jersey and Virginia (Invaders Database System 2003, USDA	
Total for Biological Characteristics and Dispersal 14/25	2002).	
Ecological Amplitude and Distribution Score Total for Ecological Amplitude and Distribution 19/25		
Highly domesticated or a weed of agriculture $(0-4)$ 4	Feasibility of Control Score	
	reasibility of Control Score	
Kentucky bluegrass and spreading bluegrass were introduced	Seed banks (0–3) 3	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is	Seed banks (0–3) 3	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al.	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003).	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the first 4-years after burial (Sather 1996); however, other studies	
Kentucky bluegrass and spreading bluegrass were introducedas cultivars and have since undergone selective breeding. Over100 cultivars of Kentucky bluegrass have been developed. It iscommonly planted as a lawn and pastures grass (Butterfield et. al.1996, Wisconsin DNR 2003).Known level of impact in natural areas (0–6)3Bluegrass has successfully invaded prairies and savannas in	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the first 4-years after burial (Sather 1996); however, other studies indicate that the seed is no longer dormant 6 months after harvest (Butterfield et al. 1996). Chippindale and Milton (1934) stated in	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the first 4-years after burial (Sather 1996); however, other studies indicate that the seed is no longer dormant 6 months after harvest	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the first 4-years after burial (Sather 1996); however, other studies indicate that the seed is no longer dormant 6 months after harvest (Butterfield et al. 1996). Chippindale and Milton (1934) stated in their study that seeds of <i>Poa trivialis</i> may remain dormant in the	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin	Seed banks (0–3) 3 A maximum of 560 <i>Poa pratensis</i> seed/m2 in soil samples from a Netherlands pastures was reported. Seeds germinate within the first 4-years after burial (Sather 1996); however, other studies indicate that the seed is no longer dormant 6 months after harvest (Butterfield et al. 1996). Chippindale and Milton (1934) stated in their study that seeds of <i>Poa trivialis</i> may remain dormant in the soil for 24, 40 and even 68 years.	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon and Washington, and it is a major problem species in aspen	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).Level of effort required (0-4)3	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon and Washington, and it is a major problem species in aspen communities in central Colorado and South Dakota (Uchytil	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).Level of effort required (0-4)3Chemical methods and burning might be useful. Practices that	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon and Washington, and it is a major problem species in aspen communities in central Colorado and South Dakota (Uchytil	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).Level of effort required (0-4)3Chemical methods and burning might be useful. Practices thatwill damage bluegrass may often harm the native species more	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon and Washington, and it is a major problem species in aspen communities in central Colorado and South Dakota (Uchytil	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).Level of effort required (0-4)3Chemical methods and burning might be useful. Practices thatwill damage bluegrass may often harm the native species more(Butterfield et al. 1996, Sather 1996).	
Kentucky bluegrass and spreading bluegrass were introduced as cultivars and have since undergone selective breeding. Over 100 cultivars of Kentucky bluegrass have been developed. It is commonly planted as a lawn and pastures grass (Butterfield et. al. 1996, Wisconsin DNR 2003). Known level of impact in natural areas (0–6) 3 Bluegrass has successfully invaded prairies and savannas in Wisconsin and Nebraska (Weaver and Darland 1948, Wisconsin DNR 2003). It is naturalized in dry to moist meadows in Oregon and Washington, and it is a major problem species in aspen communities in central Colorado and South Dakota (Uchytil	Seed banks (0-3)3A maximum of 560 Poa pratensis seed/m2 in soil samples from aNetherlands pastures was reported. Seeds germinate within thefirst 4-years after burial (Sather 1996); however, other studiesindicate that the seed is no longer dormant 6 months after harvest(Butterfield et al. 1996). Chippindale and Milton (1934) stated intheir study that seeds of Poa trivialis may remain dormant in thesoil for 24, 40 and even 68 years.Vegetative regeneration (0-3)These grasses can resprout rapidly (Rutledge and McLendon1996).Level of effort required (0-4)3Chemical methods and burning might be useful. Practices thatwill damage bluegrass may often harm the native species more	

\$

Polygonum aviculare L. common names: prostrate knotweed, yard knotweed

Ranking Summ	ary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
	40	50016
Ecological Impact		15
Biological Characteristics and Dispersal	25	15
Amplitude and Distribution	25	16
Feasibility of Control	10	7
Relative Maximum	-	45
Climatic Compar		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Polygonum aviculare has been documente	ed in all ecoged	graphic
regions of Alaska (Hultén 1968, UAM 2	004. AKEPIC	2005).
Ecological Impact	.,	Score
Impact on Ecosystem Processes (0–10)		1
Although toxins from the roots and leave	s of prostrate 1	notweed
may prevent native species establishmen		
1982a, Klott and Boyce 1982), in Alaska	*	,
associated with anthropogenic disturban	nces (M. Carlso	on pers.
obs., J. Conn pers. obs.), and likely does	not have a signi	ficant
impact on natural ecosystem processes.	0	
Impact on Natural Community Structure	(0-10)	0
Prostrate knotweed is capable of coloniz		
and changing the density of the layer (I.		
No impact on the natural community str	ucture has bee	en
documented.		
Impact on Natural Community Composit		1
Prostrate knotweed has not been observe	ed in undisturł	ved
areas in Alaska (Densmore et al. 2000, I.	Lapina pers. o	bs.).
It is unlikely that measurable impacts on		
composition occur due to its presence.		
		5
Impact on Higher Trophic Levels $(0-10)$	for moner his 1	5
Prostrate knotweed is a food and habitat	•	
mammal species (Firbank and Smart 20		
Sixty-one species of insects have been of	served feeding	, on
prostrate knotweed (Marshall et al. 2003	8). Flowers are	frequently
visited by insects, particularly by bees an		
knotweed is a host for number of fungi, v		
,		IIatoue
species (Townshend and Davidson 1962).	= (4.0
Total for Ecological Impact		7/40
Biological Characteristics and I	Dispersal	Score
Mode of Reproduction $(0-3)$		3
Prostrate knotweed reproduces by seed	Costea and Ta	rdif
2005). A single plant may produce from		
achenes (Stevens 1932).		
Long-distance dispersal (0–3)		3
	danimalasta	
The achenes can be dispersed by birds ar		
ingestion. The seeds float and can be disp		
water, rain, streams, and watercourses (C	Costea and Tar	dif 2005).

B-100

found.

Role of anthropogenic and natural disturbance in 2	Feasibility of Control Score		
establishment (0–5)	Seed banks (0–3) 3		
Prostrate knotweed colonizes disturbed ground. Plants may	Chepil (1946) found that although a significant proportion of		
appear on sites that have been redisturbed several decades after	prostrate knotweed seeds germinate in the year after they were		
the last human disturbance (Densmore et al. 2000). Prostrate	produced, a smaller number of seedlings emerged 3–5 years after		
knotweed was dominant on patches of soil disturbed by animals sowing. Two out of 1,000 seeds sown, emerged after 5 years.			
in a study in Germany (Milton et al. 1997).	Viability of seeds was 7% after 4.7 years, and <1% after 9.7 years		
Current global distribution (0–5) 5	in seed viability experiment conducted in Fairbanks (Conn and		
Prostrate knotweed is one of the most widespread weeds in	Deck 1995). The number of years of seed viability was estimated		
Europe and Asia. It has been introduced into Central and South	to be 9 on a site with loam soil, and 20 on a site with clay soil		
Africa, South and North America, Australia, and New Zealand. It	(Lutman et al. 2002).		
has been recorded in Alaska, including arctic regions (Gubanov et	Vegetative regeneration $(0-3)$ 2		
al. 2003, Hultén 1968).			
Extent of the species U.S. range and/or occurrence of 5			
formal state or provincial listing $(0-5)$	Level of effort required (0–4) 2		
Prostrate knotweed is found in nearly all American states and	Il American states and Mechanical methods used for the control of prostrate knotweed		
Canadian provinces (USDA, NRCS 2006). <i>Polygonum aviculare</i> are usually not efficient alone and are more effective in			
is listed as a noxious weed in Quebec (Rice 2006). combination with chemical treatments. Several insect species			
Total for Ecological Amplitude and Distribution 16/25 have been suggested as a potential biocontrol agent for this wee			
	(Costea and Tardif 2005).		
	Total for Feasibility of Control7/10		
	Total score for 4 sections 45/100		

Polygonum convolvulus L. (Fallopia convolvulus (Linnaeus) Á. Löve)

Ranking Summary				
Ecoregion known or expected to occu	ır in			
South Coastal		Yes		
Interior Boreal		Yes		
Arctic Alpine		Yes		
	Potential Max.	Score		
Ecological Impact	40	12		
Biological Characteristics and Dispersal	25	16		
Amplitude and Distribution	25	17		
Feasibility of Control	10	5		
Relative Maximum		50		
Climatic Compa				
	Collected in	CLIMEX		
	Alaska regions?	similarity?		
South Coastal	Yes	-		
Interior Boreal	Yes	-		
Arctic Alpine	Yes	-		
Polygonum convolvulus has been docum				
regions of Alaska (Hultén 1968, Welsh	1974, UAM 200)4,		
AKEPIC 2005).				
Ecological Impact		Score		
Impact on Ecosystem Processes (0–10)		3		
Black bindweed quickly covers bare soil (Hume et al. 1983,				
Rutledge and McLendon 1996). It may	prevent native s	species		
from establishing.	<u>^</u>	*		
Impact on Natural Community Structur	re (0–10)	3		
Black bindweed is able to create a dense	canopy, coveri	ng		
herbaceous plants (Friesen and Shebeski 1960, Royer and				
Dickinson 1999). However, dense stand				
not been observed in native communiti				
pers. obs.).		0.01111		
pers. 003.J.				

common names: black bindweed

\$

Impact on Natural Community Composition (0–10)	3
Black bindweed is a strong competitor (Fabricius and M	Valewaja
1968, Friesen and Shebeski 1960, Pavlychenko and Ha	rrington
1934, Welbank 1963) and it likely reduces the number	of
individuals in native species community.	
Impact on Higher Trophic Levels (0–10)	3
The seeds and leaves of black bindweed are important f	oods for
granivorous birds (Wilson et al. 1999). It also is an alte	rnate host
for number of fungi, viruses, and nematode species (Co	
Harrison 1973, Royer and Dickinson 1999, Townshen	d and
Davidson 1962)	
Total for Ecological Impact	12/40
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Black bindweed reproduces by seed only. A single plant	t is capable
of producing up to 11,900 to even 30,000 seeds (Steven	ns 1932,
Forsberg and Best 1964).	
Long-distance dispersal (0–3)	1
The seeds have no adaptation for long-distance dispers	
apparently they can be transported by water (Hume et	al. 1983,
Rutledge and McLendon 1996).	
Spread by humans (0–3)	2
The seeds of black bindweed are commonly dispersed l	·
machinery. It also is a frequent cereal crop contaminan	t (Gooch
1963, Rutledge and McLendon 1996, J. Conn pers. obs	s.). Black
bindweed seeds remain viable after digestion by rumin	ants,
therefore, may be transported by animals (Blackshaw a	und Rode
1991).	
Allelopathic (0–2)	0
Black bindweed is not known to be allelopathic.	Ũ

Competitive Ability (0–3) 2	Role of anthropogenic and natural disturbance in 2
Black bindweed is able to compete with cultivated crops and	establishment (0–5)
other weeds for moisture, nutrients, and light (Friesen and	Black bindweed readily established on cultivated fields and
Shebeski 1960, Welbank 1963, Fabricius and Nalewaja 1968,	disturbed grounds (Royer and Dickinson 1999, Welsh 1974).
Royer and Dickinson 1999). In experimental studies black	However, it is recorded to establish in grasslands with small-scale
bindweed appears to be a stronger competitor than <i>Chenopodium</i>	animal disturbances in Germany (Milton et al. 1997).
album, Polygonum aviculare, P. persicaria, Stellaria media, and	Current global distribution (0–5) 5
Capsella bursa-pastoris (Pavlychenko and Harrington 1934,	Black bindweed originated from Eurasia. It has now been
Welbank 1963).	introduced into Africa, South America, Australia, New Zealand,
Thicket-forming/Smothering growth form $(0-2)$ 2	and Oceania (Hultén 1968, USDA, ARS 2003). It has been
Black bindweed climbs and smothers other plants and can form	collected from arctic regions in Alaska (Hultén 1068, UAM
dense thickets (Rutledge and McLendon 1996). A density of	2006).
56–215 plants per m ² has been observed in a number of studies	Extent of the species U.S. range and/or occurrence of 5
(Friesen and Shebeski 1960)	formal state or provincial listing $(0-5)$
Germination requirements (0–3) 2	Black bindweed is found throughout Canada and the United
The germination of black bindweed seeds is greater on disturbed	States. It is declared noxious in Alaska, Alberta, Manitoba,
sites. The disturbance of soils apparently reactivates dormant	Minnesota, Oklahoma, Quebec, and Saskatchewan (Alaska
seeds (Milton et al. 1997). However, germination in undisturbed	Administrative Code 1987, Rice 2006, Royer and Dickinson
soil was also recorded (Roberts and Feast 1973).	1999).
Other invasive species in the genus $(0-3)$ 3	Total for Ecological Amplitude and Distribution 17/25
Polygonum cuspidatum Sieb. & Zucc., P. perfoliatum L.,	Feasibility of Control Score
<i>P. polystachyum</i> Wallich ex Meisn., and <i>P. sachalinense</i> F. Schmidt	Seed banks (0–3) 3
ex Maxim. are declared noxious weeds in a number of American	Most seeds of black bindweed germinate in their first year
states (USDA, NRSC 2006). Also Polygonum arenastrum Jord.	(Chepil 1946). However, seeds remain viable in the soil for up
ex Boreau, P. caespitosum Blume, P. aviculare L., P. orientale	to 40 years (Chippendale and Milton 1934). Viability of seeds
L., <i>P. persicaria</i> L., and <i>P. lapathifolium</i> L. are listed as a weeds	was 5% after 4.7 years, and <1% after 9.7 years in seed viability
in PLANTS Database (USDA, NRSC 2006). A number of	experiment conducted in Fairbanks (Conn and Deck 1995).
<i>Polygonum</i> species native to North America have a weedy habit	Vegetative regeneration (0–3) 0 Black bindweed does not regenerate vegetatively (Hume et al.
and are listed as noxious weeds in some of the American states.	1983).
Although some of the recent taxonomic treatments considers	Level of effort required $(0-4)$ 2
these as a species of three different genera: Polygonum, Fallopia,	Mechanical methods have only limited success in controlling
and <i>Persicaria</i> (FNA 1993+), they are closely related taxa and can	black bindweed. A number of chemicals are recommended for
be considered as congeneric weeds.	control of this weed. Several pathogenic fungi have been studied
Aquatic, wetland or riparian species (0–3) 1	as a potential biocontrol agent for this weed (Dal-Bello and
Black bindweed is a common weed in cultivated fields, gardens,	Carranza 1995, Mortensen and Molloy 1993).
roadsides, and waste areas. It may be occasionally found on river	Total for Feasibility of Control5/10
gravel bars (Hume et al. 1983).	Total score for 4 sections 50/100
Total for Biological Characteristics and Dispersal16/24Ecological Amplitude and DistributionScore	Ś
Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4	Ŷ
Black bindweed is a serious weed in crops (Friesen and Shabeski	
1900. FORSDERV AND DESL 19041	
1960, Forsberg and Best 1964). Known level of impact in natural areas (0–6) 1	
Known level of impact in natural areas (0–6) 1	

Polygonum cuspidatum Sieb. & Zucc.Common name: Japanese knotweed,
(Fallopia japonica (Houtt.) R. Decr.)Polygonum sachalinense F. Schmidt ex Maxim.Japanese bamboo
giant knotweed
(Fallopia sachalinensis (F. Schmidt ex Maxim.) R. Decr.)Polygonum ×bohemicumBohemian knotweed
(J. Chrtek & Chrtkovß [cuspidatum × sachalinense]) Zika & Jacobson

(Fallopia × bohemica (Chrtek & Chrtková) J.P. Bailey)

· · · · · · · · · · · · · · · · · · ·			
Ranking Summ			Impact on Higher Trophic Levels (0–10)
Ecoregion known or expected to occu	ır in		Japanese knotweed clogs waterways and lowers the quality of
South Coastal		Yes	habitat for wildlife and fish. It reduces the food supply for juv
Interior Boreal		Yes	salmon in the spring (Seiger 1991). It reduces the diversity of
Arctic Alpine		No	phytophagous insects (Beerling & Dawah 1993). Hybridizes
-	Potential Max.	Score	the introduced <i>Polygonum sachalinense</i> .
Ecological Impact	40	33	Total for Ecological Impact 33/
Biological Characteristics and Dispersal	25	21	
Amplitude and Distribution	25	23	Biological Characteristics and Dispersal Sco
Feasibility of Control	7	7	Mode of Reproduction $(0-3)$
Relative Maximum		87	Reproduction is primarily vegetative [rhizomes and stem
Climatic Compa	rison		tissue] (Japanese Knotweed Alliance 2004). Plants can prod
1	Collected in	CLIMEX	abundant seed. But a large proportion is nonviable when ferti
	Alaska regions?		male plants are rare or absent (Conolly 1977). Densmore et
South Coastal	Yes	_	al. (2001) observed, however, that the <i>P. cuspidatum</i> in Sitka
Interior Boreal	Yes	_	National Historical Park appears to have established from see
Arctic Alpine	No	No	Long-distance dispersal (0–3)
Japanese knotweed has been collected f			The fragments of plants are easily washed downstream where
Juneau, and Port Alexander (Densmore		~	they can resprout. There are also documented occurrences of
			spread across sea water (Beerling et al. 1994). Fruits maintain
Using the CLIMEX matching program			
between Nome and areas where the spe			a winged perianth and have an abscission zone on the pedicle
modest. It does occur in gardens within			suggesting adaptation for wind dispersal (Beerling et al. 1994
which has 61% climatic match with Nor	ne. However, th	nis species	Spread by humans (0–3)
ranges only as far north as Nova Scotia a	and Newfoundl	and in	Japanese knotweed has been planted as an ornamental in
Canada and is restricted to regions of hi			southeast Alaska and in Anchorage and escapes from garden
UK (Seiger 1991). In northern Europe i			Transportation of soil containing rhizome fragments is likely
greater than 120 frost-free days (Beerlir			occur frequently (Seiger 1991, Densmore et al. 2001).
			Allelopathic $(0-2)$
80 frost-free days. This information sug	0	lishinent	Unknown. No records of allelopathy were found. Biochemica
in the arctic alpine ecoregion of Alaska			studies indicate it possesses antibacterial and antifungial
establishment in the interior boreal regi	on may only be	possible	properties, but no mention of allelopathic effects (Beerling et
under garden conditions.			1994)
Ecological Impact		Score	
Impact on Ecosystem Processes (0–10)		7	Competitive Ability (0–3)
Japanese knotweed increases the risk of	soil erosion foll	lowing	Japanese knotweed effectively competes for light by emergin
removal of stands. The dead stems and l	eaf litter decom	pose very	early in the spring and using its extensive rhizomatous reserv
slowly and form a deep organic layer wh		~ · ·	to quickly attain a height of 2–3 meters (Densmore et al. 200
from germinating, altering the natural s			Seiger 1991).
species (Japanese Knotweed Alliance 2		_	Thicket-forming/Smothering growth form $(0-2)$
dormancy, dried stalks can create a fire			It forms very dense thickets that are generally taller (4–9 feet
Impact on Natural Community Structur		1975).	than the surrounding herbaceous and shrubby vegetation
Japanese knotweed forms an extremely			(Densmore et al. 2001, Seiger 1991, Whitson et al. 2000).
	DEUSE HUG-Cano	Jpy layer	Germination requirements (0–3)
		~ · ·	Germination requirements (0 - 5)
as a single-species stand, and eliminates	s plants below by	y shading	
as a single-species stand, and eliminates out native vegetation (Seiger 1991, Beer	s plants below by	y shading	Japanese knotweed can germinate in vegetated areas. The
as a single-species stand, and eliminates out native vegetation (Seiger 1991, Beer Natural Areas Program 2004).	plants below b ling et al. 1994,	y shading Maine	Japanese knotweed can germinate in vegetated areas. The seeds require chilling to break dormancy (Beerling et al. 199
as a single-species stand, and eliminates out native vegetation (Seiger 1991, Beer Natural Areas Program 2004). Impact on Natural Community Compos	plants below by ling et al. 1994, ition (0–10)	y shading Maine 9	
as a single-species stand, and eliminates out native vegetation (Seiger 1991, Beer Natural Areas Program 2004). Impact on Natural Community Compos Japanese knotweed prevents native seed	plants below by ling et al. 1994, ition (0–10)	y shading Maine 9	Japanese knotweed can germinate in vegetated areas. The seeds require chilling to break dormancy (Beerling et al. 199
as a single-species stand, and eliminates out native vegetation (Seiger 1991, Beer Natural Areas Program 2004). Impact on Natural Community Compos	s plants below by ling et al. 1994, ition (0–10) ls from germina	y shading Maine 9 ating, and	Japanese knotweed can germinate in vegetated areas. The seeds require chilling to break dormancy (Beerling et al. 199

Other invasive species in the genus $(0-3)$ 3	Role of anthropogenic and natural disturbance in 5
Polygonum perfoliatum L., P. polystachyum Wallich ex Meisn., and	establishment (0–5)
P. sachalinense F. Schmidt ex Maxim. are declared noxious in a	Japanese knotweed can establish in native habitats (Stensvold
number of American states (Rice 2006, USDA, NRSC 2006).	2000, Shaw and Seiger 2002).
Also Polygonum arenastrum Jord. ex Boreau, P. caespitosum	Current global distribution (0–5) 3
Blume, P. convolvulus L., P. persicaria L., P. lapathifolium L.,	Japanese knotweed is native of Japan, Northern China, Taiwan,
P. orientale L., and P. aviculare L. are listed as a weeds in the	and Korea. It is now a serious introduced pest in Europe, the
PLANTS Database (USDA, NRSC 2006). A number of	United Kingdom, North America, and New Zealand. It is widely
Polygonum species native to North America have a weedy	distributed in North America (found in at least 42 states and
habit and are listed as noxious weeds in some American states.	most Canadian provinces) (Seiger 1991, Shaw and Seiger 2002).
Although the latest taxonomy considers these species as members	Extent of the species U.S. range and/or occurrence of 5
of three different genus: Polygonum, Fallopia, and Persicaria	formal state or provincial listing (0–5)
(FNA 1993+), they are closely related taxa and can be considered	Japanese knotweed is noxious in California (List B), Oregon (List
as congeneric weeds.	B), and Washington (List C) (Rice 2006, USDA, NRCS 2006).
Aquatic, wetland or riparian species (0–3) 3	Total for Ecological Amplitude and Distribution 23/25
Japanese knotweed often is found near water sources, such as	Feasibility of Control Score
Japanese knotweed often is found near water sources, such as along streams and rivers, in waste places, utility rights-of-way,	Seed banks (0–3) U
along streams and rivers, in waste places, utility rights-of-way,	Seed banks (0–3) U Unknown. Hybrid seeds of <i>P. x bohemica,</i> stored at room
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al.	Seed banks (0–3) U Unknown. Hybrid seeds of <i>P. x bohemica,</i> stored at room temperature, retained viability for 4 years (Beerling et al. 1994).
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3
along streams and rivers, in waste places, utility rights-of-way,neglected gardens, and around old homesites (Beerling et al.1994, Densmore et al. 2001, Seiger 1991).Total for Biological Characteristics and Dispersal21/25Ecological Amplitude and DistributionScore	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very small
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al.1994, Densmore et al. 2001, Seiger 1991).Total for Biological Characteristics and Dispersal21/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shaw
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991).	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991). Known level of impact in natural areas (0–6) 6	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4Japanese knotweed is extremely difficult and expensive to control
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991). Known level of impact in natural areas (0–6) 6 Japanese knotweed has invaded rivers bars in Sitka National	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4Japanese knotweed is extremely difficult and expensive to control(Child and Wade 2000, Seiger 1991, Shaw and Seiger 2002).
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991). Known level of impact in natural areas (0–6) 6 Japanese knotweed has invaded rivers bars in Sitka National Historical Park (Densmore et al. 2001) and has established	Seed banks (0-3)UUnknown. Hybrid seeds of P. x bohemica, stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4Japanese knotweed is extremely difficult and expensive to control(Child and Wade 2000, Seiger 1991, Shaw and Seiger 2002).Total for Feasibility of Control7/7
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991). Known level of impact in natural areas (0–6) 6 Japanese knotweed has invaded rivers bars in Sitka National Historical Park (Densmore et al. 2001) and has established additional infestations in the Tongass National Forest (Stensvold	Seed banks (0-3)UUnknown. Hybrid seeds of <i>P. x bohemica</i> , stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4Japanese knotweed is extremely difficult and expensive to control(Child and Wade 2000, Seiger 1991, Shaw and Seiger 2002).Total for Feasibility of Control7/7Total score for 4 sections84/97
along streams and rivers, in waste places, utility rights-of-way, neglected gardens, and around old homesites (Beerling et al. 1994, Densmore et al. 2001, Seiger 1991). Total for Biological Characteristics and Dispersal 21/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 4 Japanese knotweed has been planted as ornamental (Densmore et al. 2001, Seiger 1991). Known level of impact in natural areas (0–6) 6 Japanese knotweed has invaded rivers bars in Sitka National Historical Park (Densmore et al. 2001) and has established	Seed banks (0-3)UUnknown. Hybrid seeds of <i>P. x bohemica</i> , stored at roomtemperature, retained viability for 4 years (Beerling et al. 1994).Vegetative regeneration (0-3)3Japanese knotweed is capable of regeneration from very smallfragments of rhizome (as little as 0.7 grams) (Seiger 1991, Shawand Seiger 2002).Level of effort required (0-4)4Japanese knotweed is extremely difficult and expensive to control(Child and Wade 2000, Seiger 1991, Shaw and Seiger 2002).Total for Feasibility of Control7/7

Potentilla recta L.

Ranking Summary					
Ecoregion known or expected to occur in					
South Coastal		Yes			
Interior Boreal		Yes*			
Arctic Alpine		No			
* Southern portion of interior boreal region (see	climate comparison	n below).			
	Potential Max.	Score			
Ecological Impact	40	20			
Biological Characteristics and Dispersal	25	13			
Amplitude and Distribution	25	17			
Feasibility of Control	10	7			
Relative Maximum		57			
Climatic Comparison					
_	Collected in	CLIMEX			
	Alaska regions?	similarity?			
South Coastal	No	Yes			
Interior Boreal	No	No			
Arctic Alpine	No	No			
Potentilla recta has not been collected in Alaska (Hultén 1968,					
Walsh 1074 AKEDIC 2004 UAM 2004) The climatic similarity					

Welsh 1974, AKEPIC 2004, UAM 2004). The climatic similarity between Fairbanks and Nome and areas where the species is documented is low (CLIMEX 1999, Gubanov et al. 2003, Lid and Lid 1994). Thus establishment in interior boreal and arctic alpine ecogeographic regions is unlikely. However, sulphur cinquefoil is known to invade grasslands in Montana (Rice 1991) where the climatic similarity between Anchorage (southern interior boreal ecoregion) and Harve and Kalispell, Montana is 66% and 64% respectively. Climatic similarity between Juneau and areas where the species is documented is high. The native range of *Potentilla recta* includes Bergen, Norway, which has 73% of climatic similarity with Juneau. Thus establishment in the south coastal and the southern part of interior boreal ecogeographic region may be possible.

Ecological Impact	Score			
Impact on Ecosystem Processes (0–10)	3			
Natural successional processes may become altered in pl				
communities thoroughly infested by sulphur cinquefoil (Endress			
and Parks 2004, Powell 1996). As a pioneer species, it lik	ely binds			
disturbed soil and prevents erosion (Werner and Soule 1976).				
Impact on Natural Community Structure (0–10)	3			
Sulphur cinquefoil is capable of changing the density of t	he			
vegetative layer.				
Impact on Natural Community Composition (0–10)	7			
Severe infestations of sulphur cinquefoil often decrease t				
plant diversity and may compromise the reproductive su				
abundance of the co-occurring native cinquefoils (Endre				
Parks 2004). Sulphur cinquefoil typically produces more flowers				
than native Potentilla species; therefore, may attract more	e insect			
pollinators, causing reduced reproductive success of co-c	occurring			
native cinquefoils (Endress and Parks 2004).				
Impact on Higher Trophic Levels (0–10)	7			
Although elk and deer have been observed browsing on s	~			
cinquefoil, high tannin levels make this plant unpalatable	e to most			
wildlife (Endress and Parks 2004, Kadrmas and Johnsoo	on 2004,			
Werner and Soule 1976). A great number of phytophagous and				
pollinating insect species are associated with sulphur cinquefoil				
(Batra 1979, Powell 1996). Potentilla species do not readi	ly			
hybridize (Acharya Goswami and Matfield 1975).				
Total for Ecological Impact	20/40			

common names: sulphur cinquefoil

	-
Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3) Sulphur cinquefoil reproduces exclusively by seed. A sin	3 agle plant
can produce approximately 1,650 seeds. At a population	
of 2.7 plants per m ² about 4,400 seeds per m ² may be pr	
each year. (Endress and Parks 2004, Werner and Soule	
Long-distance dispersal $(0-3)$	2004).
Most seeds fall passively to the ground; however, longer	_
seed dispersal can occur by attachment to, and consum	
movement by birds, small mammals, and grazing anim	*
can also be dispersed longer distances by wind or in me	
and surface flows (Endress and Parks 2004, Powell 199	0
and Soule 2004).	o, werner
Spread by humans (0–3)	3
Seeds can be dispersed by attachment to clothes, boots	0
and earth-moving equipment (Endress and Parks 2004	
soil, hay and bedding for animals, and as plants collecte	
arrangement (Powell 1996).	
Allelopathic (0–2)	0
The species is not known to be allelopathic (Powell 199	6, Werner
and Soule 1976).	
Competitive Ability (0–3)	3
Sulphur cinquefoil is very competitive. It can displace r	ative
species in grasslands and forest habitats (Endress and P	
2004) and has been shown to outcompete and displace	
species such as yellow starthistle (Centaurea solstitialis	L.),
spotted knapweed (Centaurea biebersteinii DC), and lea	fy spurge
(Euphorbia esula L.) on several sites in Montana, Nevac	la, Oregon,
and British Columbia. Sulphur cinquefoil is not known	to persist
under a 100% canopy cover of other vegetation (Kadrm	has and
Johnson 2004, Powell 1996, Zouhar 2003).	
Thicket-forming/Smothering growth form $(0-2)$	0
Sulphur cinquefoil does not form dense thickets and do	
have a climbing growth habit (Pojar 1999, Whitson et a	
Germination requirements $(0-3)$	2
Sulphur cinquefoil germinates and establishes better in abandoned agricultural fields and other disturbed areas	
and Parks 2004, Kadrmas and Johnson 2004). Seedling	
was high in sites with established vegetation in Montan grasslands (Peter 2002 cited in Zouhar 2003).	d
Other invasive species in the genus $(0-3)$	0
There are a number of introduced <i>Potentilla</i> species in N	-
America, but none are listed as weeds (USDA 2002).	
Aquatic, wetland or riparian species $(0-3)$	0
Sulphur cinquefoil is found in disturbed open ground,	waste
places, roadsides, pastures, and overgrazed grasslands (
and Parks 2004, Pojar 1999, Powell 1996) but it may als	
undisturbed forest, shrub, and grassland communities	
and Parks 2004, Whitson et al. 2000). Soil moisture co	
where it grows range from dry to moist.	
Total for Biological Characteristics and Dispersal	13/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	2
Sulphur cinquefoil often impacts cultivated strawberry	
is not a serious agricultural weed (Werner and Soule 19	76, WS-
NWCB 2005).	

shrublands, and open forest communities in Michigan, Minnesota, Montana, Idaho, Nevada, and eastern Oregon and Washington (Beckwith 1954, Gross and Werner 1982, Kadrmas and Johnson 2004). In British Columbia it is mainly found in early successional stages in lowland to steppe zones (Pojar 1999, Powell 1996).Image: Communities in an integration is an integration in the mountains of North Africa and Johnson 2004). However, sulfur computation is not provide integration in the mountains of North Africa and Asia (Werner and Soule 1976). The northern latitudinal limit of	Feasibility of ControlScoreSeed banks (0-3)2In laboratory experiment, viable seeds remained after 28 monthsof burial (Zouhar 2003). Baskin and Baskin (1990) suggestthat seeds remain viable at least 2 years. In Montana sulphurcinquefoil seeds in the soil remain viable for at least 3-4 years(Rice 1991).Vegetative regeneration (0-3)2The plant is capable of resprouting after shoots are cut off (Powell1996, Werner and Soule 1976).3Sulphur cinquefoil is not a threat until it completely dominatesan area. A combination of mechanical, chemical, and biologicalcontrol methods may be necessary to eradicate or successfullycontain large infestations. Chemical control is one of the mosteffective methods, however, the resistance of cinquefoil to someherbicides makes controlling more difficult (Endress and Parks2004, Kadrmas and Johnson 2004, Powell 1996). Digging andtilling can be effective for small infestations; however, mowed orgrazed sulphur cinquefoil can still flower and produce seeds.Total score for 4 sections57/100
---	--

Total for	Ecological Am	plitude and Distribution	17/25

Prunus padus L.

Ranking Sumn	narv	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	31
Biological Characteristics and Dispersal	25	21
Amplitude and Distribution	25	17
Feasibility of Control Relative Maximum	10	<u>5</u>
Climatic Compa	rison	/4
Chinade Compa	Collected in	CLIMEX
	Alaska regions?	
South Coastal	Yes	_
Interior Boreal	Yes	-
Arctic Alpine	No	No
Prunus padus is documented from Fairb		
(interior boreal ecoregion), and Baranot		
ecoregion) (UAM 2003). It is widely pla		
Anchorage (I. Lapina pers. obs., M. She		
range of the species includes Ust'Tsil'm		
Russia, and Røros, Norway (USDA, AR		
relatively high climatic match with Non		
respectively). However, it appears to rea	1 / 0	
limit around Fairbanks and Anchorage		
temperatures to -33 °F and requires 110		
NRCS 2006). Nome typically has 110 fr		
temperatures reach -54 °F (WRCC 200	, ,	to
establish in the arctic alpine ecoregion o	of Alaska.	C
Ecological Impact Impact on Ecosystem Processes (0–10)		Score 7
European bird cherry likely reduces ligh	nt soil moisture	
nutrient availability for other species sin		
dominant woody species in riparian hab		
(J. Conn pers. com.). Very little is know		0
impact on ecosystem processes.	ii do o de tillo op e	
Impact on Natural Community Structure	e (0–10)	7
European bird cherry can create a tall sł	, ,	layer
eliminating native willow–alder layers a	nd all layers bel	ow
(M. Shephard pers. obs.).		
Impact on Natural Community Compos		10
European bird cherry replaces willows a		
riparian communities. It may also delay	-	
growth of shade intolerant trees (M. Ca	rlson, M. Sheph	ard, and
P. Spencer pers. obs.).		
Impact on Higher Trophic Levels $(0-10)$	(1 . 1 1.	7
European bird cherry can cause reduction		
willow-dominated foraging sites for mo		
0 0		
M. Shephard pers. obs.). Six species of in		
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d		
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.).	Twenty-three sp	pecies
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). of phytophagous insect were found on E	Twenty-three sp	pecies
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). of phytophagous insect were found on E Britain (Leather 1985).	Twenty-three sp	pecies herry in
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). of phytophagous insect were found on E Britain (Leather 1985). Total for Ecological Impact	Twenty-three sj European bird cl	herry in 31/40
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). of phytophagous insect were found on E Britain (Leather 1985). Total for Ecological Impact Biological Characteristics and	Twenty-three sj European bird cl	herry in 31/40 Score
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.).' of phytophagous insect were found on E Britain (Leather 1985). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	Twenty-three sp European bird cl Dispersal	becies herry in <u>31/40</u> Score 3
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). ⁷ of phytophagous insect were found on E Britain (Leather 1985). Total for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3) European bird cherry reproduces by see	Twenty-three sp European bird cl Dispersal eds and bare roo	becies herry in 31/40 Score 3 ts. Also
M. Shephard pers. obs.). Six species of in bird cherry (Leather 1996). Fruits are d and Snow 1988, M. Carlson pers. obs.). of phytophagous insect were found on E Britain (Leather 1985). Fotal for Ecological Impact Biological Characteristics and Mode of Reproduction (0–3)	Twenty-three sp European bird cl Dispersal eds and bare roo	becies herry in 31/40 Score 3 ts. Also

common names: European bird cherry

I = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	
Long-distance dispersal (0–3) Fruits of European bird cherry are dispersed by birds (Sn	3
and Snow 1988). Seeds also falls beneath the trees and m	
dispersed by small mammals (Leather 1996).	uy be
Spread by humans (0–3)	3
European bird cherry is widely planted as an ornamental	
southern Alaska (Welsh 1974). Cultivars have been devel	
(USDA. NRCS 2006).	1
Allelopathic (0–2)	0
European bird cherry is not listed as allelopathic (USDA,	NRCS
2006).	
Competitive Ability (0–3)	3
In Anchorage, European bird cherry appears to be succes	
competing in largely intact native habitats, with numerou	
seedlings being recruited (M. Shephard pers. obs.). Adult	t trees are
drought and frost tolerant (Malyugin 1980).	
Thicket-forming/Smothering growth form $(0-2)$	1
This shrub or tree does not form dense thickets, but grow	's taller
than most surrounding species (Welsh 1974).	2
Germination requirements (0–3) European bird cherry is found germinating well in mixed	3
that were disturbed several decades ago (M. Shephard pe	
Other invasive species in the genus $(0-3)$	3
Prunus virginiana L. and P. serotina Ehrh. are considered i	-
in the Northeast (Rice 2006, USDA, NRCS 2006).	
Aquatic, wetland or riparian species $(0-3)$	2
In its native range European bird cherry inhabits wet woo	odland,
meadows, riverbanks, and forest clearcuts (British Trees	2004,
Gubanov et al. 1995). It is common along riparian areas c	of
Anchorage.	
Total for Biological Characteristics and Dispersal	21/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture (0–4)	4
European bird cherry has been grown for food and as an ornamental plant (USDA, ARS 2004, Welsh 1974).	
Known level of impact in natural areas $(0-6)$	3
There are observed impacts in riparian communities in A	-
that have been invaded by European bird cherry (M. She	
pers obs) No information was found relating to impacts	
pers. obs.). No information was found relating to impacts habitats outside of Alaska.	5 111
habitats outside of Alaska.	5
habitats outside of Alaska. Role of anthropogenic and natural disturbance in	
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5)	5
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establish	5 shed on
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar	5 shed on d pers.
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establish	5 shed on d pers.
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat	5 shed on d pers.
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia	5 shed on d pers. her 3 , and
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE	5 shed on d pers. her 3 , and
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004).	5 shed on d pers. her 3 , and DA, ARS
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of	5 shed on d pers. her 3 , and
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5)	5 shed on d pers. her 3 , and DA, ARS 2
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) European bird cherry occurs in Alaska, Illinois, New Yor	5 shed on d pers. her 3 , and DA, ARS 2 k, New
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) European bird cherry occurs in Alaska, Illinois, New Yor Jersey, Pennsylvania, and Delaware (USDA, NRCS 2006	5 shed on d pers. her 3 , and DA, ARS 2 k, New b). It is
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) European bird cherry occurs in Alaska, Illinois, New Yor Jersey, Pennsylvania, and Delaware (USDA, NRCS 2006 not considered a noxious weed in North America (Rice 2	5 shed on d pers. her 3 , and DA, ARS 2 k, New i). It is 006).
habitats outside of Alaska. Role of anthropogenic and natural disturbance in establishment (0–5) In south-central Alaska European bird cherry has establis sites that were disturbed in the last 50 years (M. Shephar obs.). Grazing favors young saplings establishment (Leat 1996). Current global distribution (0–5) European bird cherry is native to Europe, temperate Asia northern Africa. It is naturalized in North America (USE 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) European bird cherry occurs in Alaska, Illinois, New Yor Jersey, Pennsylvania, and Delaware (USDA, NRCS 2006	5 shed on d pers. her 3 , and DA, ARS 2 k, New b). It is

Feasibility of Control	Score	Level of effort required (0–4)	3
Seed banks (0–3)	0	Several control techniques can be used for con	ntrol of undesirable
The seeds of European bird cherry are viable for less	than 1 year	shrubs and trees such as bird cherry. Cutting, f	frilling, or girdling
(Granström 1987).		can be used for control of bird cherry. Combin	ation of mechanical
Vegetative regeneration $(0-3)$	2	treatments with herbicide applications is gener	rally more effective
European bird cherry readily resprouts after remova	al of	(Heiligmann 2006).	1
aboveground growth (Heiligmann 2006). New sho	ots are	Total for Feasibility of Control	5/10
commonly developed, especially during the early ye	ears of	Total score for 4 sections	74/100
establishment (Leather 1996).		S S	

Ranunculus repens L. and Ranunculus acris L.

Ranking Summ	nary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	16
Biological Characteristics and Dispersal	23	13
Amplitude and Distribution	25	15
Feasibility of Control	10	9
Relative Maximum		54
Climatic Compa		CT 11 (TT 1
	Collected in	CLIMEX
South Coastal	Alaska regions?	similarity?
Interior Boreal	Yes Yes	-
Arctic Alpine	Yes	-
Creeping buttercup has been reported f		ranhic
region in Alaska (Hultén 1968). Tall bu		
in the south coastal and interior boreal e		
Alaska (Hultén 1968, University of Alas		
The CLIMEX computer matching prog		ie climatic
similarity between Nome and areas who	ן ת	
similarity between Nome and areas whe		
documented is moderately high. The sp	ecies range inclu	ides Røros
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 1994	ecies range inclu 4), which have a	ides Røros 76% and
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55	ecies range inclu 4), which have a % and 52% clim	ides Røros 76% and atic match
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55 with Fairbanks, respectively. Thus estab	ecies range inclu 4), which have a % and 52% clim vlishment of <i>Ran</i>	ades Røros 76% and atic match <i>unculus</i>
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55	ecies range inclu 4), which have a % and 52% clim vlishment of <i>Ran</i>	ades Røros 76% and atic match <i>unculus</i>
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible.	ecies range inclu 4), which have a % and 52% clim vlishment of <i>Ran</i>	ades Røros 76% and atic match <i>unculus</i>
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact	ecies range inclu 4), which have a % and 52% clim vlishment of <i>Ran</i>	ades Røros 76% and atic match <i>unculus</i>
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55 with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10)	ecies range inclu 4), which have a % and 52% clim lishment of <i>Ran</i> ecogeographic 1	ades Røros .76% and atic match <i>nunculus</i> regions Score 3
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55 with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea	ecies range inclu 4), which have a % and 52% clim blishment of <i>Rar</i> ecogeographic i adily occupy op	ades Røros .76% and atic match <i>unculus</i> regions Score 3 en areas
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55 with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10)	ecies range inclu 4), which have a % and 52% clim blishment of <i>Rar</i> ecogeographic i adily occupy op	ades Røros .76% and atic match <i>unculus</i> regions Score 3 en areas
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55 with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup re- and may hinder colonization by native s Lovett-Doust et al. 1990).	ecies range inclu 4), which have a % and 52% clim blishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper	ades Røros .76% and atic match <i>unculus</i> regions Score 3 en areas
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup re- and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure	ecies range inclu 4), which have a % and 52% clim olishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10)	ades Røros .76% and atic match <i>unculus</i> regions Score 3 en areas 1957, 3
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t	ecies range inclu 4), which have a % and 52% clim dishment of <i>Ran</i> ecogeographic n adily occupy op pecies (Harper e (0–10) he density of the	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198	ecies range inclu 4), which have a % and 52% clim dishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e of creeping
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t	ecies range inclu 4), which have a % and 52% clim dishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e of creeping
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198	ecies range inclu 4), which have a % and 52% clim vlishment of <i>Rav</i> ecogeographic i adily occupy op pecies (Harper e (0–10) he density of the 81) the density of 2 per m ² in woo	ades Røros .76% and atic match <i>nunculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup res and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198 buttercup ramets was 264 per m ² and 11 grassland, respectively. Sarukhan and H	ecies range inclu 4), which have a % and 52% clim olishment of <i>Rav</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of L2 per m ² in woo larper (1973) re	ades Røros .76% and atic match <i>nunculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and ported
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198 buttercup ramets was 264 per m ² and 11 grassland, respectively. Sarukhan and H up to 385 ramets per m ² in intensly graz	ecies range inclu 4), which have a % and 52% clim blishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of 12 per m ² in woo Iarper (1973) re ed grassland. In	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and ported Alaska
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198 buttercup ramets was 264 per m ² and 11 grassland, respectively. Sarukhan and H up to 385 ramets per m ² in intensly graz creeping buttercup has been observed a	ecies range inclu 4), which have a % and 52% clim blishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of 12 per m ² in woo Iarper (1973) re ed grassland. In	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and ported Alaska
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198 buttercup ramets was 264 per m ² and 11 grassland, respectively. Sarukhan and H up to 385 ramets per m ² in intensly graz creeping buttercup has been observed a (T. Heutte pers. obs.).	ecies range inclu 4), which have a % and 52% clim blishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of L2 per m ² in woo larper (1973) re ed grassland. In t covers near 10	ades Røros .76% and atic match <i>uunculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and ported Alaska
documented is moderately high. The sp and Dombås, Norway (Lid and Lid 199- 63% climatic match with Nome, and 55' with Fairbanks, respectively. Thus estab <i>acris</i> in interior boreal and arctic alpine may be possible. Ecological Impact Impact on Ecosystem Processes (0–10) Both species of non-native buttercup rea and may hinder colonization by native s Lovett-Doust et al. 1990). Impact on Natural Community Structure Buttercup establishment may increase t vegetation. In Lovett-Doust's study (198 buttercup ramets was 264 per m ² and 11 grassland, respectively. Sarukhan and H up to 385 ramets per m ² in intensly graz creeping buttercup has been observed a	ecies range inclu 4), which have a % and 52% clim dishment of <i>Ran</i> ecogeographic r adily occupy op pecies (Harper e (0–10) he density of the 81) the density of L2 per m ² in woo larper (1973) re ed grassland. In t covers near 10 ition (0–10)	ades Røros .76% and atic match <i>unculus</i> regions Score 3 en areas 1957, 3 e of creeping odland and ported Alaska 0% 3

common names: creeping buttercup and tall buttercup

tuii buttereup	-
Impact on Higher Trophic Levels (0–10)	7
The protoanemonin released in the sap of creeping and tall	
buttercups is poisonous and can cause death to grazing animals	5
if consumed. Geese and other birds readily eat leaves and seeds	
of buttercup (Lovett-Doust et al. 1990). The flowers are visited	
by honeybees, butterflies, moths, bugs, and beetles for pollen	
or nectar (Steinbach and Gottsberger 1994). Buttercups host	
microorganisms and viruses, insects, and nematodes (Harper	
1957, Lovett-Doust et al. 1990, Royer and Dickinson 1999).	
Apparently Ranunculus acris and R. uncinatus hybridize in Alas	ka
(Welsh 1974). However, no hybrids have been recorded in Brita	
and Canada and experimental crosses between Ranunculus	
species have been unsuccessful (Harper 1957, Lovett-Doust et a	al.
1990).	
Total for Ecological Impact 16/3	0
Biological Characteristics and Dispersal Scor	
Mode of Reproduction (0–3)	2
Creeping and tall buttercup are capable of producing up to 80 a	nd
240 seeds per plant, respectively (Sarukhan 1974). Production	of
daughter ramets is the major mechanism of population increase	5
for creeping buttercup (Lovett-Doust et al. 1990).	
8	2
Although most seeds are dropped near the parent plant, some	
seeds are dispersed farther by wind, or in the dung of birds, farr	n
animals, and small rodents (Harper 1957, Lovett-Doust et al.	
1990).	
	3
The seeds can be dispersed by attachment to clothes and tires.	
Creeping buttercup may have been introduced as an ornamenta	al
plant into North America (Lovett-Doust et al. 1990). Garden	
varieties have been grown and escaped from gardens in Alaska	
(J. Riley pers. obs.).	-
	J
There is an unconfirmed hypothesis that buttercups have toxic	
root secretions detrimental to neighboring plants (Lovett-Dous	st
et al. 1990).	
Competitive Ability (0–3)	1
Creeping buttercup is capable of withstanding competition from	n
tall-growing grasses (Harper 1957). Thicket-forming/Smothering growth form (0–2)	0
Buttercups do not form dense thickets nor are they characterize	-d
by climbing growth habit.	-4
by chinoing grow in nabit.	

Germination requirements (0–3) 0	Extent of the species U.S. range and/or occurrence of 5
Buttercup populations in established grasslands and woodlands	formal state or provincial listing $(0-5)$
are more likely to increase by vegetative spread than by	Ranunculus repens and R. acris are very common throughout the
germination and establishment of seedlings (Lovett-Douts 1981,	United States (USDA 2002). Both species are considered weeds
Lovett-Doust et al. 1990).	in the western United States (Whitson et al. 2000). Ranunculus
Other invasive species in the genus (0–3) 3	acris is also designated as a weed in Manitoba and Quebec (Royer
Ranunculus abortivus L., R. arvensis L., R. bulbosus L., and	and Dickinson 1999).
<i>R. sardous</i> Crantz are invasive in other areas of the United States	Total for Ecological Amplitude and Distribution 15/25
(USDA 2002).	Feasibility of Control Score
Aquatic, wetland or riparian species (0–3) 2	Seed banks (0–3) 3
Buttercups occur on disturbed soils including gardens and	Harper (1957) reports that creeping buttercup seeds remain
croplands, grasslands, woodlands, and semiaquatic communities,	viable for at least 3 years. Lewis (1973) documents a 16 year seed
such as swamps, margins of ponds, rivers, and ditches. The plants	viability period. Viable seeds of creeping buttercup were also
are able to tolerate some salinity, therefore, are found on beaches,	extracted from 68-year old soil samples (Chippindale and Milton
in salt marshes, and on the margins of tidal estuaries (Harper	1934). A depression of germination rate was not observed for tall
1957, Lovett-Doust et al. 1990). In southeast Alaska it is a weed of	buttercup seeds stored for 4 years under laboratory conditions
wet, but not flooded sites along the road (T. Heutte pers. obs.).	(Harper 1957).
Total for Biological Characteristics and Dispersal 13/23	Vegetative regeneration (0–3) 3
Ecological Amplitude and Distribution Score	Buttercups are able to regrow after cutting or heavy grazing
Highly domesticated or a weed of agriculture $(0-4)$ 4	(Harper 1957). Creeping buttercup readily regenerates from root
Creeping buttercup is a serious agricultural weed, especially in	fragments (Lovett-Doust et al. 1990).
strawberry cultivation (Harper 1957, Lovett-Doust et al. 1990). It	Level of effort required $(0-4)$ 3
is considered a weed in 40 countries (NAPPO 2003).	Herbicides are generally recommended to control buttercups.
Known level of impact in natural areas $(0-6)$ 1	Plants may be weakened by cultivation, but parts of stolon may
Creeping and tall buttercup have become widespread in marshes,	regenerate and cause population increase. Plowing provides
meadows, and woodlands of Montana, Ohio, and Minnesota	ideal conditions for germination of seed, therefore, it is not
(Ohio perennial and biennial weed guide 2005).	recommended as an eradication technique (Harper 1957, Lovett-
Role of anthropogenic and natural disturbance in 0	Doust et al. 1990). Experience of control of creeping buttercup
establishment (0–5)	in southeast Alaska shown that this weed is very resistant to
Seedlings establish readily in open ground and rapidly colonize	herbicides (T. Heutte pers. com.).
bare areas in the year following germination (Harper 1957). It is	Total for Feasibility of Control 9/10
favored by regular mowing and thrives on lawn (T. Heutte pers.	Total score for 4 sections53/98
com.).	<u> </u>
Current global distribution (0–5) 5	J
Creeping buttercup originates in Europe and extends northward	
to 72°N in Norway. It is now naturalized in many temperate	
regions of the globe including North, Central, and South	
America, Asia, Africa, Australia, and New Zealand (Harper	
1975, Hultén 1968, NAPPO 2003). Tall buttercup is generally	
distributed over Europe with its natural northern limit at 71°N in	
Norway. It has established in North America, South Africa, Asia,	
and Navy Zaaland (Harmar 1057 Hultán 1069)	

and New Zealand (Harper 1957, Hultén 1968).

Rumex acetosella L.

Ranking Sumn	
Ecoregion known or expected to occu	ır in
South Coastal	Yes
Interior Boreal	Yes
Arctic Alpine	Yes Com
Ecological Impact	Potential Max. Score 40 12
Biological Characteristics and Dispersal	40 12 25 16
Amplitude and Distribution	25 10 25 16
Feasibility of Control	10 7
Relative Maximum	51
Climatic Compa	rison
	Collected in CLIMEX
	Alaska regions? similarity?
South Coastal	Yes –
Interior Boreal	Yes –
Arctic Alpine	Yes –
<i>Rumex acetosella</i> is documented in all ec Alaska (Hultén 1968, Welsh 1974, AKE	
Ecological Impact	<u>Score</u>
Impact on Ecosystem Processes (0–10)	Score 3
Sheep sorrel may impede the colonizati	0
native species. Sheep sorrel is documen	
colonizer of burned areas (Hall 1955, Fe	
1990).	
Impact on Natural Community Structur	e (0–10) 3
Sheep sorrel has been observed establis	
of vegetation and increasing the density	
National Parks and remote areas of the	-
(M.L. Carlson pers. obs., I. Lapina pers.	,
Impact on Natural Community Compos	
Sheep sorrel is reported to form dense s	
grasses and forbs in California (Cal-IPC	C 2005). However, this
weed does not appear to cause a signific	ant reduction in native
species population size in Alaska.	
Împact on Higher Trophic Levels (0–10)	3
Sheep sorrel contains oxalic acid, which	a can be poisonous to
livestock; it is possible that it could be to	
(Cal-IPC 2005). Sheep sorrel is grazed	by mule deer (Kruger and
Donart 1974, Nixon et al. 1970). The see	eds are rich source of food
for birds (Schmidt 1936, Swenson 1985	, Wilson et al. 1999).
Total for Ecological Impact	12/40
Biological Characteristics and	Dispersal Score
Mode of Reproduction $(0-3)$	3
Sheep sorrel reproduces by seeds and fr	
rhizomes (Kiltz 1930). Seed production	
from 250 to 1,622 seeds per season (Ste	
Thompson 1991) with estimated seed p m ² .	roduction up to 2,700 per
m . Long-distance dispersal (0–3)	2
The seeds are large and lack adaptation :	
dispersal. However, seeds can be disper	-
ants (Houssard and Escarre 1991).	sea by while, watch, and
Spread by humans (0–3)	3
The seeds of sheep sorrel can be transpo	-
agricultural equipment, with nursery st	
seeds, and hay (Gooch 1963). Seeds ren	
through digestive tract of domestic bird	
	- 1010)

common names: sheep sorrel

D. 1:C	
Ranking Summary	Allelopathic (0–2) 0
Ecoregion known or expected to occur in South Coastal Yes	Sheep sorrel is not known to be allelopathic.Competitive Ability (0–3)1
Interior Boreal Yes	Sheep sorrel is fairly competitive on nitrogen poor soils.
Arctic Alpine Yes	Competition from other species on good soils may reduce its
Potential Max. Score	abundance and contain its spread (Putwain and Harper 1970).
Ecological Impact 40 12	
Biological Characteristics and Dispersal 25 16	In Alaska parks units it persists only in areas where competition
Amplitude and Distribution 25 16	from other plants is reduced (Densmore et al. 2001). This last forming (Sm at having a growth form $(0, 2)$
Feasibility of Control 10 7	Thicket-forming/Smothering growth form $(0-2)$ 1
Relative Maximum 51	Seep sorrel sometimes forms dense colonies by shoots from roots and rhizomes on human-disturbed grounds. In Europe it
Climatic Comparison	0 1
Collected in CLIME	
Alaska regions? similarit	native communities have not been observed in Alaska (I. Lapina
South Coastal Yes –	pers. obs., M.L. Carlson pers. obs.). Germination requirements (0–3) 0
Interior Boreal Yes –	
Arctic Alpine Yes -	Sheep sorrel requires open soil for germination (Putwain et
<i>Rumex acetosella</i> is documented in all ecogeographic regions of	al. 1968). No establishment of sheep sorrel in a closed sward
Alaska (Hultén 1968, Welsh 1974, AKEPIC 2005, UAM 2004).	of vegetation was recorded in a study by Putwain et al. (1968).
Ecological Impact Score	The number of seedlings emerged from buried seeds increased
Impact on Ecosystem Processes $(0-10)$ 3 Shown correct many impacts the colonization of the past fire cross h	substantially on sites with open soil and removed vegetation in
Sheep sorrel may impede the colonization of the post-fire areas b	another enperiment (r attrain ana riarper 1), ())
native species. Sheep sorrel is documented as one of the common	1 0 0
colonizer of burned areas (Hall 1955, Fonda 1974, Weaver et al.	<i>Rumex crispus</i> L. is declared a noxious weed in Iowa (USDA,
1990).	NRCS 2006).
Impact on Natural Community Structure (0–10) 3	Aquatic, wetland or riparian species (0–3) 3 Sheep sorrel can be found in variety of habitats including river
Sheep sorrel has been observed establishing in existing layer	
of vegetation and increasing the density of the layer in Alaska	bars, beaches (Fonda 974, Pojar and MacKinnon 1994), and fresh
National Parks and remote areas of the Chugach National Forest	water and brine marshes (Fiedler and Leidy 1987).Total for Biological Characteristics and Dispersal16/25
(M.L. Carlson pers. obs., I. Lapina pers. obs.). Impact on Natural Community Composition (0–10) 3	Iteration biological Characteristics and Dispersar10/23Ecological Amplitude and DistributionScore
Impact on Natural Community Composition (0–10)3Sheep sorrel is reported to form dense stands and displace native	
grasses and forbs in California (Cal-IPC 2005). However, this	Sheep sorrel is a weed of fields, gardens, and pastures (Douglas
weed does not appear to cause a significant reduction in native	and MacKinnon 1999, Welsh 1974).
	Known level of impact in natural areas (0–6) 1
species population size in Alaska. Impact on Higher Trophic Levels (0–10) 3	Sheep sorrel is known to have moderate impact on plant
Sheep sorrel contains oxalic acid, which can be poisonous to	communities and higher trophic levels in California wildlands
livestock; it is possible that it could be toxic to wildlife species	(Cal-IPC 2005). Sheep sorrel is found in areas disturbed in the
(Cal-IPC 2005). Sheep sorrel is grazed by mule deer (Kruger and	
Donart 1974, Nixon et al. 1970). The seeds are rich source of foo	McLendon 1996). Its impact on plant communities of Kenai
for birds (Schmidt 1936, Swenson 1985, Wilson et al. 1999). Total for Ecological Impact 12/40	Fjords National Park and Sitka National Historical Park in Alaska
Total for Ecological Impact12/40Biological Characteristics and DispersalScore	
Mode of Reproduction (0–3) 3	Role of anthropogenic and natural disturbance in 3
Sheep sorrel reproduces by seeds and from creeping roots and	establishment (0–5)
rhizomes (Kiltz 1930). Seed production per plant can vary	Sheep sorrel rapidly colonizes clearcuts, burned, and flood-
from 250 to 1,622 seeds per season (Stevens 1932, Escarre and	disturbed sites (Hall 1955, Fonda 1974, Weaver et al. 1990).
Thompson 1991) with estimated seed production up to 2,700 pe	
m^2 .	
Long-distance dispersal (0–3)	be sufficient for establishment of sheep sorrel in natural
The seeds are large and lack adaptation for long-distance	communities (Putwain et al. 1968).
dispersal. However, seeds can be dispersed by wind, water, and	Current global distribution (0–5) 5 Sheep sorrel is a forb of European origin. Today it has naturalized
ants (Houssard and Escarre 1991).	
Spread by humans (0–3) 3	throughout temperate North America; it is introduced into South
The seeds of sheep sorrel can be transported on vehicles tires,	America, Africa, and Hawaii (Hultén 1968). Extent of the species U.S. range and/or occurrence of 5
agricultural equipment, with nursery stock or contaminated	1 0 1
seeds, and hay (Gooch 1963). Seeds remain viable after passing	formal state or provincial listing $(0-5)$
	Sheep sorrel is found in nearly all American states. It is declared a
	novious wood in Connectious and Low (USDA NDCS 2006)
through digestive tract of domestic birds and animals (Dorph- Peterson 1925, Evershed and Warburton 1918).	noxious weed in Connecticut and Iowa (USDA, NRCS 2006). Total for Ecological Amplitude and Distribution 16/25

Feasibility of Control Score	Level of effort required (0–4) 2
Seed banks (0–3) 3	Control of sheep sorrel can be difficult because of its creeping
The seeds of sheep sorrel are long-lived. They remained viable for	rhizomes and long-lived seeds. Plants are too low to be affected
more than 6–7 years in the soil (Chippindale and Milton 1934,	by mowing or grazing. It usually survives prescribed burning.
Steinbauer and Grigsby 1958). In a Massachusetts study sheep	Repeated cultivation and frequent removal of resprouted plants
sorrel was not present in the ground cover of 80-year old pine	will eventually exhaust the population. Several herbicides are
stands, but viable seeds were found in soil samples. Presumably	available for be used in pastures and lawns; however, sheep
viable seeds remained buried in the soil since earlier successiona	sorrel is resistant to several herbicides (Putwain and Harper
stages (Livingston and Allessio 1968).	1970). Liming the soil may help eradicate sheep sorrel (Rutledge
Vegetative regeneration (0–3) 2	and McLendon 1996). Densmore et al. (2001) suggested that
Sheep sorrel is able to survive severe fire and resprout from	eradication of sheep sorrel is not necessary, because it usually
rhizomes and roots (Granström and Schimmel 1993).	does not persist when shaded out by other vegetation.
	Total for Feasibility of Control 7/10
	Total score for 4 sections51/100
	S

Rumex crispus L. R. obtusifolius L. R. longifolius DC.

		king Summa		
Ecoregion kno	wn or expe	cted to occur	rin	
South Coastal				Yes
Interior Boreal				Yes
Arctic Alpine				Yes
			Potential	Score
T 1 · 1 T			Max.	10
Ecological Impa		10: 1	40	10
Biological Chara			25	16
Amplitude and I			25 10	14 8
Feasibility of Co Relative Maxin			10	48
Relative Maxin		tic Compar	ison	0
	Rumex	Rumex	Rumex	
	crispus L.	obtusifolius	longifolius	CLIMEX
	Collected	5	DC. Collected	similarity?
South Coastal	Yes	Yes	Yes	_
Interior Boreal	Yes	No	Yes	Yes
Arctic Alpine	Yes	No	Yes	Yes
Rumex crispus a	nd R. longif	<i>olius</i> are docu	mented from a	.11
ecogeographic	regions of A	laska. Rumex	<i>obtusifolius</i> is k	known
from the south	coastal ecog	eographic reg	gion (Hultén 19	968, UAM
2004, AKEPIC	2005). Run	ıex obtusifoliu	s: Using the Cl	LIMEX
matching progr	am, the clin	natic similarit	y between Nor	me and
other areas where the species is documented is fairly high. The				
range of the species includes Chirka-Kem' and Arkhangel'sk,				
Russia (Gubanov et al. 2003), which have a 77% and 76% climatic				
match with Nome respectively. The range of <i>R. obtusifolius</i>				
also includes Røros and Dombås, Norway (Lid and Lid 1994),				
which has 76% and 63% climatic matches with Nome and 55%				
and 52% climatic matches with Fairbanks, respectively. Thus				
establishment of <i>R. obtusifolius</i> in interior boreal and arctic alpine				
ecogeographic regions of Alaska may be possible.				
ecogeographic	legions of A	laska illay De	possible.	

common names: curly dock bitter dock dooryard dock

Ecological Impact Score	
Impact on Ecosystem Processes (0–10) 1	
The impact of exotic docks on ecosystem processes has not been	
documented. However, population densities of exotic docks	
in natural or seminatural habitats of Alaska are currently low	
enough that likely only minor ecosystem functions are affected	
(M.L. Carslon pers. obs.).	
Impact on Natural Community Structure (0–10) 3	
Curly dock is capable of changing the density of the existing layer	
of vegetation (I. Lapina pers. obs.).	
Curly and bitter docks likely reduce the number of individuals in	
one or more native species in the community (Cal-IPC 2003).	
but it appears to be a favorite food of deer (Amphlett and Rea	
1909, cited in Cavers and Harper 1964). Dock species are also	
an alternate host for number of viruses, fungi (Dal Bello and	
Carranza 1995), and nematodes (Edwards and Taylor 1963,	
Townshend and Davidson 1962). Hybrids between many species	
of the subgenus Rumex commonly occur. Although these hybrids	
are largely sterile, they can produce some viable seeds (Cavers	
and Harper 1964).	
Total for Ecological Impact10/40	
1964). Stevens (1932) reported 29,500 seeds per plant for curly	
can resprout from underground parts (Cavers and Harper 1964).	
	Impact on Ecosystem Processes (0–10)1The impact of exotic docks on ecosystem processes has not beendocumented. However, population densities of exotic docksin natural or seminatural habitats of Alaska are currently lowenough that likely only minor ecosystem functions are affected(M.L. Carslon pers. obs.).Impact on Natural Community Structure (0–10)3Curly dock is capable of changing the density of the existing layerof vegetation (I. Lapina pers. obs.).Impact on Natural Community Composition (0–10)3Curly and bitter docks likely reduce the number of individuals inone or more native species in the community (Cal-IPC 2003).Impact on Higher Trophic Levels (0–10)3The seeds and vegetation of docks can be toxic to animals(Royer and Dickinson 1999). Bitter dock is avoided by rabbits,but it appears to be a favorite food of deer (Amphlett and Rea1909, cited in Cavers and Harper 1964). Dock species are alsoan alternate host for number of viruses, fungi (Dal Bello andCarranza 1995), and nematodes (Edwards and Taylor 1963,Townshend and Davidson 1962). Hybrids between many speciesof the subgenus Rumex commonly occur. Although these hybridsare largely sterile, they can produce some viable seeds (Caversand Harper 1964).Total for Ecological Impact10/40Biological Characteristics and DispersalMode of Reproduction (0–3)3Plants reproduce by seeds. The number of seeds per plant mayvary from less than 100 to more than 40,000 for curly dock and

Long-distance dispersal (0–3) 3	Ecological Amplitude and Distribution	Score
The seeds can be dispersed a long distance by wind and water. The	Highly domesticated or a weed of agriculture $(0-4)$	2
spines on the seeds of bitter dock facilitate distribution on animal	Curly dock and bitter dock are serious agricultural weeds	in many
fur and bird feathers (DiTomaso and Healy 2003, Cavers and	countries (Cavers and Harper 1964, Royer and Dickinsor	n 1999).
Harper 1967). Fruits are very lightweight and winged. The outer	However, this weed is not a big agricultural problem in Al	aska (J.
part of perianth may be enlarged into a tubercle which facilitates	Conn pers. com.).	
water dispersal (DiTomaso and Healy 2003). Fruits of curly	Known level of impact in natural areas $(0-6)$	1
dock float for 1–6 months in fresh water and for 15 months in salt	Curly dock is recorded invading California wetlands and	causing
water. Seeds of bitter dock remain floating in disturbed water for	low impact on plant communities and higher trophic level	ls (Cal-
24 hours (Cavers and Harper 1967).	IPC 2003).	1
Spread by humans (0–3) 3	Role of anthropogenic and natural disturbance in	1
Curly dock is a common contaminant of commercial seeds	establishment (0–5)	1 1
(Dorph-Petersen 1925, Singh 2001). The seeds can also be easily	Curly, bitter, and dooryard dock generally colonize distur	
dispersed by attaching to clothing and fur of domestic animals.	ground, however, it may occasionally establish in intact w	
Seeds can also pass thought the digestive system of cattle (Cavers	communities (Cavers and Harper 1964, DiTomaso and H	
and Harper 1964).	2003). In Alaska these species are always associated with	roadside
Allelopathic (0–2) 0	disturbance (M.L. Carlson pers. obs.).	_
Allelopathy has not been recorded for dock species.	Current global distribution $(0-5)$	5
Competitive Ability (0–3)	These species of docks are indigenous to Europe. They have	
Seedlings of docks have low competitive ability and cannot	been introduced into North and South Africa, North and	
establish in vegetated areas. However, once established, these	America, Asia, Australia, and New Zealand. Curly dock as	
species became difficult weeds (Cavers and Harper 1964). The	dock are found in arctic habitats in Norway and northern	Russia
results of greenhouse experiments showed that bitter dock was	(Cavers and Harper 1964, Hultén 1968).	_
more competitive than <i>Poa trivialis</i> and <i>Lolium perenne</i> (Gibson	Extent of the species U.S. range and/or occurrence of	5
and Courtney 1977).	formal state or provincial listing $(0-5)$	
Thicket-forming/Smothering growth form $(0-2)$ 0	Curly and bitter docks are distributed throughout most of	
Curly dock, bitter dock, and dooryard dock have not been	United States. Dooryard dock can be found in the northea	
observed forming dense thickets in Alaska (M.L. Carlson pers.	United States and in Alaska (USDA, NRCS 2006). Rume:	
obs., I. Lapina pers. obs.).	is declared noxious in Indiana, Iowa, Michigan, and Minr	
Germination requirements (0–3) 0	(USDA, NRCS 2006). <i>Rumex crispus</i> is a federal noxious	weed in
Dock species require open soil and removed vegetation for	Canada (Royer and Dickinson 1999).	
successful germination and establishment (Cavers and Harper	Total for Ecological Amplitude and Distribution	14/25
1964). Establishment from seeds was observed only in open	/	Score
habitat, such as disturbed shingle beaches or on freshly cultivated	Seed banks $(0-3)$	3
field (Cavers and Harper 1964).	Seeds of docks can remain viable in the soil for over 38 yes $(T_{1} + 104)$	
Other invasive species in the genus (0–3) 3 Rumex acetosella L. is invasive in Connecticut and Iowa (USDA,	(Toole 1946) and even over 80 years (Darlington and Stei	inbauer
	$\frac{1961}{2}$	2
NRCS 2006).	Vegetative regeneration $(0-3)$ Adventitious buds on the roots and underground stems pr	2
Aquatic, wetland or riparian species (0–3) 3 Despite the fact that curly, bitter, and dooryard docks are	÷ *	
	new shoots after aboveground damage. New shoots can pr	
common on disturbed ground, such as agricultural fields,	autumn flowers very quickly (Monaco and Cumbo 1972). Level of affort required $(0, 4)$	-
roadsides, and waste grounds (DiTomaso and Healy 2003, Welsh	Level of effort required (0–4) Hand-cutting plants below the ground or herbicide applic	3
1974), these species may also invade riparian areas, including	can control infestations of docks. Monitoring after treatm	
wet meadows, riverbanks, pond edges, and irrigation ditches	required due to long-lived seed banks and the ability to re	
(DiTomaso and Healy 2003, Royer and Dickinson 1999).		0
Total for Biological Characteristics and Dispersal 16/25	from root fragments (Cavers and Harper 1964, DiTomasc Healy 2003).	Janu
	Total for Feasibility of Control	8/10
		48/100

\$

Rubus discolor Weihe & Nees

Ranking Summary				
Ecoregion known or expected to occu	ır in			
South Coastal		Yes		
Interior Boreal		No		
Arctic Alpine		No		
	Potential Max.	Score		
Ecological Impact	40	38		
Biological Characteristics and Dispersal	25	18		
Amplitude and Distribution	25	12		
Feasibility of Control	10	9		
Relative Maximum		77		

Climatic Comparison

	Collected in Alaska regions?	CLIMEX similarity?
South Coastal	Yes	_
Interior Boreal	No	No
Arctic Alpine	No	No
Rubus discolor has been collecte	d in Sitka (AKEPIC 200)4). The

climatic similarity between Fairbanks and Nome and native and introduced locations of the species is low (CLIMEX 1999, USDA, ARS 2005). Additionally, one of the requirements for seeds germination is warm stratification at 68 ° to 86 °F for 90days (Hoshovsky 2000); these conditions rarely occur in interior boreal and arctic alpine ecogeographic regions of Alaska (WRCC 2001). Thus establishment of *Rubus discolor* in interior boreal and arctic alpine ecogeographic regions is unlikely. Himalayan blackberry is known from the south coastal ecogeographic region of Alaska. (Additionally, the introduced range of Himalayan blackberry includes Thredbo, Australia [Australia's Virtual Herbarium 2005], which has 53% of climatic similarity with Iuneau.)

Impact on Ecosystem Processes (0–10)8Himalayan blackberry is a pioneer plant that colonizes intertidal zones in California and prevents establishment of native plants (Hoshovsky 2000, Tirmenstein 1989). Dense thickets of Himalayan blackberry are considered a fire hazard (Hoshovsky 2000, Grasslands, meadows, and savannas are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.).Aquatic, wetland or riparian areas, where it withstands periodic inundation by fresh or brackish water (Ertter 1993, Hoshovsky 2000).Impact on Natural Community Structure (0–10)10Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of \$25 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).Total for Biological Characteristics and Dispersal 18/25Impact on Natural Community Composition (0–10)10This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).10Imalayan blackberry can hybridizes with a number of other Rubus species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).NoTotal for Ecological Impact38/40	Ecological Impact	Score	of Hawaii 2003).	
 zones in California and prevents establishment of native plants (Hoshovsky 2000, Tirmenstein 1989). Dense thickets of Himalayan blackberry are considered a fire hazard (Hoshovsky 1989, Hoshovsky 2000). Grasslands, meadows, and savannas are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.). Impact on Natural Community Structure (0–10) 10 Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989). Impact on Natural Community Composition (0–10) 10 This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989). Impact on Higher Trophic Levels (0–10) 10 Thimalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Furtis are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000). Kinemstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000). 		8	Aquatic, wetland or riparian species (0–3)	2
(Hoshovsky 2000, Tirmenstein 1989). Dense thickets of Himalayan blackberry are considered a fire hazard (Hoshovsky 1989, Hoshovsky 2000). Grasslands, meadows, and savannas are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.).fence lines. It is common in riparian areas, where it withstands periodic inundation by fresh or brackish water (Ertter 1993, Hoshovsky 2000).Impact on Natural Community Structure (0–10)10Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).Total for Biological Characteristics and Dispersal Isoposical Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4)4Himalayan blackberry is widely cultivated. It was probably introduced to North America in 1885 as a cultivated crop (Hoshovsky 2000, Tirmenstein 1989).10Impact on Natural Community Composition (0–10) This species forms a dense canopy, shading out native vegetation and reducing plant species (0–10) Tirmenstein 1989).10Impact on Higher Trophic Levels (0–10) Tirmenstein 1989).10Himalayan blackberry can hybridizes with a number of other Rubus species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).10Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed	Himalayan blackberry is a pioneer plant that colonize	es intertidal	Himalayan blackberry is common in wastelands, pastur	es, and
Himalayan blackberry are considered a fire hazard (Hoshovsky 1989, Hoshovsky 2000). Grasslands, meadows, and savannas are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.).periodic inundation by fresh or brackish water (Ertter 1993, Hoshovsky 2000).Impact on Natural Community Structure (0–10)1010Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).10Impact on Natural Community Composition (0–10) This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).10Impact on Higher Trophic Levels (0–10) Tirmestein 1989).10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).10Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment in large numbers after disturbance (Tirmenstein 1989).	zones in California and prevents establishment of nat	ive plants	clearcuts. It grows along roadsides, creek gullies, river fla	ats, and
 1989, Hoshovsky 2000). Grasslands, meadows, and savannas are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.). Impact on Natural Community Structure (0–10) 10 Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989). Impact on Natural Community Composition (0–10) This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989). Impact on Higher Trophic Levels (0–10) Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000). 	(Hoshovsky 2000, Tirmenstein 1989). Dense thicket	s of	fence lines. It is common in riparian areas, where it with	stands
are lost after Himalayan blackberry has invaded in the Pacific Northwest (M.L. Carlson pers. obs.). Impact on Natural Community Structure (0–10) 10 Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989). Impact on Natural Community Composition (0–10) 10 This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989). Impact on Higher Trophic Levels (0–10) 10 Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).	Himalayan blackberry are considered a fire hazard (H	Ioshovsky	periodic inundation by fresh or brackish water (Ertter 19	993,
Northwest (M.L. Carlson pers. obs.).Impact on Natural Community Structure (0–10)10Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).Ecological Amplitude and Distribution Memory is widely cultivated. It was probably introduced to North America in 1885 as a cultivated crop (Hoshovsky 2000, Tirmenstein 1989).Impact on Natural Community Composition (0–10)10This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).10Impact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).10Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000).10	1989, Hoshovsky 2000). Grasslands, meadows, and s	avannas	Hoshovsky 2000).	
Impact on Natural Community Structure (0–10)10Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 	are lost after Himalayan blackberry has invaded in the	e Pacific	Total for Biological Characteristics and Dispersal	
Himalayan blackberry forms impenetrable thickets of prickly stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).Himalayan blackberry is widely cultivated. It was probably introduced to North America in 1885 as a cultivated crop (Hoshovsky 2000, Tirmenstein 1989).Impact on Natural Community Composition (0–10) This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).10Timpact on Higher Trophic Levels (0–10) Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	Northwest (M.L. Carlson pers. obs.).		Ecological Amplitude and Distribution	Score
stems, eliminating all layers below. Density of canes can reach of 525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989). of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989). Impact on Natural Community Composition (0–10) 10 This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989). Impact on Higher Trophic Levels (0–10) 10 Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).	Impact on Natural Community Structure (0–10)	10		•
525 canes per square meter. Mature thickets have large amounts of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).(Hoshovsky 2000, Tirmenstein 1989).Impact on Natural Community Composition (0–10)10 This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).IHimalayan blackberry is known to impact riparian woodlands and intertidal zones of central California (Hoshovsky 2000, Tirmenstein 1989). This species invades pastures and forest plantations in Victoria, Australia (Amor 1973). It can become dominant in clearcut coniferous forests in the Pacific Northwest (M.L. Carlson pers. obs.)Impact on Higher Trophic Levels (0–10)10 Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).NoNew State (Matter thickets can hinder large mammal movement (Hoshovsky 2000).NoNoNew State 	Himalayan blackberry forms impenetrable thickets o	f prickly	Himalayan blackberry is widely cultivated. It was proba	bly
of litter and standing dead canes (Hoshovsky 2000, Tirmenstein 1989).Iinpact on Natural Community Composition (0–10)10This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).IImpact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).IKnown level of impact in natural areas (0–6)1Himalayan blackberry is known to impact riparian woodlands and intertidal zones of central California (Hoshovsky 2000, Tirmenstein 1989). This species invades pastures and forest plantations in Victoria, Australia (Amor 1973). It can become dominant in clearcut coniferous forests in the Pacific Northwest (M.L. Carlson pers. obs.)Role of anthropogenic and natural disturbance in (0–5)0establishment (0–5)Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	stems, eliminating all layers below. Density of canes c	an reach of	introduced to North America in 1885 as a cultivated cro	р
1989).Himalayan blackberry is known to impact riparian woodlands1989).Impact on Natural Community Composition (0–10)10This species forms a dense canopy, shading out native vegetationand intertidal zones of central California (Hoshovsky 2000, Tirmenstein 1989).Timmate on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).10Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000).0	525 canes per square meter. Mature thickets have larg	ge amounts		
Impact on Natural Community Composition (0–10)10This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).and intertidal zones of central California (Hoshovsky 2000, Tirmenstein 1989). This species invades pastures and forest plantations in Victoria, Australia (Amor 1973). It can become dominant in clearcut coniferous forests in the Pacific Northwest (M.L. Carlson pers. obs.)Impact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Role of anthropogenic and natural disturbance in (Hoshovsky 2000).0Impact on Higher Trophic Levels (0–10)10Himalayan blackberry con hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000).	of litter and standing dead canes (Hoshovsky 2000, T	'irmenstein		1
This species forms a dense canopy, shading out native vegetation and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).Tirmenstein 1989). This species invades pastures and forest plantations in Victoria, Australia (Amor 1973). It can become dominant in clearcut coniferous forests in the Pacific Northwest (M.L. Carlson pers. obs.)Impact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Tirmenstein 1989). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	1989).			
and reducing plant species diversity (Hoshovsky 2000, Tirmenstein 1989).plantations in Victoria, Australia (Amor 1973). It can become dominant in clearcut coniferous forests in the Pacific Northwest (M.L. Carlson pers. obs.)Impact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Role of anthropogenic and natural disturbance in 0 establishment (0–5)Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000).Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000).	Impact on Natural Community Composition (0–10)	10		
Tirmenstein 1989).IoImpact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of otherIoRubus species. It provides food and cover for many wildlifeRole of anthropogenic and natural disturbance in0establishment (0–5)IoHimalayan blackberry colonizes disturbed areas. The seedlingsdiversity of mammals feed on the berries, stems, and leavesHimalayan blackberry colonizes disturbed areas. The seedlings(Tirmenstein 1989). Dense thickets can hinder large mammalIomovement (Hoshovsky 2000).Io	This species forms a dense canopy, shading out native	vegetation		
Impact on Higher Trophic Levels (0–10)10Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).(M.L. Carlson pers. obs.)Role of anthropogenic and natural disturbance in establishment (0–5)0Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	and reducing plant species diversity (Hoshovsky 200	0,	plantations in Victoria, Australia (Amor 1973). It can be	ecome
Himalayan blackberry can hybridizes with a number of other <i>Rubus</i> species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Role of anthropogenic and natural disturbance in establishment (0–5)0Role of anthropogenic and natural disturbance in (U-5)0Balance Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	Tirmenstein 1989).		dominant in clearcut coniferous forests in the Pacific No	orthwest
Rubus species. It provides food and cover for many wildlife species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).establishment (0–5) Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).			(M.L. Carlson pers. obs.)	
species. Fruits are eaten by numerous species of birds. A large diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).Himalayan blackberry colonizes disturbed areas. The seedlings require open habitats or eroded soils for establishment (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).			Role of anthropogenic and natural disturbance in	0
diversity of mammals feed on the berries, stems, and leaves (Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	Rubus species. It provides food and cover for many wi	ldlife	establishment (0–5)	
(Tirmenstein 1989). Dense thickets can hinder large mammal movement (Hoshovsky 2000).(Hoshovsky 2000). Seeds from the seed bank can germinate in large numbers after disturbance (Tirmenstein 1989).	species. Fruits are eaten by numerous species of birds	. A large	Himalayan blackberry colonizes disturbed areas. The se	edlings
movement (Hoshovsky 2000). large numbers after disturbance (Tirmenstein 1989).	diversity of mammals feed on the berries, stems, and	leaves	require open habitats or eroded soils for establishment	
	(Tirmenstein 1989). Dense thickets can hinder large	mammal	(Hoshovsky 2000). Seeds from the seed bank can germi	nate in
Total for Ecological Impact38/40	movement (Hoshovsky 2000).		large numbers after disturbance (Tirmenstein 1989).	
	Total for Ecological Impact	38/40		

common names: Himalayan blackberry

Score

3

3

0

3

2

0

3

Biological Characteristics and Dispersal

Himalayan blackberry reproduces by seed and aggressive vegetative growth (rooting at cane apices, suckering of roots, and from root and shoot fragments). Up to 7,000–13,000 seeds can be produced per square meter (Hoshovsky 2000, Richardson 1975).

The seeds are readily dispersed by mammals and birds. Passing through digestive tracts scarifies seeds and may enhance germination (Brunner et al. 1975, Tirmenstein 1989). It can also be spread long distances by streams and rivers (Hoshovsky 2000).

Himalayan blackberry is widely cultivated; it has escaped and become established (Hitchcock and Cronquist 1961).

Himalayan blackberry is a very strong competitor. Thickets grow

quickly and produce a dense canopy that shades and limits the

Himalayan blackberry forms very large impenetrable thickets

Seedlings require open habitats or eroded soils for establishment

easily surpassed by the rapidly growing vegetative daughter plants

R. niveus Thunb. are considered invasive species in Hawaii (Plans

(Hoshovsky 2000). Seedlings are intolerant of shading and are

Rubus argutus Link, R. ellipticus Sm., R. glaucus Benth., and

Mode of Reproduction (0-3)

Long-distance dispersal (0-3)

Spread by humans (0-3)

Competitive Ability (0-3)

There is no record concerning allelopathy.

growth of other plants (Hoshovsky 2000).

(Hoshovsky 2000, Tirmenstein 1989).

Other invasive species in the genus (0-3)

Germination requirements (0-3)

(Hoshovsky 2000).

Thicket-forming/Smothering growth form (0-2)

Allelopathic (0-2)

Current global distribution (0–5) 3	Vegetative regeneration (0–3) 3	
Himalayan blackberry is native to Western Europe and Northern	This shrub resprouts from roots and canes (Richardson 1975,	
Africa. It was naturalized in Southwestern Asia, Australia,	Tirmenstein 1989).	
Polynesia, North and South America, South Africa, and New	Level of effort required (0–4) 4	
Zealand (USDA, ARS 2005).	Himalayan blackberry is a difficult species to control because	
Extent of the species U.S. range and/or occurrence of 4	of its extensive vegetative reproduction and because it often	
formal state or provincial listing $(0-5)$	grows in very sensitive wetland habitats. Mechanical removal	
Himalayan blackberry has become widely naturalized in	or burning may by the most effective ways of removing mature	
the Northeast from Delaware to Virginia, and in the Pacific	plants. Additional treatments with some herbicides can promote	
Northwest from northern California through southern British	vegetative growth from lateral roots. This species is shade-	
Columbia, and east to Idaho (Starr and Loope 2003, USDA	intolerant, so reestablishment may be prevented by planting	
2002). Rubus discolor is considered a noxious weed in Oregon	fast-growing shrubs or trees. Resprouting is problematic,	
(Invaders Database System 2003, USDA 2002).	and many years of follow-up efforts are necessary for control.	
Total for Ecological Amplitude and Distribution 12/25	The introduction of herbivorous insects and fungi to control	
Feasibility of Control Score	Himalayan blackberry is not supported by USDA because of the	
Seed banks (0–3) 2	risk posed to commercially important <i>Rubus</i> species (Hoshovsky	
The seeds remain viable in the soil for several years (Hoshovsky	1989, Hoshovsky 2000, Starr 2003).	
2000).	Total for Feasibility of Control 9/10	
	Total score for 4 sections 77/100	
	\$	

Saponaria officinalis L.

common names: bouncingbet, soapwort, sweet betty

Ranking Summ	ary		Impact on Natural Community Structure (0–10) 1	
Ecoregion known or expected to occur in			Bouncingbet establishes in an existing layer without significant	
South Coastal		Yes	changes to the density of other species. It is capable of creating a	
Interior Boreal		Yes	new layer on recently disturbed soil (I. Lapina pers. obs.).	
Arctic Alpine		No	Impact on Natural Community Composition $(0-10)$ 1	
	Potential Max.	Score	The plants can form large populations and completely dominate	
Ecological Impact	30	5	on disturbed sites (OPBWG 2004). However, in south-central	
Biological Characteristics and Dispersal	22	8	Alaska it occurs in sparse populations in natural communities (I.	
Amplitude and Distribution	25	12	Lapina pers. obs.).	
Feasibility of Control	3	2	Impact on Higher Trophic Levels (0–10) 3	
Relative Maximum		34	The roots and seeds are slightly poisonous to human and animals	
Climatic Compar			(Russell 1997). Animals typically avoid eating this plant. There is	
	Collected in	CLIMEX	a potential for drawing pollinating insects from native species to	
	Alaska regions?			
South Coastal	No	Yes	visit <i>S. officinalis</i> (OPBWG 2004, Whitson et al. 2000).	
Interior Boreal	Yes	_	Total for Ecological Impact 5/30	
Arctic Alpine	No	No	Biological Characteristics and Dispersal Score	
Saponaria officinalis was collected in Wasilla, interior boreal			Mode of Reproduction (0–3) 3	
ecoregion (AKNHP 2003). Saponaria officinalis is common			Bouncingbet reproduces by seeds and by spreading underground	
along the southern coast of Norway, including Bergen (Lid		Lid	stems (OPBWG 2004). The average number of ovules per fruit	
and Lid 1994), which has a 73% climatic match (CLIMEX		EX	is 75, and seeds produced per fruit are 50, for a potential of 1,500	
1999) with Juneau, south coastal ecoregion. It likely is able to		able to	seeds/plant (I. Lapina and M.L. Carlson unpubl. data).	
establish in this ecoregion. This species is documented from the			Long-distance dispersal (0–3) 0	
mountainous high elevation Norwegian			Saponaria officinalis does not have any apparent adaptations for	
and Hedmark, adjacent to Røros, which	*	* *	long-distance dispersal. Its seeds are not winged or plumed for	
Nome (Faarlund and Sunding 1992, Lid		'	wind dispersal and the fruits do not appear adapted to frugivory	
			(M.L. Carlson pers. obs.), but it does disperse from gardens.	
according to the USDA (2002), 130 frost-free days are required		*	Spread by humans (0–3) 3	
and plants can withstand a minimum temperature of -18 °F. It is			Hay and other feeds can be contaminated by seeds or other plants	
unlikely to establish in the arctic alpine ecoregion and much of		nuch of	parts. It also appears for sale in nurseries and escapement is well	
the interior boreal ecoregion.			documented from gardens in northern Europe (Lid and Lid	
Ecological Impact		Score	1994).	
Impact on Ecosystem Processes (0–10) U		U	Allelopathic (0–2) 0	
No information was found identifying in	npacts to ecosy	vstem	This species is not allelopathic.	
processes.				

Competitive Ability (0–3)	Current global distribution (0–5) 0		
It spreads rapidly and replaces plants of other species (Whitson	Native to Central and Southern Europe, but has spread		
et al. 2000). Its competitive ability in Alaska is questionable as it	throughout Western and Northern Europe (Faarlund and		
is primarily restricted to a single highly disturbed site (I. Lapina	Sunding 1992). This species has become naturalized in Northern		
pers. obs.).	Europe, originating from ballast and escaped ornamentals (Lid		
Thicket-forming/Smothering growth form $(0-2)$ 1	and Lid 1994).		
The plant has tendency to form large and dense patches (OPBWG	Extent of the species U.S. range and/or occurrence of 4		
2004), but does not climb or produce a smothering growth-form.	formal state or provincial listing $(0-5)$		
Germination requirements (0–3) U	The species occurs in nearly all states of the United States		
No information was found identifying germination requirements.	(USDA 2002). Listed as a noxious weed in Colorado (Invaders		
Other invasive species in the genus $(0-3)$ 0	Database System 2003), "exotic pest" in California, and "weed" in		
No other weedy Saponaria species are present	Kentucky (USDA 2002).		
Aquatic, wetland or riparian species (0–3) 0	Total for Ecological Amplitude and Distribution 12/25		
Saponaria officinalis typically grows along roadsides, railroads,	Feasibility of Control Score		
waste places, fields, and pastures.	Seed banks (0–3) U		
Total for Biological Characteristics and Dispersal8/22	No information was found identifying seed longevity		
Ecological Amplitude and Distribution Score	Vegetative regeneration (0–3) 2		
Highly domesticated or a weed of agriculture $(0-4)$ 4	Bouncingbet has the ability to resprout and can be propagated by		
It was introduced for ornamental and soap-like properties	sprigs (USDA 2002).		
(OPBWG 2004). A few cultivars have been developed (Gubanov	Level of effort required (0–4) U		
et al. 1995).	Control options have not been investigated. One population in		
Known level of impact in natural areas (0–6) 1	south-central Alaska was seeded for erosion control after road		
It appears to grow in nearly all states (USDA 2002), but impacts			
tend to be of highly disturbed areas unlike most natural areas in	construction, the following spring no seedings were observed		
Alaska.	(I. Lapina pers. obs., J. Riley pers. com.). It is possible that this		
Role of anthropogenic and natural disturbance in 3	species will not persists in Alaska		
establishment (0–5)	Total for Feasibility of Control2/3		
This species typically establishes in disturbed sites.	Total score for 4 sections27/80		
This species typically establishes in disturbed sites.	2		

S

Senecio jacobaea L. common names: ragwort, stinking willie, tansy ragwort

Ranking Summary			Impact on Natural Community Structure (0–10)	5
Ecoregion known or expected to occur in			In southeast Alaska tansy ragwort establishes in the existing	
South Coastal		Yes	herbaceous layer, increasing its density and outcompeting othe	r
Interior Boreal		Yes	species (J. Conn pers. com., T. Heutte pers. com.).	
Arctic Alpine		Yes		5
Pote	ntial Max.	Score	Tansy ragwort may outcompete native plants, reducing number	r
Ecological Impact	40	20	of individuals of native species in communities (Harris 2000).	
Biological Characteristics and Dispersal	25	15	Impact on Higher Trophic Levels (0–10)	7
Amplitude and Distribution	25	20	Tansy ragwort is highly toxic to animals, including humans	
Feasibility of Control	10	8	(CUPPID 2004, Harris 2000). Large numbers of pollinating	
Relative Maximum		63	insects visit its flowers. More than 60 different consumers of	
Climatic Comparison	ı		tansy ragwort are recorded (Cameron 1935). Hybridization wit	۴ĥ
Co	llected in	CLIMEX		
Alasi	ka regions?	similarity?	other species of <i>Senecio</i> is known from Britain (Harper and Wo	oa
South Coastal	Yes	-	1957).	_
Interior Boreal	Yes	-	Total for Ecological Impact 20/4	
Arctic Alpine	No	Yes	Biological Characteristics and Dispersal Scor	e
Tansy ragwort has been collected in Anchora	ige and Ke	tchikan	Mode of Reproduction (0–3)	3
(AKEPIC 2004), and Prince of Wales Island	(M. Shepł	nard	Ragwort can regenerate by both seed and vegetatively. Camero	
pers. com.). The range of the species includes	Kirov and	Perm	(1935) reported 4,760–174,230 seeds per plant from a range of	
in Russia, which have 66% and 63% climatic			habitats. Chancellor (Harper and Wood 1957) found a range of	
respectively. It is likely to establish in the arct	ic alpine e	coregion.	7,000–20,000. In a study by van der Meijden and van der Waals	
Ecological Impact	<i>.</i>	Score	kooi (1979) production varied between 1,000 and 30,000 acher	nes
Impact on Ecosystem Processes (0–10)		3	per plant. Plants are also capable of regeneration from pieces of	
As a pioneer of disturbed sites it is likely to hi	nder the		rootstock (Harris 2000, Macdonald and Russo 1989).	
colonization by native species. Additionally,	as a strong			
competitor (Harris 2000) it likely reduces th				
resources for co-occurring native species.				

Degreen a share a share of her hair like plane of and shie to travel	Role of anthropogenic and natural disturbance in 3
Ragwort achenes are tipped by hair-like plumes and able to travel	establishment (0–5)
by wind long distances (Harris 2000, Meijden van der and van	Ragwort needs disturbance to become established. Disturbance
der Waals-kooi 1979). However, studies have found that 60% of	of turf by moles, gophers, ants, or rabbits may allow it to enter
the total seed shed landed within 4.6 m of the base of the plants,	a previously closed community. Disturbances such as plowing,
an additional 39% landed between 4.6 and 9 m from the plant	mowing, or trampling stimulate regeneration from the root buds
(Harris 2000, Macdonald and Russo 1989). Dispersal is also by	and can intensify infestations (Cameron 1935, Harris 2000,
water, animals, and birds. Achenes eaten by sheep pass through	Harper and Wood 1957, van der Meijden and van der Waals-kooi
the digestive system undamaged (Green 1937, Harper and Wood	1979). Sand drift is also a process creating favorable conditions for
1957).	ragwort (van der Meijden and van der Waals-kooi 1979).
Spread by humans (0–3) 3	Current global distribution $(0-5)$ 5
Tansy ragwort is often spread as a contaminant in hay, grain	Tansy ragwort is native to Europe (including northern
seeds, and top soil (Harris 2000, USDA, ARS 2004). The plant	Scandinavia) and Western Asia and has become a serious
can be also transported in mud or soil adhering to vehicles	rangeland pest in New Zealand, Tasmania, Australia, South
(Harris 2000).	Africa, and North and South America (Harris 2000).
Allelopathic (0–2) 0	Extent of the species U.S. range and/or occurrence of 5
Judging from the amount of literature, this species is not	formal state or provincial listing $(0-5)$
allelopathic.	Tansy ragwort infests millions of acres of range and pasture land
Competitive Ability (0–3) 2	in the Pacific Northwest (Harris 2000). It is listed as a noxious
This plant easily outcompetes native grasses and forbs (Harris	weed in Arizona, California, Colorado, Idaho, Montana, Oregon,
2000)	Washington, British Columbia, and Nova Scotia (Invaders
Thicket-forming//Smothering growth form $(0-2)$ 0	Database System 2003).
Tansy ragwort can grow up to 6 feet tall, but it does not have a	Total for Ecological Amplitude and Distribution20/25
smothering growth habit (Whitson 2000).	Feasibility of Control Score
Germination requirements (0–3) 1	Seed banks $(0-3)$ 2
Germination and establishment is much higher on bare soils.	Seeds stored at the field temperature more than 3 years
Light is required for germination (Cameron 1935, Harper and	maintained a high capacity for germination. In another study, the
Wood 1957, Meijden van der and van der Waals-kooi 1979).	large-scale germination was obtained from achenes 4 years old or
In southeast Alaska it has been observed germinating and	more (Meijden van der and van der Waals-kooi 1979).
established in vegetated stands (T. Heutte pers. obs.).	
Other invasive species in the genus (0–3) 3	
Other invasive species in the genus (0–3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.	Vegetative regeneration (0–3) 2
Other invasive species in the genus (0–3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).	Vegetative regeneration (0–3) 2 Plants regenerate readily from root fragment after cutting or
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0	Vegetative regeneration (0–3) 2 Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957,
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,	Vegetative regeneration (0–3) 2 Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989).
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies natural communities such as sand dunes and beech woodlands	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in4
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,overgrazed pastures, and along roadsides. The species occupiesnatural communities such as sand dunes and beech woodlands(Harris 2000, Harper and Wood 1957).	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning4
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,overgrazed pastures, and along roadsides. The species occupiesnatural communities such as sand dunes and beech woodlands(Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989).4Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,overgrazed pastures, and along roadsides. The species occupiesnatural communities such as sand dunes and beech woodlands(Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScore	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,overgrazed pastures, and along roadsides. The species occupiesnatural communities such as sand dunes and beech woodlands(Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies natural communities such as sand dunes and beech woodlands (Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Tansy ragwort is a weed of pastures and grasslands (Cameron	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread use. Other herbicides have not been effective in controlling this plant. Biological controls have proven to be effective for long-
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies natural communities such as sand dunes and beech woodlands (Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Tansy ragwort is a weed of pastures and grasslands (Cameron 1935, Harper and Wood 1957).	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread use. Other herbicides have not been effective in controlling this plant. Biological controls have proven to be effective for long- term control in California (Harris 2000, Harper and Wood 1957,
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies natural communities such as sand dunes and beech woodlands (Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Tansy ragwort is a weed of pastures and grasslands (Cameron1935, Harper and Wood 1957).Known level of impact in natural areas (0-6)3	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread use. Other herbicides have not been effective in controlling this plant. Biological controls have proven to be effective for long-
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts,overgrazed pastures, and along roadsides. The species occupiesnatural communities such as sand dunes and beech woodlands(Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Tansy ragwort is a weed of pastures and grasslands (Cameron1935, Harper and Wood 1957).3Known level of impact in natural areas (0-6)3Tansy ragwort is known to reduce the number of individuals	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread use. Other herbicides have not been effective in controlling this plant. Biological controls have proven to be effective for long- term control in California (Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989).
Other invasive species in the genus (0-3)3Senecio madagascariensis Poir., S. riddellii Torr. & Gray, S.squalidus L., and S. vulgaris L. (USDA 2002, Whitson et al. 2000).Aquatic, wetland or riparian species (0-3)0Tansy ragwort is commonly found in pastures, forest clearcuts, overgrazed pastures, and along roadsides. The species occupies natural communities such as sand dunes and beech woodlands (Harris 2000, Harper and Wood 1957).Total for Biological Characteristics and Dispersal15/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4Tansy ragwort is a weed of pastures and grasslands (Cameron1935, Harper and Wood 1957).Known level of impact in natural areas (0-6)3	Vegetative regeneration (0-3)2Plants regenerate readily from root fragment after cutting or plowing (Cameron 1935, Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989). Level of effort required (0-4)4Hand pulling has been the most common method of control in the early stages of infestation. Plowing, mowing, and burning might intensify local infestation. Sodium chlorate has been used in New Zealand but may seriously damage other plants in the community. High cost of this chemical prevents its widespread use. Other herbicides have not been effective in controlling this plant. Biological controls have proven to be effective for long- term control in California (Harris 2000, Harper and Wood 1957, Macdonald and Russo 1989).Total for Feasibility of Control8/10

Ranking Summa	ary		
Ecoregion known or expected to occur			
South Coastal		Yes	
Interior Boreal		Yes	
Arctic Alpine		Yes	
	Potential Max.	Score	
Ecological Impact	40	4	
Biological Characteristics and Dispersal	25	12	
Amplitude and Distribution	25	15	
Feasibility of Control	10	5	
Relative Maximum		46	
Climatic Compar	rison		
	Collected in	CLIMEX	
	Alaska regions?	similarity	
South Coastal	Yes	_	
Interior Boreal	Yes	-	
Arctic Alpine	Yes	_	
Senecio vulgaris is documented in all ecog		ions in	
Alaska (Hultén 1968, AKEPIC 2005, UA	AM 2004).		
Ecological Impact		Score	
Impact on Ecosystem Processes (0–10)		0	
Common groundsel has been document	ed only on dist	urbed	
areas in Alaska (Hultén 1968, Welsh 197	4, Weeds of Al	aska	
Database 2006). It is unlikely that measu			
ecosystem processes occur due to its pre-	*		
Impact on Natural Community Structure		1	
Common groundsel establishes in a spar		1	
herbaceous layer in disturbed areas, incr		sity of the	
layer (I. Lapina pers obs.). No significant			
	~		
community structure has been documer		0	
Impact on Natural Community Composit		-	
Common groundsel has been document			
areas in Alaska (AKEPIC 2006); no pero	ceived impact of	on native	
populations is known.			
Impact on Higher Trophic Levels $(0-10)$	(1 (D	3	
Common groundsel is poisonous to lives			
Dickinson 1999) and may be poisonous to wild animals. Also, it is			
an alternate host for a number of viruses,		~	
(Townshend and Davidson 1962, Heath	cote and Byfor	d 1975,	
Royer and Dickinson 1999).			
Total for Ecological Impact		4/40	
Biological Characteristics and I	Dispersal	Score	
Mode of Reproduction (0–3)		3	
Common groundsel is an annual and rep	produces only b	oy seed	
(Alex and Switzer 1976). Each common	groundsel plan	it is	
capable of producing an average of 830 s	eeds (Kadereit	1984)	
and over 1,700 seeds per plant are possib			
1999).	() • • • • • • •		
Long-distance dispersal (0–3)		2	
	be dispersed b		
The seeds have a pappus of hairs and can be dispersed by wind for short distances (Bergelson et al. 1993). Additionally, its seeds are			
short distances (Bergelson et al. 1993). Additionally, its seeds are			
sticky when wet and can attached to fur (Koyer and Did	ckinson	
1999).		-	
Spread by humans (0–3)		3	
The seeds of common groundsel contam			
		т	
and horticultural stock. Wet seeds can at	tach to vehicle	s and	

common names: common groundsel, old-man-in-the-spring

1	Allelopathic (0–2) 0
	Common groundsel is not allelopathic (Qasem and Hill 1989,
	USDA, NRCS 2006). Possible allelopathic effects of common
	groundsel were studied in a greenhouse experiment, but did not
	show a significant effect on the growth of other plants (Qasem
	and Hill 1989).
	Competitive Ability (0–3)
	Common groundsel competes with cultivated crops (MAFRI
	2001).
ĺ	Thicket-forming/Smothering growth form $(0-2)$ 0
1	Common groundsel can form stands up to 18 inches tall (Alex
	and Switzer 1976, Douglas et al. 1998, Whitson et al. 2000). In
	Alaska it usually does not form dense stands and does not shade
	other species (I. Lapina pers. obs.).
	Germination requirements (0–3) 0
	Common groundsel requires open soil and no vegetation for
	germination and successful establishment (Popay and Roberts
	1970, Bergelson et al. 1993). Othering gravity gravity $(0, 2)$
	Other invasive species in the genus $(0-3)$ 3 Species in a species of the genus $(0-3)$ species and S
	Senecio jacobaea L., S. madagascariensis Poir., and S. squalidus L.
	are listed as noxious weed in several American states (USDA,
	NRCS 2006). Aquatic, wetland or riparian species (0–3) 0
	Aquatic, wetland or riparian species (0–3) 0 Common groundsel inhabits open disturbed sites such as fields,
	gardens, lawns, roadsides, and waste places (Douglas et al. 1998).
	Total for Biological Characteristics and Dispersal 12/25
	Ecological Amplitude and Distribution Score
	Highly domesticated or a weed of agriculture (0–4) 4
	Common groundsel is a weed of agricultural fields and gardens
	(Royer and Dickinson 1999).
	Known level of impact in natural areas $(0-6)$ 0
	Common groundsel is not known to cause any impacts in natural
	areas.
	areas. Role of anthropogenic and natural disturbance in 1
	Role of anthropogenic and natural disturbance in 1 establishment (0–5)
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenic
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found on
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It has
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has a
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic and
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0–5)
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0-5)Common groundsel is found throughout the United States and
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0–5)Common groundsel is found throughout the United States andCanada (Royer and Dickinson 1999, USDA, NRCS 2006).
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0–5)Common groundsel is found throughout the United States andCanada (Royer and Dickinson 1999, USDA, NRCS 2006).Senecio vulgaris is declared a weed in Washington, Tennessee, and
	Role of anthropogenic and natural disturbance in1establishment (0-5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0-5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0-5)Common groundsel is found throughout the United States andCanada (Royer and Dickinson 1999, USDA, NRCS 2006).Senecio vulgaris is declared a weed in Washington, Tennessee, andManitoba (Royer and Dickinson 1999, Rice 2006).
	Role of anthropogenic and natural disturbance in1establishment (0–5)Common groundsel is distributed mainly in anthropogenichabitats, such as ruderal and agricultural lands (Douglas et al.1998). In its native range, common groundsel can be found onnaturally disturbed habitats such as sand dunes (Ashton andAbbott 1992, Hoffmann 2001).Current global distribution (0–5)5Common groundsel is native to Europe and North Africa. It hasbeen introduced into South Africa, North and South America,Hawaii, Australia, and New Zealand (Hultén 1968). It now has anearly worldwide distribution, with introductions into arctic andsubarctic regions in Europe (Lid and Lid 1994).Extent of the species U.S. range and/or occurrence of5formal state or provincial listing (0–5)Common groundsel is found throughout the United States andCanada (Royer and Dickinson 1999, USDA, NRCS 2006).Senecio vulgaris is declared a weed in Washington, Tennessee, and

Feasibility of Control Score	Level of effort required (0–4) 2
Seed banks (0–3) 3	Common groundsel can be controlled by tillage in fall and
The seeds of common groundsel can remain viable in	early spring. Mowing or grazing before seed set will prevent the
undisturbed soils for more than 6 years (Roberts and Feast 1973).	infestation from spreading. Herbicides are available for common
Vegetative regeneration (0–3) 0	groundsel control (SAF 2000).
Common groundsel has no resprouting potential.	Total for Feasibility of Control5/10
	Total score for 4 sections36/100
	ſ

S

Silene noctiflora L S. latifolia ssp. alba L. S. vulgaris (Moench) Garcke S. dioica (L.) Clairville

Ranking Sumn		
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
T 1 + 1 T	Potential Max.	Score
Ecological Impact	40	13
Biological Characteristics and Dispersal	25	9
Amplitude and Distribution	25 10	13
Feasibility of Control Relative Maximum	10	<u>7</u> 42
Climatic Compa		42
Climatic Compa	Collected in	CLIMEX
	Alaska regions?	
South Coastal	Yes	<i>sumunuy</i> :
Interior Boreal	Yes	_
Arctic Alpine	No	Yes
Silene noctiflora has been collected from		
Healy, and the Kenai Peninsula (Hultér		0
Although this species is reported by Hu		
and Juneau, these specimens appear to l	· ·	
1980). <i>Silene vulgaris</i> has been documer		
Territory in the vicinity of Dawson (Co	•	
Silene latifolia ssp. alba has been docum		•
and the Matanuska and Susitna Valleys		
2004, UAM 2004). <i>Silene dioica</i> has bee		
(AKEPIC 2004). The CLIMEX matchi	01 0	
the climatic similarity between Alaska		
noctiflora, S. latifolis ssp. alba, S. vulgaris		
documented as moderately high. The ra	nges for these sj	pecies
include Røros and Dombås, Norway (L	id and Lid 1994), which
have a 76% and 63% climatic match with	h Nome; and fro	om Bergen
Norway which has a 73% climatic match	h with Juneau. S	ilene
latifolia ssp. alba and S. dioica also have	-	
arctic and subarctic Norway and Finlan		
Thompson 1975). Thus establishment o		
species in arctic alpine and south coasta		
likely.		
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		3
Silene species occupy disturbed ground	and likely hinde	-
sites of color occup, assurbed ground		-

colonization by native species. These weeds can decrease soil moisture and nutrient availability (Royer and Dickinson 1999).

common names: night-flowering catchfly, white cockle, bladder campion, red catchfly

	· · · · · · · · · · · · · · · · · · ·	,
	Impact on Natural Community Structure (0–10)	3
	These species have been observed in the existing layer of	
	vegetation in disturbed areas (I. Lapina pers. obs.). Red catchfl	у
	is capable of forming almost complete monocultures on bare so	oil
_	(Matlack and Harper 1986).	
	Impact on Natural Community Composition (0–10)	2
	These species compete for moisture, nutrients, and sunlight in	
	pastures and crowd native plants (Royer and Dickinson 1999).	
	Impact on Higher Trophic Levels (0–10)	5
	Grazing animals find <i>Silene</i> species unpalatable. These plants an	
1	alternate hosts for numerous viruses (Royer and Dickinson 199	
	Hybrids of <i>S. dioica</i> and <i>S. latifolia</i> ssp. <i>alba</i> have been collected	
	in Canada (Douglas and MacKinnon 1998). The flowers of mos	
	Silene species open in the evening and are moth-pollinated. Rec	
	catchfly flowers open during the day and are typically pollinate	ed
	by bees or butterflies (McNeill 1978).	
	Total for Ecological Impact 13/4	-0
	Biological Characteristics and Dispersal Scor	re
	Mode of Reproduction (0–3)	3
	Silene species reproduce primarily by seed. Each plant of night-	
	flowering catchfly is capable of producing up to 2,600 seeds.	
	White cockle plants produce over 24,000 seeds (Royer and	
	Dickinson 1999) and red catchfly plants produced more than	
	4,500 seeds in an experimental garden in Britain (Kay et al.	
	1984). White campion and bladder campion are able to reprodu	
	vegetatively by root and stem fragments (Whitson et al. 2000).	
	Long-distance dispersal (0–3)	0
	Most seeds fall from the parent plant to the ground (Guide to	
	Weeds in British Columbia 2002).	
	Spread by humans $(0-3)$	2
	The seeds are very similar to those of crop clovers and are diffic	ult
	to separate. Consequently, seed impurities have been a major	
	source of dispersal. Seeds also are capable of germination after	
	passing through the digestive tract of domestic animals (McNe	eill
	1980, Royer and Dickinson 1999, Whitson et al. 2000).	_
	Allelopathic (0–2)	0
	There are no records of allelopathy.	

Competitive Ability (0–3) 1	Role of anthropogenic and natural disturbance in 0
Silene species can rapidly colonize disturbed sites and compete	establishment (0–5)
with other vegetation (Royer and Dickinson 1999). However;	Silene species can colonize open ground. Buried seeds remain
cultivated field experiments demonstrated that bladder	viable and germinate and establish easily after soil disturbance
campion did not compete well with alfalfa and barley (Wall and	(Guide to Weeds in British Columbia 2002, Matlack and Harper
Morrison 1990). Bladder campion and red catchfly tolerate high	1986).
concentrations of copper, nickel, zinc, lead, and air pollution;	Current global distribution (0–5) 5
and are highly adapted to water and nutrient deficient conditions	The native range of <i>Silene</i> species extends across Europe and
(Brooks and Crooks 1980, Leopold et al. 1999, Wierzbicka and	Southwest Asia. They are now found throughout Canada and the
Paufnik 1998).	United States with the exception of Alabama, Arkansas, Hawaii,
Thicket-forming/Smothering growth form $(0-2)$ 0	Nevada, Arizona, South Carolina, Tennessee, and Texas (USDA
Silene species can grow up to 3 feet tall, but are not characterized	2002). Silene noctiflora has been recorded from Australia and
by a climbing or smothering growth habit (Douglas and	Greenland (McNeill 1980). Silene noctiflora and S. dioica have
MacKinnon 1998, Royer and Dickinson 1999, Whitson et al.	been recorded from arctic Norway and Finland (Lid and Lid
2000).	1994, Thompson 1975).
Germination requirements (0–3) 0	Extent of the species U.S. range and/or occurrence of 5
Buried seeds germinate readily after soil disturbance (Guide to	formal state or provincial listing $(0-5)$
Weeds in British Columbia 2002). Some populations may require	Night-flowering catchfly, white cockle, and bladder campion
light for germination.	are declared federal noxious weeds in Canada. These species are
Other invasive species in the genus $(0-3)$ 3	also listed as weeds in Connecticut, Wisconsin, and Washington
The genus Silene consists of a number of serious agricultural	(Royer and Dickinson 1999).
weeds (Royer and Dickinson 1999, Whitson et al. 2000).	Total for Ecological Amplitude and Distribution 13/25
Aquatic, wetland or riparian species (0–3) 0	Feasibility of Control Score
These plants are important weeds of pastures, grain fields, and	Seed banks (0–3) 3
gardens. They are also found along highways, railroad tracks, and	The seeds of night-flowering catchfly and bladder campion can
in waste places (Gubanov et al. 2003, McNeill 1980, Royer and	remain viable in the soil for at least 5 years (Chepil 1946). Seeds
Dickinson 1999).	of red catchfly older than 2 years normally do not germinate
Total for Biological Characteristics and Dispersal9/25	(Carlsson-Graner et al. 1998).
Ecological Amplitude and Distribution Score	Vegetative regeneration (0–3) 1
Highly domesticated or a weed of agriculture $(0-4)$ 3	White campion and bladder campion can resprout from root and
Silene species are found in most agricultural areas of United States	stem fragments (Whitson et al. 2000).
and Canada, they are important weeds particularly of grain and	Level of effort required $(0-4)$ 3
leguminous crops (Royer and Dickinson 1999, McNeill 1980,	Mowing or burning is unlikely to control Silene species because of
Whitson et al. 2000).	its large seed bank. Cultivation usually increases the infestation
Known level of impact in natural areas (0–6) 0	by facilitating the spread of <i>Silene</i> . Herbicides provide limited
Silene species are known as agricultural weeds, but have not been	control, as these species are resistant or somewhat resistant to
reported to impact natural habitats (Royer and Dickinson 1999,	many common herbicides. No biological control agent is available
Whitson et al. 2000).	(Guide to weeds in British Columbia 2002, McNeill 1980).
	Total for Feasibility of Control7/10
	Total score for 4 sections42/100

S

Sonchus arvensis L. common names: field sowthistle, moist sowthistle, [including ssp. arvensis and uliginosus (Bieb.) Nyman] perennial sowthistle

Ranking Summa			Biological Characteristics and Dispersal Score
Ecoregion known or expected to occur	rin	37	Mode of Reproduction $(0-3)$ 3
South Coastal		Yes	Perennial sowthistle reproduces by seeds and horizontal
Interior Boreal		Yes	roots. Each plant can produce 4,000–13,000 seeds (Royer and
Arctic Alpine	Potential Max.	No	Dickinson 1999, Rutledge and McLendon 1996, Stevens 1957).
		Score	Long-distance dispersal (0–3) 3
Ecological Impact	40 25	22 21	Seeds of perennial sowthistle possess long hairs and are spread by
Biological Characteristics and Dispersal Amplitude and Distribution	23 25	21 21	the wind (Royer and Dickinson 1999, Rutledge and McLendon
Feasibility of Control	10	9	1996). Seeds may also become attached to animals (Butterfield et
Relative Maximum	10	73	al. 1996).
Climatic Compar	ison	10	Spread by humans (0–3) 3
		CLIMEX	Seeds of perennial sowthistle can be transported by vehicles and
	Alaska regions?		farm equipment. The seeds often contaminate commercial seeds
South Coastal	Yes	_	and hay (Butterfield et al. 1996, Noxious Weed Control Board
Interior Boreal	Yes	_	2003).
Arctic Alpine	No	No	Allelopathic (0–2) 2
Sonchus arvensis has been collected in so	uth coastal (Hy	der	Perennial sowthistle inhibits seed germination of native species
and Hoonah) and interior boreal (Fairba	. ,		(Weeds BC 2004).
Junction, and Palmer) ecogeographic reg	0		Competitive Ability (0–3) 2
UAM 2004). Climatic similarity betwee			Perennial sowthistle is competitive for soil and water (Zollinger
the species is documented is relatively hi			and Kells 1993). It also is considered a vigorous competitor for
range of the species includes Anchorage	-		removing minerals from soil (Lemna and Messersmith 1990).
2004) that have a 61% and 56% climatic			Thicket-forming/Smothering growth form $(0-2)$ 1
respectively using CLIMEX. However, v			Perennial sowthistle can grow 2–4 feet tall (Whitson et al. 2000)
	~		In Alaska it can form dense stands (Krieckhaus and Heutte, pers.
in Nome are too low for <i>Sonchus arvensis</i>	0		com.).
Washington Noxious Weed Control Boa		00	Germination requirements (0–3) 3
that establishment of this species in arcti	c alpine Alaska	may not	Seedlings emerge and survival is best in areas with plant cover or
be possible.		0	litter. Achenes require a continual water supply for germination.
Ecological Impact		Score	Seedlings emerged from less than 1-inch seeding depth have
Impact on Ecosystem Processes (0–10)	nd the surgeonie	5	higher rate of survival and establishment (Hakansson and
Perennial sowthistle may modify or retar			Wallgren 1972).
establishment of native species (Butterfie			Other invasive species in the genus $(0-3)$ 3
species can form very thick, nearly mono			Sonchus asper (L.) Hill, and S. oleraceus L. (Whitson et al. 2000).
the upper beach strands in southeast Ala			Aquatic, wetland or riparian species (0–3) 1
moderate influence on nutrient, moistur		lability	Perennial sowthistle is common in gardens, cultivated crops,
(B. Krieckhaus and T. Heutte, pers. com			roadsides, and fertile waste areas (Rutledge and McLendon 1996
Impact on Natural Community Structure		7	Whitson et al. 2000). It may occur on disturbed sites of meadows
Perennial sowthistle has recently been of			beaches, ditches, and river and lakeshores (Butterfield et al. 1996
of sites forming large stands in the upper			Gubanov et al. 1995, Noxious Weed Control Board 2003).
estuaries in southeastern Alaska, where i			Total for Biological Characteristics and Dispersal21/25
layer over the dominant grass, Elymus mo		-	Ecological Amplitude and Distribution Score
and other species (B. Krieckhaus and T.			Highly domesticated or a weed of agriculture $(0-4)$ 4
Impact on Natural Community Composit		7	Perennial sowthistle is a common weed of gardens and cultivated
At high densities perennial sowthistle ha			fields (Gubanov et al. 1995, Rutledge and McLendon 1996,
water resources (Zollinger and Kells 199			Whitson et al. 2000).
decreased the number of plants in comm			Known level of impact in natural areas (0–6) 4
have been observed in natural community	ties in Alaska (E	3.	Perennial sowthistle is ranked as an exotic plant with a
Krieckhaus and T. Heutte, pers. com.). P	erennial sowthi	istle	moderate impact on natural communities in Pipestone National
reduced soil moisture by 33-47% in field			Monument in Minnesota. It is found in mid-succesional sites
and Kells 1993).	-	Ũ	that have been disturbed in the last 11–50 years (Butterfield et
Impact on Higher Trophic Levels (0–10)		3	al. 1996). It is found in the Rocky Mountain National Park of
Perennial sowthistle is host to a number	of plant pests. T	his plant	Colorado (Rutledge and McLendon 1996).
is acceptable forage for rabbits and other		_	
Control Board 2003).			
Total for Ecological Impact		22/30	
		,	

Role of anthropogenic and natural disturbance in 3	Feasibility of Control Score
establishment (0–5)	Seed banks (0–3) 3
Perennial sowthistle requires disturbances to establish	Seeds of perennial sowthistle may remain dormant in the soil for
(Butterfield et al. 1996). This species will likely invade steep	up to 5 years. Most of seeds germinate the first year. Viability in
slopes, riparian banks, and loess slopes (J. Conn and M. Shephard	subsequent years is commonly low (Roberts and Neilson 1981).
pers. com.). Additionally, it is known to invade the upper beach	Vegetative regeneration $(0-3)$ 2
strand and estuaries that are only moderately disturbed by	Perennial sowthistle is capable of producing new plants from
natural means (Krieckhaus and Heutte pers. com.).	rhizomes (Royer and Dickinson 1999, Rutledge and McLendon
Current global distribution (0–5) 5	1996).
Perennial sowthistle is native to Europe, Western Asia, and	Level of effort required $(0-4)$ 4
Iceland. It has spread widely throughout the northern United	Biological, chemical, and mechanical control methods have
States and southern Canada. The plant has also established in	been used on perennial sowthistle. Mechanical treatment for
South America, Australia, and New Zealand (Noxious Weed	several years should be done a few times a season to reduce seed
Control Board 2003).	production and root reserves. This weed is relatively resistant
Extent of the species U.S. range and/or occurrence of 5	to many common broadleaf herbicides (Butterfield et al. 1996,
formal state or provincial listing $(0-5)$	Rutledge and McLendon 1996).
Perennial sowthistle has spread widely throughout the northern	Total for Feasibility of Control8/10
United States and southern Canada (USDA 2002). It is a noxious	Total score for 4 sections72/100
weed in 20 American states and 5 Canadian provinces; declared	S
a federal noxious weed in U.S. and Canada (Invader Database	
System 2003, Royer and Dickinson 1999). It is a prohibited	

Sorbus aucuparia L.

Ranking Sumn	nary	
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		No
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	22
Biological Characteristics and Dispersal	25	14
Amplitude and Distribution	25	16
Feasibility of Control	10	7
Relative Maximum	_	59
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	-
Interior Boreal	Adjacent No	No No
Arctic Alpine	110	110
European mountain ash has been collec	-	
Craig, Petersburg, and Sitka (Hultén 19		
1974). It is widely planted ornamental in		
in southeast Alaska. The range of the sp		
Kazan in Russia, and Anchorage, which		
climatic match with Fairbanks, respect	vely. However,	it appears
to reach its physiological limit around A	Inchorage, it wit	hstands
winter temperatures to -33 °F and requi	res 110 frost-fre	e days
(USDA 2002). Fairbanks typically has	140 frost-free da	ys, but
winter temperatures commonly reach -		
establish in the interior ecogeographic		·
ecoregion, there is a high climatic matcl		
areas where the species is documented s		
(76%) and Kirov (66%), Russia, (Hultén		· · · · · · · · · · · · · · · · · · ·
minimum temperatures are far too low		
free days is at the physiological limit of	Sorvus aucupari	а.

noxious weed in Alaska (Alaska Administrative Code 1987). Total for Ecological Amplitude and Distribution 21/25

common names: European mountain ash

_		
	Ecological Impact	Score
	Impact on Ecosystem Processes (0–10)	5
	Stands of European mountain ash likely alter light and	nutrient
	availability for other species (Conn pers. obs.).	
	Impact on Natural Community Structure (0–10)	5
	European mountain ash is able to integrate into largely	
	undisturbed coastal rainforest communities and domin	nate,
	creating moderately dense crown canopy. When establ	ished at
	high densities it likely reduces structural complexity be	low it in
-	Sitka Historical Park (M. Shephard pers. obs.).	
1	Impact on Natural Community Composition (0–10)	5
7	European mountain ash appears to outcompete red ald	er
?	along shorelines (M. Shephard pers. obs.). It causes sign	nificant
•	reduction in the population size of one or more native s	pecies
	in the community (J. Conn pers. obs.). Hybridizes with	n native
	Sorbus scopulina and S. sitchensis (Pojar and MacKinno	n 1994).
,	Impact on Higher Trophic Levels (0–10)	7
	The fruits of European mountain ash are highly desirab	le
	to birds, so there is a potential for alterations in abunda	nce
	and composition of avian fauna (Gilman and Watson 1	994,
,	Carlson and Lapina pers. obs.). There is also the possibi	lity for
	competition with native plants for fruit dispersal.	·
	Total for Ecological Impact	22/40
	Biological Characteristics and Dispersal	Score
	Mode of Reproduction (0–3)	3
	The seeds of European mountain ash are numerous and	
2	(125,000/lbs), with many thousands of seeds produced	l per plant
-	per year (Granström 1987, USDA, NRCS 2002).	
	Long-distance dispersal (0–3)	3
	The fruits of European mountain ash are spread by bird	
	especially waxwings and thrushes (Gilman and Watson	n 1994,
	Dickinson and Campbell 1991).	

Role of anthropogenic and natural disturbance in 2
establishment (0–5)
European mountain ash may occasionally establish in
undisturbed areas. Cutting promotes resprouting and
establishment. This species has intermediate shade tolerance
(USDA 2002), so it is unlikely to establish in late successional
coastal rainforest communities without disturbance.
Current global distribution (0–5) 3
European mountain ash is native of Europe (Spain to
Balkans, north to British Isles/Nordic countries, and east
to Ural Mountains), Northern Africa, and Western Asia. It
has naturalized in 27 northern states, in many climatic areas,
throughout moist cool regions of North America.
Extent of the species U.S. range and/or occurrence of 4
formal state or provincial listing $(0-5)$
European mountain ash has naturalized in 27 northern states,
in many climatic areas, throughout moist cool regions of North
America. This species is not considered noxious in North
America (Invaders Database System 2003, USDA, NRCS 2002).
Total for Ecological Amplitude and Distribution 16/25
Feasibility of Control Score
Seed banks (0–3) 3
beeu builds (0 0)
The seeds remain viable in the soil for 5 years or more (Granström
The seeds remain viable in the soil for 5 years or more (Granström
The seeds remain viable in the soil for 5 years or more (Granström 1987).
The seeds remain viable in the soil for 5 years or more (Granström1987).Vegetative regeneration (0–3)2
The seeds remain viable in the soil for 5 years or more (Granström1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS2002).Level of effort required (0-4)2
The seeds remain viable in the soil for 5 years or more (Granström1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS2002).Level of effort required (0-4)2Control measures for European mountain ash are largely
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2002).Level of effort required (0-4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment,
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0-4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0-4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).7/10
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0-4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0-3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0-4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).7/10
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0–3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0–4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).7/10Total for Feasibility of Control7/10Total score for 4 sections59/100
The seeds remain viable in the soil for 5 years or more (Granström 1987).Vegetative regeneration (0–3)2European mountain ash resprouts after cutting (USDA, NRCS 2002).2Level of effort required (0–4)2Control measures for European mountain ash are largely untested. Management requires a major short-term investment, or moderate long-term investment (J. Conn pers. obs.).7/10Total for Feasibility of Control7/10Total score for 4 sections59/100
t

Alaska (R. Lipkin, M. Shephard pers obs.).

Spartina alterniflora Loisel.,commoSpartina anglica C.E. Hubbard,S. densilfora Brongn., and S. patens (Ait.) Muhl.

common names: Atlantic cordgrass, saltmarsh cordgrass, smooth cordgrass

o. uchšujoru Dioligii, uliu o. putens (1	
Ranking Summary	Impact on Higher Trophic Levels (0–10) 10
Ecoregion known or expected to occur in	Spartina stands lower light levels and cause decreases in algae
South Coastal Yes	production (Walkup 2004). Subsequently, it causes a reduction
Interior Boreal No	in refuge and food sources for clams, fish, crabs, waterfowl, and
Arctic Alpine No	other marine life (Daehler 2000, WAPMS 2004). In Alaska,
Potential Max. Score	chum salmon (Oncorhynchus keta), English sole (Pleuronectes
Ecological Impact 40 40	<i>vetulus</i>), and Dungeness crab (<i>Cancer magister</i>) depend on mudflat
Biological Characteristics and Dispersal 25 17	habitats; they would likely be affected by cordgrass invasion
Amplitude and Distribution2523Description1010	(Jacono 1998). Large populations of <i>Spartina</i> can also cause
Feasibility of Control 10 6	loss of important foraging and refuge habitat for shorebirds and
Relative Maximum 86	
Climatic Comparison Collected in CLIME	waterfowl (WAPMS 2004). In its native range, it is a favorite
Alaska regions? similarity South Coastal No Yes	I I I I I I I I I I I I I I I I I I I
Interior Boreal No No	Total for Ecological Impact 40/40
Arctic Alpine No No	Biological Characteristics and Dispersal Score
No species of Spartina has been collected in Alaska (AKEPIC	Mode of Reproduction (0–3) 3
2004, UAM 2004). Spartina alterniflora is native to the Atlantic	Smooth cordgrass reproduces both by seed and rhizomes. While
and Gulf coasts of North America, occurring from Newfoundlan	seeds are important for colonizing new areas, the expansion of
6	
south to Florida and Texas (USDA 2002, WAPMS 2004). Using	spread laterally by vegetative shoots often more than 3-feet per
the CLIMEX matching program, climatic similarity between	year, producing a characteristic circular growth pattern (Daehler
Juneau and Grand Banks and St. Johns, Newfoundland is high	2000, WAPMS 2004).
(55% and 54% respectively). There is a 45% similarity between	Long-distance dispersal (0–3) 2
Juneau and Eastport, Maine. Further, aquatic species are general	
less impacted by variation in terrestrial climates. It is likely to	transport seeds to new areas. Dispersal by floating wracks of
establish in the south coastal region of Alaska.	vegetation is probably the most important long-distance dispersal
Ecological Impact Score	mechanism (Sytsma et al. 2003). Vegetative fragments may be
Impact on Ecosystem Processes (0–10) 10	spread to sites prone to erosion (Daehler 2000).
The dense stands of smooth cordgrass trap and holds sediments,	Spread by humans $(0-3)$ 3
decrease waterflow and circulation and lead to flooding.	It was intentionally introduced on the west coast for erosion
Invertebrate communities associated with unvegetated mudflats	control. Additional pathways of introduction include shipping,
are replaced by saltmarsh species due to <i>Spartina</i> invasion	commercial shellfish operations, ballast water, boats, and other
(Daehler 2000, Jacono 1998, WAPMS 2004).	equipment (Sytsma et al. 2003, WAPMS 2004).
Impact on Natural Community Structure (0–10) 10	Allelopathic (0–2) 0
<i>Spartina</i> colonizes bare sites, creating a new vegetative layer	This species has no known allelopathic effects (USDA 2002).
(Daehler 2000, Walkup 2004, WAPMS 2004).	Competitive Ability (0–3)
Impact on Natural Community Composition (0–10) 10	
Spartina displaces native plants, such as Zostera marina, Salicorni	vegetation (Jacono 1998). It does not compete well with mature
virginica, and Triglochin maritinum (WAPMS 2004). It also result	
in decreases in benthic invertebrates and algae populations.	Thicket-forming/Smothering growth form $(0-2)$ 2
Studies indicate that populations of invertebrates in the sediment	
of <i>Spartina alterniflora</i> clones are smaller than in mudflats	brackish marshes (Jacono 1998).
(WAPMS 2004, Jacono 1998).	Germination requirements (0–3) 0
(1111110 2001) Jucono 1770).	Seedlings are unable to survive under the vegetative canopy,
	maximum establishment is recorded on bare patches (Waklup
	2004, WAPMS 2004).
	Other invasive species in the genus $(0-3)$ 3
	Spartina anglica C.E. Hubbard, S. densilfora Brongn., and S. patens
	(Ait.) Muhl. are considered invasive on the west coast (Daehler
	2000, Sytsma et al. 2003).
	Aquatic, wetland or riparian species (0–3) 3
	Spartina alterniflora is a plant of the intertidal zone, colonizing,
	bays, lagoons, ponds, and ditches (Walkup 2004, WAPMS 2004).
	Total for Biological Characteristics and Dispersal17/25
	17/25

Ecological Amplitude and Distribution Score	Extent of the species U.S. range and/or occurrence of	5
Highly domesticated or a weed of agriculture (0–4) 4	formal state or provincial listing $(0-5)$	
A few cultivars have been developed, and they are commercially	Spartina alterniflora occurs in all coastal states from	
sold. They are used for erosion control and oil spill mediation	Newfoundland to Florida and Texas (USDA 2002, WAPMS	
along shorelines (Materne 2000, USDA 2002, Walkup 2004).	2004). It is declared noxious in Oregon and Washington (Invade	er
Known level of impact in natural areas $(0-6)$ 6	Database System 2003).	
In Willapa Bay, Washington, Spartina alterniflora has displaced	Total for Ecological Amplitude and Distribution 23/25	5
approximately 20% of critical habitat for wintering and breeding	Feasibility of Control Score	_
aquatic birds (WAPMS 2004). In California, it has invaded San	Seed banks (0–3))
Francisco and Humboldt Bays, threatening to transform open	The seeds remain viable for only $8-12$ months, and they do not	
mudflats into a single-species tall grass community (Daehler	withstand desiccation. The species does not have a persistent see	d
2000, Daehler and Strong 1994). A population established in the	bank (Daehler 2000, Mooring et al. 1971, WAPMS 2004).	
Siuslaw estuary in Oregon, and numerous sites are known from	Vegetative regeneration $(0-3)$	2
Washington (Jacono 1998).	After removal of aboveground growth plant can resprout	
Role of anthropogenic and natural disturbance in 5	(WAPMS 2004).	
establishment (0–5)	Level of effort required (0–4)	1
Spartina has been recorded as established on sites with no	Smooth cordgrass can grow on very soft, deep mud, making	
anthropogenic disturbances (Daehler 2000, Jacono 1998,	infestations nearly inaccessible by foot or boat. Hand pulling or	
WAPMS 2004).	digging seedlings is suggested for small infestations (less than 5	
Current global distribution (0–5) 3	acres). Special care should be taken to remove both shoots and	
Smooth cordgrass is native to the Atlantic and Gulf Coast marshes	roots. Shading small Spartina clones with woven geotextile fabri	с
of North America. Its introduced range includes the west coast	was successful in Oregon. Mowing and herbicide treatment can	-
of North America, Europe, and New Zealand (Baird and Thieret	limit growth and seed set (Daehler 2000, Sytsma et al. 2003).	
1993, Daehler 2000, WAPMS 2004).	Total for Feasibility of Control 6/10)
1995, Daemer 2000, WAPINIS 2004).	Total score for 4 sections 86/10	
	6	
	y	

Spergula arvensis L.

Ranking Summary			
Ecoregion known or expected to occur in			
South Coastal Yes			
Interior Boreal		Yes	
Arctic Alpine		Yes	
	Potential Max.	Score	
Ecological Impact	40	2	
Biological Characteristics and Dispersal	25	11	
Amplitude and Distribution	25	14	
Feasibility of Control	10	5	
Relative Maximum		42	
Climatic Comparison			
	Collected in	CLIMEX	
	Alaska regions?	similarity?	
South Coastal	Yes	-	
Interior Boreal	Yes	-	
Arctic Alpine	No	Yes	
Spergula arvensis is documented in the south coastal and interior			
boreal ecogeographic regions of Alaska (Hultén 1968, Welsh			
1974, AKEPIC 2005, UAM 2004). The	CLIMEX matc	hing	
program indicates the climatic similarit	y between the a	rctic	
alpine ecogeographic region of Alaska a	*		
<i>arvensis</i> has been documented is moder			
range include Røros and Dombås, Norway (Lid and Lid 1994),			
which have a 76% and 63% climatic match with Nome. Spergula			
1 0			
<i>arvensis</i> is known to occur in arctic regions of Norway and			
Greenland (Lid and Lid 1994, Natur Historiska Riksmuseet			
Database 2005). Thus establishment of corn spurry in the arctic			
alpine ecogeographic region is likely.			

common names: corn spurry

1	
Ecological Impact	Score
Impact on Ecosystem Processes (0–10)	0
Corn spurry has not been observed in undisturbed areas	
in Alaska (UAM 2006, AKEPIC 2006). It is unlikely that	t
measurable impacts to ecosystem processes occur due to	its
presence.	
Împact on Natural Community Structure (0–10)	0
Corn spurry establishes in an existing layer and very likel	y
increases the density of the layer (Mann 1934) in ruderal	
or roadside plant communities. No impact on the natural	l
community structure has been documented.	
Impact on Natural Community Composition (0–10)	0
Corn spurry has not been observed in undisturbed areas	in
Alaska (UAM 2006, AKEPIC 2006); no perceived impa	cts on
native populations have been documented.	
Impact on Higher Trophic Levels (0–10)	2
Corn spurry is readily eaten by livestock and poultry and	likely
can be used by wildlife species as a food. Corn spurry is a	n
alternate host for a number of viruses (Royer and Dickins	son
1999). Flowers of corn spurry are self-pollinating, nevert	heless
bees, solitary wasps, and syrphids are occasionally seen v	isiting
the flowers (New 1961).	-
Total for Ecological Impact	2/40

Biological Characteristics and Dispersal Score	Ecological Amplitude and Distribution Score
Mode of Reproduction (0–3) 3	Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)4
Corn spurry reproduces by seed. An average plant can produce	Corn spurry is found as a weed in cultivated wheat, oats, and flax
2,000 to 7,000 seeds (New 1961, Trivedi and Tripathi 1982a, b).	(New 1961). Records of fossils seeds suggest that corn spurry
Long-distance dispersal (0–3)	has been a common weed of flax from the Iron Age (Jessen and
The seeds do not tend to spread long-distances, naturally.	Helbaek 1944 cited in New 1961).
Occasionally they can be carried in digestive tracts of deer or	Known level of impact in natural areas $(0-6)$ 0
on animal fur (New 1961, Guide to Weeds in British Columbia	Corn spurry has been recorded only in disturbed habitats (New
2002).	1961). It is not known to cause an impact in any natural areas.
Spread by humans (0–3) 3	Role of anthropogenic and natural disturbance in 0
This species' seeds can contaminate soil and crop seed (Volkart	establishment (0–5)
1924, Board 1952, Guide to Weeds in British Columbia 2002).	Corn spurry requires bare soil for successful establishment
The seeds can also be spread by vehicles or in mud on agricultural	(Fenner 1978a, b).
equipment (New 1961).	Current global distribution (0–5) 5
Allelopathic (0–2) 2	Corn spurry originated from Eurasia. It occurs throughout
Corn spurry causes strong inhibition of germination and growth	Europe and also in Asia, North and South Africa, North and
of crops (Harrison and Peterson 1997, Peterson et al. 1998).	South America, Australia, and New Zealand (Hultén 1968). It
Competitive Ability (0–3) 0	has been recorded above the Arctic Circle (Natur Historiska
Corn spurry has not been observed in closed plant communities.	Riksmuseet Database 2005).
It is very susceptible to shade and is a less effective competitor	Extent of the species U.S. range and/or occurrence of 5
than perennial species (Fenner 1978a, b). In an experiment by	formal state or provincial listing (0–5)
Fenner (1978b) the growth rate of corn spurry was higher in bare	Corn spurry is found in most American states, and nearly all
soil when compared to short and tall turf.	Canadian provinces (Royer and Dickinson 1999, USDA, NRCS
Thicket-forming/Smothering growth form $(0-2)$ 0	2006). Spergula arvensis is declared noxious in Alberta and
Although corn spurry is capable of forming a dense stand, up to	Quebec (Rice 2006).
7,000 seedlings per sq. yard (Mann 1939) it is a short plant and	Total for Ecological Amplitude and Distribution 14/25
does not have a climbing or smothering growth habit (Welsh	Feasibility of Control Score
1974, Royer and Dickinson 1999, Whitson et al. 2000).	Seed banks $(0-3)$ 3 The condition of comparison of the second set of the second se
Germination requirements (0–3) 2 Germination of corn spurry is markedly higher in bare soil	The seeds of corn spurry have been reported to remain viable for
compared to turf (Fenner 1978b). About 43% of seeds germinated	6–8 years in formerly cultivated soil (Chippindale and Milton
in bare soil, 35% in short turf, and 10% in tall turf of <i>Festuca rubra</i>	1934, Roberts and Feast 1973).Viability of seeds was 18% after
in experiment (Fenner 1978b).	6.7 years, and less than 1% after 9.7 years in a seed viability
Other invasive species in the genus (0–3) 0	experiment conducted in Fairbanks (Conn and Deck 1995).
Other species of <i>Spergula</i> have been introduced into North	Seeds of corn spurry were found viable after 22 years in soil
America but none of them appears to be particularly weedy	beneath pastures (Chippindale and Milton 1934).
(USDA, NRCS 2006).	
	Vegetative regeneration $(0-3)$ 2 Corn spurry is able to produce new branches and often bear
	Corn spurry is able to produce new branches and often bear
Aquatic, wetland or riparian species (0–3) 0	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the
Aquatic, wetland or riparian species (0–3)0Corn spurry is a plant of disturbed open habitats. It typically	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961).
Aquatic, wetland or riparian species (0–3) 0	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination of dormant seeds. Chemicals can be used, but corn spurry is
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination of dormant seeds. Chemicals can be used, but corn spurry is resistant to several herbicides. Biocontrol methods are not
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination of dormant seeds. Chemicals can be used, but corn spurry is resistant to several herbicides. Biocontrol methods are not developed (New 1961, Guide to Weeds in British Columbia
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination of dormant seeds. Chemicals can be used, but corn spurry is resistant to several herbicides. Biocontrol methods are not developed (New 1961, Guide to Weeds in British Columbia 2002). Liming significantly reduces the density of corn spurry in
Aquatic, wetland or riparian species (0–3) 0 Corn spurry is a plant of disturbed open habitats. It typically occurs on cultivated fields (Royer and Dickinson 1999, Guide to Weeds in British Columbia 2002), roadsides, and sometimes the seashore (New 1961).	Corn spurry is able to produce new branches and often bear flowers and seeds when plants are cut off 2–3 nodes from the ground (New 1961). Level of effort required (0–4) 0 Mechanical methods (hand pulling, hoeing, or grazing) before seeds set can be successful in the control of corn spurry. Control actions must be repeated as soil disturbance induces germination of dormant seeds. Chemicals can be used, but corn spurry is resistant to several herbicides. Biocontrol methods are not developed (New 1961, Guide to Weeds in British Columbia

\$

Stellaria media (L.) Vill.

Ranking Summary			
Ecoregion known or expected to occur in			
South Coastal			Yes
Interior Boreal			Yes
Arctic Alpine			Yes
		5	Score
			Maritime
	Potential	All other	bird nesting
	Max	habitats	habitats
Ecological Impact	40	10	14
Biological Characteristics and	25	12	12
Dispersal			
Amplitude and Distribution	25	15	20
Feasibility of Control	10	5	8
Relative Maximum		42	54
Climatic Comparison			

	Collected in Alaska regions?	CLIMEX similarity?
South Coastal	Yes	_
Interior Boreal	Yes	_
Arctic Alpine	Yes	_

Special Note: Stellaria media appears to be restricted to anthropogenically disturbed sites in Alaska. There are no thoughts that this weed poses a threat to native plant communities. However, on several arctic and subarctic islands, introduced populations of *Stellaria media* represent an important component of the flora on sea bird colonies sites. These populations on naturally disturbed, high nutrient sites might impact native plant and animal communities. The ecological and community impacts are believed to be different in nutrient rich sea bird colonies and human-disturbed areas; therefore, we assess this impact separately to each type of communities. The ranking values for each question are presented in two columns. The first column represents all nonmaritime nesting bird habitats and the second column represents values specific to maritime nesting bird habitats.

Stellaria media is documented in all ecogeographical regions of Alaska (Hultén 1968, Welsh 1974, AKEPIC 2005UAM 2004,). It is more successful in the cooler and more humid coastal regions of the world (Sobey 1981).

Ecological Impact	Score	
Impact on Ecosystem Processes (0–10)	1-3	
Common chickweed is usually found on human disturbed sites.		
It is unlikely that measurable impacts to ecosystem pro-	cesses	
occur due to its presence. It is likely to have some impac	ct on	
ecosystem processes in sea bird colonies. Common chie	ckweed	
can form high densities in sea bird colony habitats (Mod	chalova	
and Yakubov 2004).		
Impact on Natural Community Structure (0–10)	3-3	
Common chickweed is able to create dense mats of sho	ots up to	
12 inches long, shading young seedlings of other plants	(Lawson	
1972, Whitson et al. 2000, Welsh 1974).		
Impact on Natural Community Composition (0–10)	1-3	
Common chickweed can colonize naturally disturbed,	nutrient	
rich soils and dominate the area (Gillham 1956, Sobey a	and	

Kenworthy 1979).

common names: common chickweed

	ameeu
Impact on Higher Trophic Levels (0–10)	5-5
The shoots and seeds of common chickweed are eater	
animals and birds, both domesticated and wild. Many	
species feed on the plant (Batra 1979, Firbank and Sn	
Watson et al. 2003). A large number of nematode spec	
been reported to attack chickweed (Taylor 1967, Tow	
Davidson 1962, Murant 1970). This plant is also an in	
host for a number of viruses and fungal species. The fl	
common chickweed are usually self-pollinated; howe	
pollinating by insects has been recorded. Common cl	
is reported to be potentially toxic to some animals (C	
Sobey 1981). However, in Alaska common chickweed	-
a small part of plant community, it is unlikely for com	mon
chickweed to have high trophic effects.	10 14/40
Total for Ecological Impact Biological Characteristics and Dispersal	<u>10-14/40</u> Score
Mode of Reproduction $(0-3)$	3-3
Common chickweed reproduces mainly by seeds. See	00
per plant can vary from 600 to 15 000 (Lutman 2000	*
and Jansen 2002, Stevens 1932, Stevens 1957). Vegeta	
reproduction by fragmentation of stems also can occu	
1981).	(0000)
Long-distance dispersal (0–3)	3-3
The seeds can be transported by horses, cattle, deer, p	
sparrows, quail, and gulls (Gillham 1956, Sobey and	Kenworthy
1979). It also is known to be dispersed by ants and ea	rthworms.
The seeds are also capable of surviving immersion in	sea water
(Sobey 1981).	
Spread by humans (0–3)	3-3
The seeds can be transported in mud and dust on boo	
hooves, and machinery. Seeds of chickweed also cont	
some commercial seeds, horticultural stock, and tops	
(Hodkinson and Thompson 1997, Sobey 1981, Turki	ngton et al.
1980, Walton 1975).	
Allelopathic (0–2) Results of studies indicate that chickweed can be alle	2-2
to wheat. Both young and mature growth stages of ch	-
contribute water-soluble phenolics to the soil and red	
of wheat seedlings (Inderjit and Dakshini 1998).	uce giow th
Competitive Ability (0–3)	1-1
Common chickweed is a powerful competitor with a	
plants, especially in cool wet conditions (Gibson and	*
1977, Lawson 1972, Mann and Barnes 1950). Howev	•
been observed that chickweed can be outcompeted b	
herbs (Sobey 1981). Welbank (1963) in a comparative	
of competitive effects of some weed species found chi	
to have a relatively small effect. Common chickweeds	
as a competitor apparently resulted from a rapid root	
and thus a more efficient exploitation of soil nutrients	
and Barnes 1950). The ability to develop adventitious	
on prostrate stem fragments partially covered by soil	
increases the plants competition potential (Roberts a	
1966). Under favorable conditions, three to five gener	
be produced during a year (Johnson et al. 1995, Sobe	
Thicket-forming/Smothering growth form $(0-2)$	0-0
Common chickweed does not form dense thickets an	d does not
possess a climbing or smothering growth habit (Doug	glas and
MacKinnon 1998, Hultén 1968, Welsh 1974).	

Germination requirements (0–3) 0-0	Current global distribution $(0-5)$ 5-5
Disturbance is important for chickweed germination and	Chickweed is native to Europe. It has been spread throughout
establishment (Sobey and Kenworthy 1979). Removal of	the world and became one of the most completely cosmopolitan
vegetation in an experiment in Scotland revealed the importance	species. It extends from the tropical regions of Africa, South
of disturbance. Common chickweed became established	America, and Asia to Arctic and sub-Antarctic islands (Hultén
on areas formerly occupied by perennial species (Sobey and	1968, Mochalova and Yakubov 2004, Polunin 1957, Walton
Kenworthy 1979).	1975).
Other invasive species in the genus $(0-3)$ 0-0	Extent of the species U.S. range and/or occurrence of 5-5
A number of <i>Stellaria</i> species has been introduced to the United	formal state or provincial listing $(0-5)$
States; however, none of them are listed as a noxious weed	Common chickweed is common throughout the United States
(USDA, NRCS. 2006).	and Canada. This species is listed as a noxious weed in Alberta,
Aquatic, wetland or riparian species $(0-3)$ 0-0	Manitoba, and Quebec (Rice 2006).
In its native range common chickweed is a plant of coastal banks	Total for Ecological Amplitude and Distribution 15-20/25
and cliffs, especially in and around the breeding colonies of sea	Feasibility of Control Score
birds and seals. However, it is more often found on cultivated	Seed banks (0–3) 3-3
ground and waste places (Douglas and MacKinnon 1998, Sobey	Seeds have been reported to live for at least 20 years (McCloskey
1981, Welsh 1974, Whitson et al. 2000).).	et al. 1996). Other authors suggested survival of seeds for 30–35
Total for Biological Characteristics and12-12/25	years (Darlington and Steinbauer 1961, Kivilaan and Bandurski
Dispersal	1981). A dramatic decrease in viability was noted after burial for
Ecological Amplitude and Distribution Score	6–10 years in studies of Conn and Deck (1995) and Roberts and
Highly domesticated or a weed of agriculture $(0-4)$ 4-4	Feast (1973).
Common chickweed is a weed of crops, vegetable gardens,	Vegetative regeneration (0–3) 2-2
pastures, and lawns (Alex and Switzer 1976, Sobey 1981,	Plant fragments have the ability to reroot if partially covered by
Turkington et al. 1980).	soil (Guide to weeds in British Columbia 2002, Sobey 1981).
Known level of impact in natural areas (0–6) 1-3	Level of effort required (0–4) 0-3
Common chickweed is well naturalized in breeding colonies of	Mechanical methods can manage chickweed effectively, but
sea birds and seals on the Commander Islands (Mochalova and	all plant fragments should be removed or deeply buried in the
Yakubov 2004). It is widespread and common on sand dunes and	soil since plants shoots have the ability to reroot. Common
in maritime habitats in Falkland Islands and a number of islands	chickweed can be controlled by a variety of chemicals; however,
around Antarctica (Broughton and McAdam 2002, Walton	it is resistant to a number of commonly used herbicides. Strong
1975). Common chickweed seems to have visible impact on	perennials can be used to prevent chickweed reestablishment
vegetation of sea bird islands. Common chickweed has also been	(Guide to weeds in British Columbia 2002, Sobey 1981). This
documented under deciduous forests in Ontario, but its impact	weed can be very difficult to control on nutrient rich sites such as
on ecosystem functions is negligible (Alex and Switzer 1976).	vegetable crops fields or sea bird colonies (J. Conn pers. obs.).
Role of anthropogenic and natural disturbance in 0-3	Total for Feasibility of Control5-8/10
establishment (0–5)	Total score for 4 sections42-52/100
Common chickweed establishes readily on human-disturbed	S
ground. Additionally, it is known to invade habitats around	-
breeding colonies of sea birds or seals, where the habitat is	
disturbed by physical suppression, collecting of nest material,	
and defecation (Sobey and Kenworthy 1979, Walton 1975).	

Taraxacum officinale ssp. *officinale* G.H. Weber ex Wiggers

Ranking Summ		
Ecoregion known or expected to occu	rin	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine	D-4	Yes
E colorical Immost	Potential Max. 40	Score 18
Ecological Impact Biological Characteristics and Dispersal	25	18
Amplitude and Distribution	25	14
Feasibility of Control	10	8
Relative Maximum	10	58
Climatic Compar	rison	50
chinadre company	Collected in	CLIMEX
		similarity?
South Coastal	Yes	_
Interior Boreal	Yes	_
Arctic Alpine	Yes	_
Taraxacum officinale has been collected i	in the south coa	stal,
interior boreal, and arctic alpine ecogeos		
(Hultén 1968, UAM 2004).	5 1 0	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		5
Common dandelion can cause modest in	mpacts on comr	nunity
succession. It likely delays establishmen		
it is an early colonizer of recently disturb		
and Walters 1988, Densmore et al. 2001,		
1996). Common dandelion reduces the	0	
and nutrients for native plants.	availability of fil	oistuit
Impact on Natural Community Structure	(0_{-10})	3
In Alaska common dandelion often esta		
herbaceous layer, changing the density of		0
obs.). It also can form a new herbaceous		
soil along banks and roadsides (M.L. Ca		
		a pers.
obs.) Impact on Natural Community Composi	tion(0, 10)	5
Common dandelion is highly competitiv		-
number of individuals of other species in		mai
communities (Royer and Dickinson 199	9).	5
Impact on Higher Trophic Levels (0–10) Common dandelion is quite palatable ar	d is commonly	5
by moose and bears (J. Snyder pers. obs.		
grouse, gophers, deer, elk, and sheep (Es		
of sage grouse and deer benefit from high		
Common dandelion is important source	~	
bees in Alaska (Esser 1993). Its presence		
ecologies of co-occurring plants. It also i		ost for
number of viruses (Royer and Dickinson	n 1999).	
Total for Ecological Impact		18/40
Biological Characteristics and	Dispersal	Score
Mode of Reproduction $(0-3)$		3
Common dandelion reproduces entirely	•	
al. 2001, Whitson et al. 2000). Each plan	~ ~	0
up to 5,000 seeds (Royer and Dickinson		
from cut pieces is possible (Rutledge and	d McLendon 19	96).
Long-distance dispersal (0–3)		3
The seeds are wind dispersed; pappus an	-	-
seeds to travel long distances. In tall gras		
Iowa, seeds were blown several hundred	meters from the	e nearest
source population (Platt 1975).		

common names: common dandelion

Spread by humans (0-3)3Common dandelion is spread by vehicles and horticultural material (Hodkinson and Thompson 1997). It is a common contaminant in crop and forage seeds (Rutledge and McLendon 1996).Allelopathic (0-2)0Common dandelion is not listed as allelopathic (USDA 2002).Competitive Ability (0-3)1Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996).Thicket-forming/Smothering growth form (0-2)0Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974).Germination requirements (0-3)0Common dandelion requires open disturbed soil for germination (Densmore et al. 2001).Other invasive species in the genus (0-3)1Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.).Total for Biological Characteristics and Dispersal 14/2514/25Ecological Amplitude and Distribution scoreeScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Gl	$S_{max} d hyphysical g = 0$	
material (Hodkinson and Thompson 1997). It is a common contaminant in crop and forage seeds (Rutledge and McLendon 1996). Allelopathic (0–2) 0 Common dandelion is not listed as allelopathic (USDA 2002). Competitive Ability (0–3) 1 Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultfen 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of alwns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion is a weed of flawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned		3
contaminant in crop and forage seeds (Rutledge and McLendon 1996). Allelopathic (0–2) 0 Common dandelion is not listed as allelopathic (USDA 2002). Competitive Ability (0–3) 1 Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 Taraxacum scanicum Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level ofimpact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandeli		
1996). 0 Common dandelion is not listed as allelopathic (USDA 2002). 0 Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). 0 Thicket-forming/Smothering growth form (0-2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requires open disturbed soil for germination (Densmore et al. 2001). 0 Other invasive species in the genus (0-3) 3 Taraxacum scanicum Dahlstedt (Hultfen 1968). 3 Aquatic, wetland or riparian species (0-3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0-4) 2 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invadi		
Allelopathic (0-2) 0 Common dandelion is not listed as allelopathic (USDA 2002). 1 Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). 1 Thicket-forming/Smothering growth form (0-2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requires open disturbed soil for germination (Densmore et al. 2001). 0 Other invasive species in the genus (0-3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). 4 Aquitic, wetland or riparian species (0-3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0-4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in		n
Common dandelion is not listed as allelopathic (USDA 2002). Competitive Ability (0–3) 1 Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 Taraxacum scanicum Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural suc		
Competitive Ability (0-3)1Common dandelion is very competitive with crops for moistureand nutrients; however, it is a much less aggressive competitorin tall herbaceous communities (Royer and Dickinson 1999,Rutledge and McLendon 1996).Thicket-forming/Smothering growth form (0-2)0Common dandelion does not grow in very dense stands anddoes not overtop surrounding vegetation. The stem is very short,leafless flowering stalks grow to 2 feet tall (Welsh 1974).Germination requires open disturbed soil for germination(Densmore et al. 2001).Other invasive species in the genus (0-3)Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns,meadows, pastures, and overgrazed areas. It also occurs alonghighway and railroad rights-of-ways, waste places, and old fields(Royer and Dickinson 1999, Rutledge and McLendon 1996). It isfound along riverbanks and terraces in south-central Alaska nearanthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreeHighly domesticated or a weed of agriculture (0-4)2Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pe		0
Common dandelion is very competitive with crops for moisture and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of agriculture (0–4) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches an		_
and nutrients; however, it is a much less aggressive competitor in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of Jawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 eestablishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has e		-
in tall herbaceous communities (Royer and Dickinson 1999, Rutledge and McLendon 1996). Thicket-forming/Smothering growth form (0–2) 0 Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturb		e
Rutledge and McLendon 1996).Thicket-forming/Smothering growth form (0-2)0Common dandelion does not grow in very dense stands anddoes not overtop surrounding vegetation. The stem is very short,leafless flowering stalks grow to 2 feet tall (Welsh 1974).Germination requires open disturbed soil for germination(Densmore et al. 2001).Other invasive species in the genus (0-3)3Taraxacum scanicum Dahlstedt (Hultén 1968).Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns,meadows, pastures, and overgrazed areas. It also occurs alonghighway and railroad rights-of-ways, waste places, and old fields(Royer and Dickinson 1999, Rutledge and McLendon 1996). It isfound along riverbanks and terraces in south-central Alaska nearanthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard per		
Thicket-forming/Smothering growth form (0-2)0Common dandelion does not grow in very dense stands anddoes not overtop surrounding vegetation. The stem is very short,leafless flowering stalks grow to 2 feet tall (Welsh 1974).Germination requirements (0-3)0Common dandelion requires open disturbed soil for germination(Densmore et al. 2001).0Other invasive species in the genus (0-3)3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968).Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns,meadows, pastures, and overgrazed areas. It also occurs alonghighway and railroad rights-of-ways, waste places, and old fields(Royer and Dickinson 1999, Rutledge and McLendon 1996). It isfound along riverbanks and terraces in south-central Alaska nearanthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Common dandelion is repo		
Common dandelion does not grow in very dense stands and does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 Taraxacum scanicum Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) 5 Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian o		
does not overtop surrounding vegetation. The stem is very short, leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, So		0
leafless flowering stalks grow to 2 feet tall (Welsh 1974). Germination requirements (0–3) 0 Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 Taraxacum scanicum Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		
Germination requirements (0-3)0Common dandelion requires open disturbed soil for germination(Densmore et al. 2001).Other invasive species in the genus (0-3)Aquatic, wetland or riparian species (0-3)ICommon dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. o	,	t,
Common dandelion requires open disturbed soil for germination (Densmore et al. 2001). Other invasive species in the genus (0–3) 3 <i>Taraxacum scanicum</i> Dahlstedt (Hultén 1968). Aquatic, wetland or riparian species (0–3) 1 Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		
(Densmore et al. 2001).Other invasive species in the genus (0-3)3Taraxacum scanicum Dahlstedt (Hultén 1968).Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns,meadows, pastures, and overgrazed areas. It also occurs alonghighway and railroad rights-of-ways, waste places, and old fields(Royer and Dickinson 1999, Rutledge and McLendon 1996). It isfound along riverbanks and terraces in south-central Alaska nearanthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is sh		•
Other invasive species in the genus (0-3)3Taraxacum scanicum Dahlstedt (Hultén 1968).Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns,meadows, pastures, and overgrazed areas. It also occurs alonghighway and railroad rights-of-ways, waste places, and old fields(Royer and Dickinson 1999, Rutledge and McLendon 1996). It isfound along riverbanks and terraces in south-central Alaska nearanthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in3establishment (0-5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural succession(Densmore et al. 2001). In south-central Alaska,		on
Taraxacum scanicum Dahlstedt (Hultén 1968).Aquatic, wetland or riparian species (0–3)1Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0–4)2Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California.Known level of impact in natural areas (0–6)3Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0–5)5Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand, </td <td></td> <td>2</td>		2
Aquatic, wetland or riparian species (0-3)1Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.)Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0-5)5Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		3
Common dandelion grows in moist sites, including lawns, meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		1
meadows, pastures, and overgrazed areas. It also occurs along highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		1
highway and railroad rights-of-ways, waste places, and old fields (Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		
(Royer and Dickinson 1999, Rutledge and McLendon 1996). It is found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		2
found along riverbanks and terraces in south-central Alaska near anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		
anthropogenic disturbance (M.L. Carlson pers. obs.) Total for Biological Characteristics and Dispersal 14/25 Ecological Amplitude and Distribution Score Highly domesticated or a weed of agriculture (0–4) 2 Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,		
Total for Biological Characteristics and Dispersal14/25Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0–4)2Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0–6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in3establishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural succession(Densmore et al. 2001). In south-central Alaska, it has establishedalong riverbanks downstream from anthropogenic disturbances,such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0–5)5Common dandelion is of Eurasian origin. It is now introducedinto southern Africa, South and North America, New Zealand,		
Ecological Amplitude and DistributionScoreHighly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inafter it is shaded out by taller native species in natural succession(Densmore et al. 2001). In south-central Alaska, it has establishedalong riverbanks downstream from anthropogenic disturbances,such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0-5)SCommon dandelion is of Eurasian origin. It is now introducedinto southern Africa, South and North America, New Zealand,	anthropogenic disturbance (M.L. Carlson pers. obs.)	11
Highly domesticated or a weed of agriculture (0-4)2Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commerciallyas a salad green in California.Known level of impact in natural areas (0-6)3Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montana(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areason the Kenai Peninsula, and is reported from Nenana and StikineRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inatestablishment (0-5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural succession(Densmore et al. 2001). In south-central Alaska, it has establishedalong riverbanks downstream from anthropogenic disturbances,such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0-5)SCommon dandelion is of Eurasian origin. It is now introducedinto southern Africa, South and North America, New Zealand,		
Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercially as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal 14/2	5
as a salad green in California. Known level of impact in natural areas (0–6) 3 Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScore	5 e
Known level of impact in natural areas (0–6)3Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in setablishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.)5Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,3	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)5	<u>5</u> e 2
Common dandelion has invaded partially disturbed and undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal 14/2 Ecological Amplitude and Distribution Scor Highly domesticated or a weed of agriculture (0-4) Common dandelion is a weed of lawns, pastures, and cultivated	5 re 2
undisturbed montane forest and alpine communities in Montana (Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivated fields (Royer and Dickinson 1999). It also is grown commercial	5 re 2
(Esser 1993). In Alaska it is observed invading forb meadows in Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0-6)Kor	5 2 1 1
Glacier Bay National Park and Preserve, colonizing burned areas on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance in3establishment (0–5)3Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0–5)5Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0-6)Kor	5 2 1 1
on the Kenai Peninsula, and is reported from Nenana and Stikine Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0-6)Common dandelion has invaded partially disturbed and	5 e 2 l lly 3
Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.). Role of anthropogenic and natural disturbance in 3 establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan	5 2 1 1 1 2 1 1 3
Role of anthropogenic and natural disturbance in3establishment (0-5)Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0-5)5Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows in	5 2 1 11y 3
establishment (0–5) Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned area	5 2 1 1 1 1 3 as
Common dandelion is reported to not establish where the organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedCommon dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikitStikit	5 2 1 1 1 1 3 as
organic layer is undisturbed. Additionally, it does not persist after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedCommon dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikiRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).	5 e 2 l llly 3 na as ne
after it is shaded out by taller native species in natural succession (Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and Stiki.Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)	5 e 2 l llly 3 na as ne
(Densmore et al. 2001). In south-central Alaska, it has established along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikiRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where the	5 e 2 l llly 3 na as ne
along riverbanks downstream from anthropogenic disturbances, such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikitRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persist	5 e 2 l lly 3 na as ne 3
such as boat launches and pull outs (M.L. Carlson pers. obs.) Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikiRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio	5 2 1 1 1 3 1 3 1 3 3 7
Current global distribution (0–5) 5 Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedCommon dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikiRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establish	5 e 2 l lly 3 na as ne 3 n
Common dandelion is of Eurasian origin. It is now introduced into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0-6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and Stiki.Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0-5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establishalong riverbanks downstream from anthropogenic disturbance	5 e 2 l lly 3 na as ne 3 n
into southern Africa, South and North America, New Zealand,	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and Stiki.Rivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establishalong riverbanks downstream from anthropogenic disturbancesuch as boat launches and pull outs (M.L. Carlson pers. obs.)	5 e 2 l lly 3 na as ne 3 n
	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0-4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0-6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikiRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0-5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establishalong riverbanks downstream from anthropogenic disturbancesuch as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0-5)	5 e 2 l lly 3 na as ne 3 n ed es,
Australia, and India (Esser 1993, Hultén 1968).	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montar(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikitRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establishalong riverbanks downstream from anthropogenic disturbancesuch as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0–5)Common dandelion is of Eurasian origin. It is now introduced	5 e 2 l lly 3 na as ne 3 n ed es, 5
	Total for Biological Characteristics and Dispersal14/2Ecological Amplitude and DistributionScorHighly domesticated or a weed of agriculture (0–4)Common dandelion is a weed of lawns, pastures, and cultivatedfields (Royer and Dickinson 1999). It also is grown commercialas a salad green in California.Known level of impact in natural areas (0–6)Common dandelion has invaded partially disturbed andundisturbed montane forest and alpine communities in Montan(Esser 1993). In Alaska it is observed invading forb meadows inGlacier Bay National Park and Preserve, colonizing burned areaon the Kenai Peninsula, and is reported from Nenana and StikitRivers bars (M. Shephard pers. obs., P. Spencer pers. obs.).Role of anthropogenic and natural disturbance inestablishment (0–5)Common dandelion is reported to not establish where theorganic layer is undisturbed. Additionally, it does not persistafter it is shaded out by taller native species in natural successio(Densmore et al. 2001). In south-central Alaska, it has establishalong riverbanks downstream from anthropogenic disturbancesuch as boat launches and pull outs (M.L. Carlson pers. obs.)Current global distribution (0–5)Common dandelion is of Eurasian origin. It is now introducedinto southern Africa, South and North America, New Zealand,	5 e 2 l lly 3 na aas ne 3 n ed es, 5

Extent of the species U.S. range and/or occurrence of 5	Vegetative regeneration $(0-3)$ 2
formal state or provincial listing $(0-5)$	Common dandelion sprouts from caudex and root crowns
Common dandelion occurs in all 50 states and almost all	(Densmore et al. 2001, Staniforth and Scott 1991, Whitson et al.
Canadian provinces (USDA 2002). It is a noxious weed in	2000). Reproduction from cut pieces is possible (Rutledge and
Alberta, Manitoba, Quebec, and Saskatchewan (Invaders	McLendon 1996).
Database System 2003). It has been reported from all three	Level of effort required (0–4) 3
primary ecogeographic regions of Alaska (Hultén 1968,	Common dandelion can be controlled with repeated chemical
University of Alaska Museum 2003).	and mechanical control measures. Seeding a mixture of native
Total for Ecological Amplitude and Distribution 18/25	species after treatment is recommended (Densmore et al. 2001,
Feasibility of Control Score	MAFRI 2004).
Seed banks (0–3)	Total for Feasibility of Control8/10
Common dandelion creates a long-lived seed bank (Esser 1993,	Total score for 4 sections58/100
Pratt 1984). The seeds of common dandelion were viable up to 5	0
years in soil samples from Montana (Bard 1952), and up to 9 year	
in experiments in Nebraska (Burnside et al. 1996).	

Tanacetum vulgare L.

common names: common tansy, garden tansy

Ranking Sumn	nary	
Ecoregion known or expected to occu	ır in	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	20
Biological Characteristics and Dispersal	23	15
Amplitude and Distribution	25	15
Feasibility of Control	10	8
Relative Maximum	•	57
Climatic Compa		CUMEY
	Collected in	CLIMEX
South Coastal	Alaska regions? Yes	simuarity:
Interior Boreal	Yes	_
Arctic Alpine	No	Yes
<i>Tanacetum vulgare</i> has been collected in	110	100
interior boreal ecogeographic regions (
2004, UAM 2004). It is widely planted		
Anchorage and Matanuska–Susitna Val		
6	, 0	
common tansy includes lowlands and n		
70°N (the provinces of Finnmark and T		• • •
and Lid 1994). These regions are north		
include tundra habitats. It is possible for	,	ish in
Alaska's arctic alpine ecogeographic reg	gions.	
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		5
Common tansy often grows along strea		
ditches where it can restrict waterflow (
Impact on Natural Community Structur		5
Common tansy is not known to cause n	· ~	
community structure (U.S. Departmen		
Alaska, it can establish in the existing h		and alter
the density of the layer (I. Lapina pers. o		
Impact on Natural Community Compos		5
Common tansy is likely to affect the ava	•	
soil nutrients, therefore, may cause a rec		
of individuals of other species (U.S. Dep	partment of the	Interior
2004).		

	-
Impact on Higher Trophic Levels (0–10)	5
Common tansy has been reported as unpalatable to modera	itely
poisonous; therefore, infestations can alter the quantity of	
foraging sites (CWMA 2004, Royer and Dickinson 1999, P	lants
for a Future 2002). It is an alternate host for viruses (Royer	and
Dickinson 1999).	
Total for Ecological Impact 20	0/40
Biological Characteristics and Dispersal So	core
Mode of Reproduction (0–3)	3
Common tansy reproduces by both seed and stoloniferous	
rhizomes. Each plant is capable of producing over 50,000 se	eds
(Royer and Dickinson 1999, Whitson et al. 2000). It is quite	
aggressive in its vegetative spread (Plants for a Future 2002)	
Long-distance dispersal $(0-3)$	0
The seeds of common tansy have no adaptation for long-dist	tance
dispersal (Royer and Dickinson 1999).	
Spread by humans (0–3)	3
Common tansy has been used as ornamental and medicinal	l
remedy. It has escaped and become widely established. It als	50
is a potential contaminant in commercial seed (CWMA 200	04,
USDA, ARS 2004).	
Allelopathic (0–2)	U
Unknown	
Competitive Ability (0–3)	1
Common tansy is a moderately successful competitor (U.S.	
Department of the Interior 2004).	
Thicket-forming/Smothering growth form $(0-2)$	2
The plant can grow up to 6 feet tall and it is usually taller that	
surrounding herbaceous vegetation (Royer and Dickinson 1	1999,
Whitson et al. 2000). Its extensive rhizomatous growth can	
create dense stands.	
Germination requirements (0–3)	2
Common tansy is known to germinate in vegetated areas (U	J.S.
Department of the Interior 2004).	
Other invasive species in the genus $(0-3)$	3
Tanacetum corymbosum (L,) Schultz-Bip. and Tanacetum	
parthenium (L.) Schultz-Bip. (ITIS 2002).	

Aquatic, wetland or riparian species (0–3) 1	Current global distribution (0–5) 3
Common tansy is generally found along roadsides and waste	Common tansy is a native of Europe and Western Asia and has
areas. However, it can establish and spread along streambanks	become established in the United States and Canada (USDA,
and lakeshores (CWMA 2004, Gubanov et al. 1995, Whitson et	ARS 2004).
al. 2000).	Extent of the species U.S. range and/or occurrence of 5
Total for Biological Characteristics and Dispersal 15/23	formal state or provincial listing $(0-5)$
Ecological Amplitude and Distribution Score	The introduced range of common tansy includes nearly all
Highly domesticated or a weed of agriculture (0–4) 2	states of the United States (USDA 2002). This plant is listed as a
Common tansy was originally introduced to North America from	noxious weed in Colorado, Minnesota, Montana, Washington,
Europe as an ornamental and for medicinal purposes (CWMA	Wyoming, Alberta, British Columbia, and Manitoba (Invaders
2004, Whitson et al. 2000). Cultivars have been developed and	Database System 2003, USDA 2002).
are widely sold in nurseries (Plants for a Future 2002).	Total for Ecological Amplitude and Distribution 13/25
Known level of impact in natural areas (0–6) 2	Feasibility of Control Score
In Colorado common tansy is known to cause low impacts in	Seed banks (0–3) 2
mid-successional sites that were disturbed 11–50 years before	The seeds of common tansy remain viable in the soil for 1–5 years
(U.S. Department of the Interior 2004). Common tansy invades	(U.S. Department of the Interior 2004).
disturbed prairies in Wisconsin (Wisconsin DNR 2003). It has	Vegetative regeneration (0–3) 2
been observed invading beach meadows in Haines (M. Shephard	Plants can sprout from roots or stumps (U.S. Department of the
pers. obs.).	Interior 2004).
Role of anthropogenic and natural disturbance in 1	Level of effort required $(0-4)$ 4
establishment (0–5)	Common tansy is an aggressive weed and is difficult to control
Common tansy is generally restricted to disturbed sites (Royer	(CWMA 2004, Plants for a future 2002).
and Dickinson 1999, U.S. Department of the Interior 2004).	Total for Feasibility of Control8/10
However, it is growing in undisturbed meadows in Haines (M.	Total score for 4 sections56/98
Shephard pers. obs.).	Ø
Shephatu pers. 008.7.	5

Tragopogon dubius Scop.

common names: yellow salsify, goat's beard

Ranking Summary			Ecological Impact Score
Ecoregion known or expected to occur in			Impact on Ecosystem Processes (0–10) 3
South Coastal		Yes	Yellow salsify has been observed only along disturbed and
Interior Boreal		Yes	partially modified habitats in south-central Alaska. It likely
Arctic Alpine		No	competes with native species for moisture and nutrients.
	ential Max.	Score	However, it does not appear to cause measurable impacts to
Ecological Impact	40	20	ecosystem processes (Rutledge and McLendon 1996). New
Biological Characteristics and Dispersal	25	11	stabilized hybrid species have been formed in western North
Amplitude and Distribution	25	16	
Feasibility of Control	10	3	America from <i>T. dubius, T. pratensis</i> , and <i>T. porrifolius</i> (Owenby
Relative Maximum		50	1950) and become widespread.
Climatic Compariso			Impact on Natural Community Structure (0–10) 7
-	ollected in	CLIMEX	Yellow salsify creates a new layer in herbaceous communities
	0	similarity?	(M. Shephard pers. obs.).
South Coastal	No	Yes	Impact on Natural Community Composition (0–10)3
Interior Boreal	Yes	-	Yellow salsify has increased in abundance along the slopes in
Arctic Alpine	No	No	Turnagain Arm. High densities of plants likely inhibit growth
Tragopogon dubius has been collected along	Turnagain	Arm	and recruitment of native forbs and grasses (M. Shephard pers.
in the interior boreal ecogeographic region (AKEPIC 2	2004,	obs.).
UAM 2004). The range of the species includ	es Portland	l, Oregon	Impact on Higher Trophic Levels (0–10) 7
and Vancouver, British Columbia (Pojar and	l MacKinn	on	Yellow salsify is unpalatable to grazing animals. It is attractive
1994), which have 41% and 40% climatic ma			to native pollinators in the continental U.S., therefore, may alter
respectively (CLIMEX 1999). It withstands	winter ten	peratures	pollination ecology of native species in Alaska (M.L. Carlson
to -28 °F and requires 160 frost-free days (U		*	pers. obs.)
Juneau typically has 165 frost-free days, and	,		Total for Ecological Impact20/40
temperatures reach -22 °F (WRCC 2001). T			
likely to establish in the south coastal region	of Alaska.		
Climatic similarity between Nome and area	s where the	e species is	
documented is relatively low. This suggests t	hat establi	shment in	
the arctic alpine region of Alaska may be not	possible.		

Yellow salsify reproduces by seed only. Plants may produce as many as 500 seeds (Royer and Dickinson 1999).Yellow salsify is a weed of cultivated crop (Rutledge and McLendon 1999).Long-distance dispersal (0-3)3The seeds are wind dispersed with a pappus of hairs that promote long-distance dispersal (Royer and Dickinson 1999).Spread by humans (0-3)Spread by humans (0-3)2Yellow salsify is a potential seed contaminant (USDA, ARS 2004).2Xonopetitive Ability (0-2)0It is not listed as allelophathic (USDA 2002).0Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient.1Thicket-forming/Smothering growth form (0-2)0Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.).3Germination requirements (0-3)3	3
Yellow salsify reproduces by seed only. Plants may produce as many as 500 seeds (Royer and Dickinson 1999).Yellow salsify is a weed of cultivated crop (Rutledge and McLendon 1999).Long-distance dispersal (0-3)3The seeds are wind dispersed with a pappus of hairs that promote long-distance dispersal (Royer and Dickinson 1999).Known level of impact in natural areas (0-6)Spread by humans (0-3)2Yellow salsify is a potential seed contaminant (USDA, ARS 2004).2Allelopathic (0-2)0It is not listed as allelophathic (USDA 2002).0Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient.1Thicket forming/Smothering growth form (0-2) Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.).3Germination requirements (0-3)3Seedlings of yellow salsify emerge and survive in different types of weatatize cover including thick ctands (Groes and Warnar3State or provincial listing (0-5)5	3 3
 many as 500 seeds (Royer and Dickinson 1999). Long-distance dispersal (0–3) The seeds are wind dispersed with a pappus of hairs that promote long-distance dispersal (Royer and Dickinson 1999). Spread by humans (0–3) Spread by humans (0–3) Yellow salsify is a potential seed contaminant (USDA, ARS 2004). Allelopathic (0–2) Competitive Ability (0–3) Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996). It can establish in relatively high population densities in intact to moderately grazed prairies in Oregon (M.L. Carlson pers. obs.). Role of anthropogenic and natural disturbance in establishment (0–5) Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996). It readily established in grazed prairies. Steep store and nutrient. Thicket-forming/Smothering growth form (0–2) Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) Seedlings of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of yellow salsify emerge and survive in different types of	3
Long-distance dispersal (0–3) 3 The seeds are wind dispersed with a pappus of hairs that promote long-distance dispersal (Royer and Dickinson 1999). Spread by humans (0–3) 2 Yellow salsify is a potential seed contaminant (USDA, ARS 2004). Allelopathic (0–2) 0 It is not listed as allelophathic (USDA 2002). Competitive Ability (0–3) 1 Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient. Thicket-forming/Smothering growth form (0–2) 0 Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different Type stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different Type states or provincial listing (0–5) Server to the species U.S. range and/or occurrence of formal state or provincial listing (0–5)	3
The seeds are wind dispersed with a pappus of hairs that promote long-distance dispersal (Royer and Dickinson 1999).Yellow salsify has been found in areas disturbed in the last decade. It does not appear to have a perceivable impact on natural plant communities (Rutledge and McLendon 1996). It can establish in relatively high population densities in intact to moderately grazed prairies in Oregon (M.L. Carlson pers. obs.).Neleoyability (0-2)0It is not listed as allelophathic (USDA 2002).0Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient.1Thicket-forming/Smothering growth form (0-2)0Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.).0Germination requirements (0-3)3Seedlings of yellow salsify emerge and survive in different types of verzet tive cover including thick stande (Groes and Warner3Server table of yellow salsify emerge and survive in different types of verzet tive cover including thick stande (Groes and Warner3	3
long-distance dispersal (Royer and Dickinson 1999).Spread by humans (0-3)2Yellow salsify is a potential seed contaminant (USDA, ARS2004).Allelopathic (0-2)OIt is not listed as allelophathic (USDA 2002).Competitive Ability (0-3)Yellow salsify is not an aggressive weed (Rutledge and McLendon1996); however, it likely competes moderately with native speciesfor moisture and nutrient.Thicket-forming/Smothering growth form (0-2)Dickinson 1999, Whitson et al. 2000), it does not form densestands or thickets (I. Lapina pers, obs.).Germination requirements (0-3)Seedlings of yellow salsify emerge and survive in different typesof vargetative cover including thick stands (Gross and Warner	3 1
Spread by humans (0-3)2Yellow salsify is a potential seed contaminant (USDA, ARS2004).Allelopathic (0-2)0It is not listed as allelophathic (USDA 2002).Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon1996); however, it likely competes moderately with native speciesfor moisture and nutrient.Thicket-forming/Smothering growth form (0-2)0Although yellow salsify can grow to 3 feet tall (Royer andDickinson 1999, Whitson et al. 2000), it does not form densestands or thickets (I. Lapina pers. obs.).3Germination requirements (0-3)3Seedlings of yellow salsify emerge and survive in different types3Sorreatative cover including thick stande (Gross and Warner3	3 1
Yellow salsify is a potential seed contaminant (USDA, ARS 2004).Can establish in relatively high population densities in intact to moderately grazed prairies in Oregon (M.L. Carlson pers. obs.)Allelopathic (0-2)0It is not listed as allelophathic (USDA 2002).0Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient.1Thicket-forming/Smothering growth form (0-2)0Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.).0Germination requirements (0-3)3Seedlings of yellow salsify emerge and survive in different types of vacetative cover including thick stands (Groes and Warner3Seedlings of yellow salsify merge and survive in different types of vacetative cover including thick stands (Groes and Warner3	3 1
2004).Allelopathic (0-2)Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon1996); however, it likely competes moderately with native speciesfor moisture and nutrient.Thicket-forming/Smothering growth form (0-2)Dickinson 1999, Whitson et al. 2000), it does not form densestands or thickets (I. Lapina pers. obs.).Germination requirements (0-3)Seedlings of yellow salsify emerge and survive in different typesof wagetative cover including thick stande (Gross and Warnar	3 1
Allelopathic (0-2)0It is not listed as allelophathic (USDA 2002).Role of anthropogenic and natural disturbance inCompetitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendonYellow salsify generally occurs on disturbed sites (Rutledge and1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesKole of anthropogenic and natural disturbance in1996); however, it likely competes moderately with native speciesCompetitive species1000; however, it likely competes moderately with native speciesCompetitive species1000; however, it likely competes moderately with native speciesCompetitive species1000; however, it likely competes moderately with and speciesCompetitive species1000; however, it likely competes moderately with antipee speciesCompetitive species	3 1
It is not listed as allelophathic (USDA 2002). Competitive Ability (0–3) 1 Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient. Thicket-forming/Smothering growth form (0–2) 0 Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of waretative cover, including thick stands (Gross and Warnar	ł
Competitive Ability (0-3)1Yellow salsify is not an aggressive weed (Rutledge and McLendon1996); however, it likely competes moderately with native speciesfor moisture and nutrient.Thicket-forming/Smothering growth form (0-2)0Although yellow salsify can grow to 3 feet tall (Royer andDickinson 1999, Whitson et al. 2000), it does not form densestands or thickets (I. Lapina pers. obs.).Germination requirements (0-3)3Seedlings of yellow salsify emerge and survive in different types3of waretative cover including thick stands (Gross and Warnar)3	
Yellow salsify is not an aggressive weed (Rutledge and McLendon 1996); however, it likely competes moderately with native species for moisture and nutrient. Thicket-forming/Smothering growth form (0–2) 0 Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of vagetative cover including thick stands (Gross and Werner	
 1996); however, it likely competes moderately with native species for moisture and nutrient. Thicket-forming/Smothering growth form (0–2) Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) Seedlings of yellow salsify emerge and survive in different types of vacetative cover including thick stands (Gross and Werner) McLendon 1996). It readily established in grazed prairies. Steel slopes and slides are also susceptible to invasion (M.L. Carlson pers. obs.). Current global distribution (0–5) Native range of yellow salsify includes mid and southern Europ and temperate Asia. It is now established over much of temperate North America (USDA, ARS 2004). Extent of the species U.S. range and/or occurrence of formal state or provincial listing (0–5) 	
for moisture and nutrient. Thicket-forming/Smothering growth form (0–2) 0 Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of varetative cover including thick stands (Gross and Werner	5
Thicket-forming/Smothering growth form (0–2)0Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.).0Germination requirements (0–3)3Seedlings of yellow salsify emerge and survive in different types of vagetative cover including thick stands (Gross and Werner3	
Although yellow salsify can grow to 3 feet tall (Royer and Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of vagetative cover including thick stands (Gross and Werner	
Dickinson 1999, Whitson et al. 2000), it does not form dense stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of væretative cover including thick stands (Gross and Werner	3
stands or thickets (I. Lapina pers. obs.). Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of vagetative cover including thick stands (Gross and Werner	e
Germination requirements (0–3) 3 Seedlings of yellow salsify emerge and survive in different types of vagetative cover, including thick stands (Cross and Werner	te
Seedlings of yellow salsify emerge and survive in different types of vergetative cover including thick stands (Cross and Werner	
formal state or provincial listing (0–5)	5
Tenow saisily occurs in hearly an states of the Officer States	
(USD A 2002) This spacies is considered an investive wood in	
1 1 1 1 1 1 1 1 1 1	0
Total for Ecological Amplitude and Distribution 16/29	/
America. Tragopogon porriginus and 1. pratensis are considered Eessibility of Control Score	
to be weedy (Stebbins 1993). 1. pratensis hybridizes with other $See d banks (0-3)$)
species creating aggressive weedy hybrids <i>T.</i> × <i>crantzii</i> Dichlt. Seed longevity for yellow salsify is very short. Generally seeds	
[$dubius \times pratensis$] and $T. \times neohybridus$ Farw. [$porrifolius \times$] germinate the next year after dispersal (Chepil 1946).	
$I_{\rm matural}$ (LICDA NIDCC 2006 $O_{\rm max}$ = 1060))
Aquatic, wetland or riparian species (0–3) 0 Vellow salsify does not resprout after removal of aboveground	
Yellow salsify is a common weed of cultivated crops, roadsides, growth (USDA 2002).	
Landa sector sector (Densering J D) shipsing 1000 Destinder and	3
McLendon 1996) and not of riparian areas or wetlands. Multiple years of management (hand pulling) of infestation alo	-
Total for Biological Characteristics and Dispersal 11/25 Turnagain Arm have been unsuccessful (M. Shephard pers. obs	~
J. Snyder pers. obs.).	
Total for Feasibility of Control 3/10	5.,
Total score for 4 sections 50/10	

\$

Trifolium hybridum L.

Ranking Summ	3 # W	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		Yes
	Potential Max.	Score
Ecological Impact	40	22
Biological Characteristics and Dispersal	25	12
Amplitude and Distribution	25	18
Feasibility of Control	10	5
Relative Maximum		57
Climatic Compa	rison	
-	Collected in	CLIMEX
	Alaska regions?	similarity?
South Coastal	Yes	_
Interior Boreal	Yes	-
Arctic Alpine	Yes	-
Alsike clover has been collected in the so	outh coastal, int	terior
boreal, and arctic alpine ecogeographic	regions of Alask	ta (Hultén
1968, UAM 2004).		
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		7
Alsike clover alters edaphic conditions c	lue to nitrogen i	fixation
(USDA 2002) and may retard natural su	ccession (Rutle	edge and
McLendon 1996).		-
Impact on Natural Community Structure	e (0–10)	7
Alsike clover establishes in an existing la		he density
of the layer, and reduces the cover of gra	minoids and lov	w forbs
(I. Lapina pers obs.).		
Impact on Natural Community Composi	tion (0–10)	5
Alsike clover forms dominant stands and	d may delay esta	ablishment
of native species (Rutledge and McLend	lon 1996).	
Impact on Higher Trophic Levels (0–10)	,	3
Alsike clover is highly palatable to grazin	ng animals (US	DA 2002).
This species serves as a host for multiple		
ARS 2004).		,
Total for Ecological Impact		22/40
Biological Characteristics and	Dispersal	Score
Mode of Reproduction (0–3)	•	1
Alsike clover reproduces only by abunda	ant seed (USDA	, NRCS
2001).		
Long-distance dispersal (0–3)		2
Alsike clover has no innate adaptations f	for long-distanc	e
dispersal; however, it does appear to mo		
occasionally (I. Lapina pers. obs.).	0	
Spread by humans $(0-3)$		3
It is a widely cultivated forage and cover	crop. Additiona	-
seeded along roadsides and banks for er		
(Densmore et al. 2001, Kubanis 1982).		
Allelopathic $(0-2)$		0
This species is not allelopathic (USDA 2	002)	U
Competitive Ability $(0-3)$		1
Alsike clover is moderately competitive	for limiting fact	-
persists in disturbed areas even when ov		
	cropped and s	liaucu Dy
native species (Densmore et al. 2001).	m(0,2)	0
Thicket-forming/Smothering growth form		0 other
The plant is $6-20$ inches tall and usually	uoes not snade	other
vegetation (Welsh 1974).		

common names: alsike clover

Germination requirements $(0-3)$	2
The seeds of alsike clover do not germinate until the seed	
sufficiently scarified. They germinate readily when tempe	
rises to 25 °C (Rutledge and McLendon 1996). Alsike clo	ver can
germinate in vegetated areas (Densmore et al. 2001).	
Other invasive species in the genus $(0-3)$	3
Trifolium repens L. T. angustifolium L., T. arvense L., T. aur	
L., T. campestre Schreb., T. dubium Sibth., T. hirtum All., T	•
incarnatum L., T. pratense L., and T. subterraneum.	
Aquatic, wetland or riparian species $(0-3)$	0
Alsike clover is a weed of lawns, roadsides, and disturbed	sites
(Hultén 1968).	
Total for Biological Characteristics and Dispersal	12/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	4
Alsike clover has been planted for lawns and revegetation	on
disturbed areas (Kubanis 1982). It has often escaped from	1 I
cultivation (Hultén 1968, Welsh 1974).	
Known level of impact in natural areas $(0-6)$	1
Alsike clover is found only on disturbed sites in Alaska	
(Densmore et al. 2001). In Colorado it is found in degrade	ed
native habitats, disturbed in the last 11–50 years (Rutledg	
McLendon 1996).	,
Role of anthropogenic and natural disturbance in	3
establishment (0–5)	
In Alaska alsike clover is observed only in disturbed sites	
(Densmore et al. 2001). It has been found in areas with na	tural
disturbances, such as terraces and banks along glacial rive	
streams (M. Shephard pers. obs.).	
Current global distribution (0–5)	5
Alsike clover is native to Europe, Western Asia, and north	-
Africa. It has been introduced and naturalized throughou	I
temperate and subarctic regions of both hemispheres (Hu	I
1968).	
Extent of the species U.S. range and/or occurrence of	5
formal state or provincial listing $(0-5)$	5
Alsike clover is known from all continental states, except	Texas
(USDA 2002).	ICAdo
Total for Ecological Amplitude and Distribution	18/23
Feasibility of Control	Score
Seed banks (0–3)	2
Some seeds of alsike clover are viable after 3 years of buria	l in the
soil (Rutledge and McLendon 1996).	
Vegetative regeneration (0–3)	0
Alsike clover has no resprouting ability (USDA 2002).	Ŭ
Level of effort required $(0-4)$	3
Eradication of alsike clover is nearly impossible from sites	
(Densmore et al. 2002). However, it is quite sensitive to he	I
and seed viability is not particularly long (J. Conn pers. of	
Total for Feasibility of Control	5/10
Total score for 4 sections	57/100
8	

Trifolium pratense L.

Ranking Summ	ary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine	D ((11)	Yes
Carlania I Inc. at	Potential Max.	Score
Ecological Impact Biological Characteristics and Dispersal	40 25	16 12
Amplitude and Distribution	23 25	12
Feasibility of Control	10	7
Relative Maximum	10	53
Climatic Compar	rison	
*	Collected in	CLIMEX
	Alaska regions?	similarity
South Coastal	Yes	-
Interior Boreal	Yes	-
Arctic Alpine	No	Yes
Trifolium pratense is documented in the s		
boreal ecogeographic regions of Alaska (
1974, AKEPIC 2005, UAM 2004). The		0
program indicates the climatic similarity		
alpine ecogeographic region of Alaska an		0
of <i>Trifolium pratense</i> are moderately high	0	
ncludes Røros and Dombås, Norway (M		
Lid and Lid 1994), which have a 76% and		
with Nome. Thus establishment of red cl	over in the arct	ic alpine
ecogeographic region is likely.		
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)	<u> </u>	5
Red clover increases soil nitrogen levels	by twing atmos	nharic
nitrogen (USDA NPCS 2006) The alte		
nitrogen (USDA, NRCS 2006). The alte	ration of soil co	onditions
may delay establishment of native specie	ration of soil co s (Rutledge and	onditions d
may delay establishment of native specie McLendon 1996) and facilitate coloniza	ration of soil co s (Rutledge and	onditions d
may delay establishment of native specie McLendon 1996) and facilitate coloniza species.	ration of soil co s (Rutledge and tion by other ex	onditions d xotic plant
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure	ration of soil co s (Rutledge and tion by other es (0–10)	onditions d xotic plant 3
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. I mpact on Natural Community Structure Red clover is capable of creating very der	ration of soil co s (Rutledge and tion by other es (0–10) ase stands (Get	onditions d xotic plant 3 tle et al.
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get	ration of soil co s (Rutledge and tion by other ex (0–10) nse stands (Get tle et al. 1996b,	onditions d xotic plant 3 tle et al. Hofmanr
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th	ration of soil co s (Rutledge and tion by other es (0–10) use stands (Get tle et al. 1996b, ne structure of t	nditions d xotic plant 3 tle et al. . Hofmann :he layer.
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re	ration of soil co s (Rutledge and tion by other es (0–10) use stands (Get tle et al. 1996b, ne structure of t	nditions d xotic plant 3 tle et al. . Hofmann :he layer.
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a).	ration of soil co s (Rutledge and tion by other es (0–10) nse stands (Get tle et al. 1996b, ne structure of t corded in field	nditions d xotic plant 3 tle et al. Hofmanr the layer. study
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi	ration of soil cc s (Rutledge and tion by other ex (0–10) nse stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10)	nditions d xotic plant 3 tle et al. Hofmanr the layer. study 3
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. (mpact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). (mpact on Natural Community Composi Red clover reduces the number of individ	ration of soil co s (Rutledge and tion by other er (0–10) use stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10) duals of native s	nditions d xotic plant 3 tle et al. Hofmanr the layer. study 3 species in
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivis- the community (Gettle et al. 1996a). De	ration of soil co s (Rutledge and tion by other ex- (0–10) use stands (Get tle et al. 1996b, the structure of t corded in field tion (0–10) duals of native s	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre	ration of soil co s (Rutledge and tion by other ex- (0–10) use stands (Get tle et al. 1996b, the structure of t corded in field tion (0–10) duals of native s	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a).	ration of soil co s (Rutledge and tion by other ex- (0–10) use stands (Get tle et al. 1996b, the structure of t corded in field tion (0–10) duals of native s	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased trass
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10)	ration of soil co s (Rutledge and tion by other ex- (0–10) nse stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10) duals of native s nsity of grasses ased in switchg	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased trass 5
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of individ- the community (Gettle et al. 1996a). De- as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove	ration of soil co s (Rutledge and tion by other ex- (0–10) nse stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10) duals of native s ased in switchg r in California.	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased grass 5 The
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De- as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beau	ration of soil co s (Rutledge and tion by other er (0–10) use stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10) duals of native s nsity of grasses ased in switchg r in California. ver, woodchuck	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased trass 5 The t, muskrat,
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De- as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S	ration of soil co s (Rutledge and tion by other er (0–10) use stands (Get tle et al. 1996b, he structure of t corded in field tion (0–10) duals of native s ased in switchg r in California. ver, woodchuck Seeds are eaten	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased grass 5 The c, muskrat, by crow,
may delay establishment of native specie McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De- as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S	ration of soil co s (Rutledge and tion by other er (0–10) hse stands (Get tle et al. 1996b, he structure of t corded in field tion (0–10) duals of native s hsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clo	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased grass 5 The c, muskrat, by crow, over is
may delay establishment of native species McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S horned lark, and ruffed and sharp-tailed visited by bumblebees and sometimes by	ration of soil co s (Rutledge and tion by other er (0–10) hse stands (Get tle et al. 1996b, he structure of t corded in field tion (0–10) duals of native s hsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clo	nnditions d kotic plant 3 tle et al. Hofmann the layer. study 3 species in decreased grass 5 The c, muskrat, by crow, over is
may delay establishment of native species McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S horned lark, and ruffed and sharp-tailed visited by bumblebees and sometimes by (Graham 1941).	ration of soil co s (Rutledge and tion by other er (0–10) hse stands (Get tle et al. 1996b, he structure of t corded in field tion (0–10) duals of native s hsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clo	nditions d kotic plant 3 tle et al. Hofmann the layer. study 3 species in decreased grass 5 The c, muskrat, by crow, over is oneybees
may delay establishment of native species McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S horned lark, and ruffed and sharp-tailed visited by bumblebees and sometimes by (Graham 1941). Total for Ecological Impact	ration of soil co s (Rutledge and tion by other ex- (0–10) use stands (Get tle et al. 1996b, te structure of t corded in field tion (0–10) duals of native s nsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clov introduced ho	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased grass 5 The c, muskrat, by crow, over is
may delay establishment of native species McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove leaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S horned lark, and ruffed and sharp-tailed visited by bumblebees and sometimes by (Graham 1941). Total for Ecological Impact Biological Characteristics and I	ration of soil co s (Rutledge and tion by other ex- (0–10) use stands (Get tle et al. 1996b, te structure of t corded in field tion (0–10) duals of native s nsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clov introduced ho	nditions d kotic plant 3 tle et al. Hofmann the layer. study 3 species in decreased trass 5 The t, muskrat, by crow, over is oneybees 16/40
may delay establishment of native species McLendon 1996) and facilitate coloniza species. Impact on Natural Community Structure Red clover is capable of creating very der 1996a). It produces a large biomass (Get and Isselstein 2004), which influences th Density of up to 632 stems per m ² was re (Gettle et al. 1996a). Impact on Natural Community Composi Red clover reduces the number of indivi- the community (Gettle et al. 1996a). De as density of established red clover incre communities (Gettle et al. 1996a). Impact on Higher Trophic Levels (0–10) Moose and mule deer graze on red clove eaves of red clover are also eaten by beav meadow mice, and sharp-tailed grouse. S norned lark, and ruffed and sharp-tailed visited by bumblebees and sometimes by (Graham 1941). Total for Ecological Impact	ration of soil co s (Rutledge and tion by other ex- (0–10) nse stands (Get tle et al. 1996b, ne structure of t corded in field tion (0–10) duals of native s nsity of grasses ased in switchg r in California. ver, woodchuck Seeds are eaten grouse. Red clo vintroduced ho	nditions d kotic plant 3 tle et al. Hofmanr the layer. study 3 species in decreased trass 5 The t, muskrat, by crow, over is oneybees <u>16/40</u> Score 1

common names: red clover

Long-distance dispersal (0–3) Seeds of red clover are large and do not have a specific ac	U laptation
for long-distance dispersal.	
Spread by humans $(0-3)$	2
Red clover escaped cultivation (Rutledge and McLendo	n 1996,
Welsh 1974). The seeds of red clover are commercially av	vailable.
It has been planted for trials in Alaska (Panciera et al. 19	
Sparrow et al. 1993).	, -)
Allelopathic (0–2)	0
Red clover is not allelopathic (USDA, NRCS 2006).	U U
Competitive Ability $(0-3)$	3
Red clover is capable of outcompeting exotic and native	grasses
(Gettle et al. 1996a, Hofmann and Isselstein 2004). Red	e
has the ability to fix nitrogen (USDA, NRCS 2006). The	
establishment success of red clover seedlings in existing	0
was obtained in field experiments (see Gettle et al. 1996)	
Resources of the large seeds apparently allow seedlings t	
periods of establishment in deep shade of existing vegeta	
(Hofmann and Isselstein 2004). Once red clover has est	
it competes with neighboring grasses (Gettle et al. 1996a	a).
Thicket-forming/Smothering growth form $(0-2)$	0
In seeded fields red clover can reach a density of 632 plan	*
m^2 (Gettle et al. 1996a). Red clover has not been observe	ed at high
densities in noncultivated sites in Alaska (I. Lapina pers.	obs.).
Germination requirements (0–3)	3
Red clover can germinate and establish in existing sware	ls
(Gettle et al. 1996b, Hofmann and Isselstein 2004); how	vever,
mechanical disturbances that provide gaps in existing ve	getation
create favorable conditions for the establishment of red o	0
(Hofmann and Isselstein 2004).	
Other invasive species in the genus $(0-3)$	3
Trifolium arvense L., T. campestre Schreb., T. incarnatum	L., and
T. repens L. (USDA, NRCS 2006).	
Aquatic, wetland or riparian species $(0-3)$	0
Red clover is often planted as a forage crop, it escapes and	d
establishes on roadsides, clearcuts, lawns, gardens, and n	
(Rutledge and McLendon 1996, Welsh 1974).	
Total for Biological Characteristics and Dispersal	12/23
Total for Biological Characteristics and Dispersal Ecological Amplitude and Distribution	-
Ecological Amplitude and Distribution	<u>12/23</u> Score 4
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4)	Score 4
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a	Score 4 nd forage
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several	Score 4 nd forage varieties
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of	Score 4 nd forage varieties cultivated
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934)	Score 4 nd forage varieties cultivated
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6)	Score 4 nd forage varieties cultivated). 1
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first c in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact	Score 4 nd forage varieties cultivated). 1 on
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled	Score 4 nd forage varieties cultivated). 1 on
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996).	Score 4 nd forage varieties cultivated). 1 on ge and
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in	Score 4 nd forage varieties cultivated). 1 on
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5)	Score 4 nd forage varieties cultivated). 1 on ge and 3
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934 Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutledy McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture	Score 4 nd forage varieties cultivated). 1 on ge and 3
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutledg McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz	Score 4 nd forage varieties cultivated). 1 on ge and 3 es
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishment	Score 4 nd forage varieties cultivated). 1 on ge and 3 es
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishr (Guretzky et al. 2004, Hofmann and Isselstein 2004). It	Score 4 nd forage varieties cultivated). 1 on ge and 3 es cing nent has
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishm (Guretzky et al. 2004, Hofmann and Isselstein 2004). It been found in sites disturbed in the last 11–50 years in R	Score 4 nd forage varieties cultivated). 1 on ge and 3 es
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishr (Guretzky et al. 2004, Hofmann and Isselstein 2004). It	Score 4 nd forage varieties cultivated). 1 on ge and 3 es
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934) Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutled McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishm (Guretzky et al. 2004, Hofmann and Isselstein 2004). It been found in sites disturbed in the last 11–50 years in R	Score 4 nd forage varieties cultivated). 1 on ge and 3 es
Ecological Amplitude and Distribution Highly domesticated or a weed of agriculture (0–4) Red clover is widely planted as a component of pasture a mixes. It is recommended for soil improvement. Several have been developed (USDA, NRCS 2006). It was first of in northern Europe around 1650 (Merkenschlager 1934 Known level of impact in natural areas (0–6) Red clover does not appear to have a perceivable impact habitats within Rocky Mountain National Park (Rutledy McLendon 1996). Role of anthropogenic and natural disturbance in establishment (0–5) If seeded, red clover can successfully establish in pasture (Gettle et al. 1996a, b). Soil disturbances, cutting or graz of competitive vegetation increases the rate of establishir (Guretzky et al. 2004, Hofmann and Isselstein 2004). It been found in sites disturbed in the last 11–50 years in R Mountain National Park (Rutledge and McLendon 1996)	Score 4 nd forage varieties cultivated). 1 on ge and 3 es

Current global distribution (0–5) 3	Feasibility of Control Score
Red clover is native to Southeastern Europe and Asia Minor.	Seed banks (0–3) 3
Today its distribution includes Europe, Southwest Asia, Africa,	The seeds of red clover remain viable in the soil for 3–5 years
and North America (Hultén 1968). Red clover has not been	(Duvel 1904, Dorph-Petersen 1925). A low survival rate was
documented in the Arctic (Markenschlager 1934, Lid and Lid	recorded for seeds stored in undisturbed soil for a period of 20
1994, Gubanov et al. 2003).	(Lewis 1973) and even 30 years (Toole 1946).
Extent of the species U.S. range and/or occurrence of 5	Vegetative regeneration $(0-3)$ 2
formal state or provincial listing $(0-5)$	Varieties of red clover are adapted to be grazed or cut for hay and
Red clover can be found throughout the United States and	able to resprout (Densmore et al. 2001, USDA, NRCS 2006).
Canada (USDA, NRCS 2006). This species is not considered	Level of effort required (0–4) 2
invasive in North America (Rice 2006).	Red clover can be controlled by mechanical methods (Densmore
Total for Ecological Amplitude and Distribution 16/25	et al. 2001). It appears to be resistant to some chemicals (Rutledge
	and McLendon 1996).
	Total for Feasibility of Control 7/10
	Total score for 4 sections51/97
	S

Trifolium repens L.

common names: white clover, ladino clover, Dutch clover

Ranking Summa	ry		Impact on Higher Trophic Levels (0–10) 5
Ecoregion known or expected to occur			White clover produces cyanogenic glycosides that are poisonous
South Coastal		Yes	to cattle and other herbivores (Ennos 1981). It is an alternate host
Interior Boreal		Yes	for alfalfa mosaic and pea mottle viruses (Royer and Dickinson
Arctic Alpine		Yes	1999). White clover potentially alters the pollination ecology
_	Potential Max.	Score	of ecological communities (M. Carlson pers. obs., J. Snyder prs.
Ecological Impact	40	22	obs.).
Biological Characteristics and Dispersal	25	15	Total for Ecological Impact 22/40
Amplitude and Distribution	25	14	Biological Characteristics and Dispersal Score
Feasibility of Control	10	8	Mode of Reproduction (0–3) 3
Relative Maximum		59	White clover reproduces by seeds and creeping stems that root
Climatic Comparis			at nodes (Royer and Dickinson 1999). It is an extremely mobile
	Collected in	CLIMEX	species by spreading rhizomes (Thórhallsdóttir 1999). It has high
	laska regions?	similarity?	
South Coastal	Yes	-	seeds abundance (Rutledge and McLendon 1996). Long-distance dispersal (0–3) 2
Interior Boreal	Yes	-	
Arctic Alpine	Yes	-	Most seed likely is spread incidentally by the movement of
<i>Trifolium repens</i> has been collected in the s			animals and humans (Rutledge and McLendon 1996). However,
boreal, and arctic alpine ecogeographic re	gions of Alasl	ka (Hultén	the plant does not have any adaptations for long-distance
1968, AKEPIC 2004, UAM 2004).			dispersal.
Ecological Impact		Score	Spread by humans (0–3) 3
Impact on Ecosystem Processes (0–10)		7	White clover is seeded for revegetation on roadsides and other
White clover alters edaphic conditions du			disturbed areas (Densmore et al. 2001). It has been found carried
(USDA 2002). This plant may alter succes			on motor vehicles (Hodkinson and Thompson 1997).
establishment of native species (Rutledge		,	Allelopathic (0–2) 0
However, it is primarily associated with an	~ ~		There are no records for allelopathic effects for this species,
altered communities in Alaska (M.L. Car			despite a large volume of literature.
Impact on Natural Community Structure (7	Competitive Ability (0–3) 2
White clover creates a nearly monospecifi			Its establishment by seed and rhizome fragments is significantly
forb layer, eliminating graminoids and oth			reduced by the presence of graminoid and forb competitors
species (I. Lapina pers. obs.). Trifolium rep	ens occupies	the same	(Turkington et al. 1979), but it is able to invade particular
fundamental niche space as many grasses	and dicotyled	lonous	graminoid stands (Thórhallsdóttir 1999). The species has an
herbs and is in direct competition with the	ese species (T	urkington	intermediate level of nitrogen-fixing ability (USDA 2002).
et al. 1979)		0	Thicket-forming/Smothering growth form $(0-2)$ 1
Impact on Natural Community Compositi	on (0–10)	3	White clover forms dense, low stands due to its rhizomatous
White clover may delay the establishment		cies	growth, but does not overtop taller vegetation (I. Lapina pers.
(Rutledge and McLendon 1996). It appea			obs.).
of native species along roadsides and trail			
(M.L. Carlson pers. obs.)			
(111.12. Ourison pers. 003.)			

Current global distribution $(0-5)$ 5
Current global distribution (0–5) 5 White clover is native to Europe and Asia. It has been introduced
to North and southern Africa, North and South America, New
Zealand, Australia, Tasmania, and India (Hultén 1968). It is often
found north of the Arctic Circle (Royer and Dickinson 1999).
Extent of the species U.S. range and/or occurrence of 4
formal state or provincial listing $(0-5)$
White clover occurs in nearly all states of the United States. It is
listed as a weed in Kentucky (USDA 2002).
Total for Ecological Amplitude and Distribution 14/25
Feasibility of ControlScore
Seed banks (0–3) 3
Seeds of white clover remain viable in the soil over 30 years
(Rutledge and McLendon 1996).
Vegetative regeneration (0–3) 2
Grazing promotes resprouting of white clover (Rutledge and
McLendon 1996).
Level of effort required (0–4) 3
It is virtually impossible to eradicate white clover from invaded
sites (Densmore et al. 2001). Herbicides can be used to control
white clover (Rutledge and McLendon 1996).
Total for Feasibility of Control 8/10
Total score for 4 sections59/100
S

Tripleurospermum perforata (Merat) M. Lainz

common names: scentless false mayweed, scentless chamomile

Ranking Summ	ary		Impact on Natural Community Structure (0–10) 3	
Ecoregion known or expected to occur in			Dense stands of scentless false mayweed in prairies have been	
South Coastal		Yes	reported (CWMA 2000, NAPPO 2003, Parchoma 2004). This	
Interior Boreal		Yes	plant has not been observed in dense stands in Alaska, but it does	
Arctic Alpine		Yes	increase the density of the early successional herbaceous layer	
	Potential Max.	Score	(I. Lapina pers. obs.).	
Ecological Impact	40	13	Impact on Natural Community Composition (0–10) 3	
Biological Characteristics and Dispersal	23	13	Spring-emergent seedlings can form very dense stands, reducing	
Amplitude and Distribution	25	15		
Feasibility of Control	10	6	the growth of seedlings of other species (NAPPO 2003).	
Relative Maximum		48	Impact on Higher Trophic Levels (0–10) 4	
Climatic Compa	rison		Scentless false mayweed is unpalatable to animals and can form	
-	Collected in	CLIMEX		
	Alaska regions?	similarity?	of foraging sites (CWMA 2000, Parchoma 2004). The flowers	
South Coastal	Yes	-	attract bees and flies (Harris and McClay 2003) and may alter the	
Interior Boreal	Yes	-	pollination ecology of native communities.	
Arctic Alpine	Yes	-	Total for Ecological Impact 13/40	
Scentless false mayweed has been collect	ted in the south	coastal,	Biological Characteristics and Dispersal Score	
interior boreal, and arctic alpine ecogeo	graphic regions	of Alaska	Mode of Reproduction (0–3) 3	
(AKEPIC 2004, UAM 2004).			Scentless false mayweed reproduces entirely by copious amounts	
Ecological Impact		Score	of seed. A single plant can produce up to a million seeds, with	
Impact on Ecosystem Processes (0–10)		3	dense stands capable of producing 1,800,000 seeds per square	
Scentless false mayweed reduces soil mo	pisture and nutr	ients	meter (Harris and McClay 2003, Juras et al. 2004, NAPPO 2003,	
for other species. It likely causes retarda	her species. It likely causes retardation of successional Parchoma 2004).			
establishment of native species (NAPPO	0 2003).			

Long-distance dispersal (0–3) 2	Role of anthropogenic and natural disturbance in	1
The seeds are dispersed by flowing water, wind, and drifting snow	establishment $(0-5)$	
(Juras et al. 2004, Parchoma 2004). Up to 26% of seeds remained	Scentless false mayweed is often associated with disturbed	
viable in dung (NAPPO 2003, Rutledge and McLendon 1996).	habitats where there is little competition from established	
However, the species lacks morphological adaptations for long-	vegetation. Periodic disturbance by cultivation, livestock	
distance dispersal. There is no pappus on achenes.	trampling, or flooding promote establishment (Juras et al.	
Spread by humans (0–3) 3	2004). In Russia it is often associated with natural erosion al	ong
The seeds are easily dispersed by vehicles and as a contaminant in	streambanks (I. Lapina pers. obs.)	0
crop seed and hay (Juras et al. 2004, Parchoma 2004).	Current global distribution (0–5)	5
Allelopathic (0–2) U	Scentless false mayweed is native to northern and central Eu	rope.
Unknown	It is introduced into North America and Asia. (Juras et al. 20	004,
Competitive Ability (0–3) 0	NAPPO 2003).	
Scentless false mayweed readily establishes on disturbed sites, but	Extent of the species U.S. range and/or occurrence of	5
cannot compete with later successional forbs and grasses (Harris	formal state or provincial listing $(0-5)$	
and McClay 2003).	Scentless false mayweed is present in 26 northern states of th	ne
Thicket-forming/Smothering growth form $(0-2)$ 0	United States and in all Canadian provinces (Juras et al. 200)4,
Densities of 40 plants per square meter are common on crop fields	NAPPO 2003, USDA 2002). It is listed as noxious in Washir	
in Canada (Harris and McClay 2003). It is not observed creating	and Saskatchewan (Invader Database System 2003). It is	0
dense thickets in Alaska (I. Lapina pers. obs.).	considered a weed in Alberta, British Columbia, Manitoba, a	and
Germination requirements (0–3) 3	Quebec (Royer and Dickinson 1999).	
The seeds are able to germinate under a wide range of temperature		5/25
and moisture conditions. Germination is better under the canopy		core
than on open, barren soil (Juras et al. 2004).	Seed banks (0–3)	3
Other invasive species in the genus (0–3) 0 None.	The seeds remain viable in the soil for 10–15 years (Harris ar	nd
Aquatic, wetland or riparian species $(0-3)$ 2	McClay 2003, Juras et al. 2004, Rutledge and McLendon 199	96).
Scentless false mayweed is found along irrigation ditches,	Vegetative regeneration (0–3)	1
shorelines, streams, and pond edges, as well as roadsides,	Scentless false mayweed is reported to survive after removal	
perennial forage crops, pastures, lawns, gardens, and waste areas	aboveground growth (Juras et al. 2004).	_
(Gubanov et al. 1995, Juras et al. 2004, Parchoma 2004).	Level of effort required $(0-4)$	2
Total for Biological Characteristics and Dispersal 13/23	Scentless false mayweed tends to occupy recently disturbed	1
Ecological Amplitude and Distribution Score	sites and it does not persist without continued disturbance, t	
Highly domesticated or a weed of agriculture $(0-4)$ 4	control is seldom necessary (Harris and McClay 2003). How	
Scentless false mayweed is a one of the major weeds in wheat,	multiple weeding treatments across years may be necessary t	
lentil, mustard, and flax agriculture (Juras et al. 2004, Royer and	eliminate plants germinating from buried seeds. A combinat	
Dickinson 1999, Parchoma 2004).	of mowing, tillage, and hand weeding can be used for preven	
Known level of impact in natural areas (0–6) 0	introduction to new areas. This species tolerates many comm	non
Scentless false mayweed does not appear to have a perceivable	herbicides. Biological agents have been released in British	
impact on natural plant communities (Rutledge and McLendon	Columbia to control this species (Juras et al. 2004, Parchom	la
1996).	2004).	
		6/10 -7/98

\$

common names: common mullein, big taper, flannel mullein, flannel plant, great mullein, velvet dock, velvet plant, woolly mullein

Ranking Summ	ary	
Ecoregion known or expected to occu		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	20
Biological Characteristics and Dispersal	25	20
Amplitude and Distribution	25	16
	_	
Feasibility of Control	10	7
Relative Maximum		52
Climatic Compa		
	Collected in	CLIMEX
	Alaska regions?	
South Coastal	No	Yes
Interior Boreal	Yes	-
Arctic Alpine	No	No
Verbascum thapsus is grown in Anchorag	ge for horticultu	ıral
purposes. There have been reports of mi		
the Seward Highway west of Girdwood		
apparently has not persisted (M. Rasy p	L L	
		· .
com.). Verbascum thapsus is known from		way,
including Bergen (Lid and Lid 1994), wi		
climatic match (CLIMEX 1999) with Ju	aneau (south co	astal
ecogeographic region). It is likely to be a	able to establish	in this
region. According to Lid and Lid (1994)		
is rare in the coastal region of Norway. (~
6 1		
documented from high elevations in the		
province in Norway; this area has high s		
arctic alpine areas in Alaska (Lid and Li	d 1994, WRCC	2001).
However, according to the Gross and W	'erner (1978), tl	nis species
requires a growing season at least 140 da	avs. It is unlikel	v to
establish in the arctic alpine ecoregion.	1	/
Ecological Impact		Score
Impact on Ecosystem Processes (0–10)		5
Common mullein likely alters normal su	accessional nati	0
At high densities common mullein appe		
establishment of native herbs and grasse	es in burned or	disturbed
areas (Pitcairn 2000).		
Impact on Natural Community Structure	e (0–10)	5
Common mullein is likely to create a ne	w sparse herbad	ceous layer
(Hoshovsky 2000).	1	,
Impact on Natural Community Composi	ition $(0-10)$	5
Common mullein is not often a problem		-
areas; however, it can displace native spo	ectes in sparsely	vegetatec
meadows (Pitcairn 2000).		
Impact on Higher Trophic Levels (0–10)		5
Impact on Higher Trophic Levels (0–10)	Rutledge and M	-
Impact on Higher Trophic Levels (0–10)	-	cLendon
Impact on Higher Trophic Levels (0–10) Grazing animals avoid eating mullein (H 1996). Its flowers are visited by a numbe	er of insects. Co	cLendon mmon
Impact on Higher Trophic Levels (0–10) Grazing animals avoid eating mullein (H 1996). Its flowers are visited by a number mullein is also a host for numerous disea	er of insects. Co ases and insect	cLendon mmon pests.
Impact on Higher Trophic Levels (0–10) Grazing animals avoid eating mullein (H 1996). Its flowers are visited by a number mullein is also a host for numerous disea Hybridization is known within the genu	er of insects. Co ases and insect	cLendon mmon pests.
Impact on Higher Trophic Levels (0–10) Grazing animals avoid eating mullein (H 1996). Its flowers are visited by a numbe mullein is also a host for numerous disea	er of insects. Co ases and insect	cLendon mmon pests.

Biological Characteristics and Dispersal	Score
Mode of Reproduction (0–3)	3
Common mullein reproduces solely by seed. Seed produc	
can be 100,000–180,000 seeds per plant (Gross 1980, Gr	oss and
Werner 1982).	
Long-distance dispersal $(0-3)$	0
Seeds are not adapted to long-distance dispersal. Moveme	ent of
the stalk by wind or large animals can dispersed seeds as f	ar as 11
m (Gross and Werner 1978, Hoshovsky 1986).	
Spread by humans (0–3)	2
Common mullein was introduced into North America as	а
medicinal herb. It is often grown as an ornamental (Hosh	ovsky
1986, Gross and Werner 1978).	
Allelopathic (0–2)	0
This species is not known to be allelopathic (Gross and W	erner
1978).	
Competitive Ability (0–3)	0
Common mullein is easily outcompeted by native plants	
(Hoshovsky 1986, Pitcairn 2000).	
Thicket-forming/Smothering growth form $(0-2)$	1
Common mullein has been observed at densities of 5.2 flo	owering
plants/m ² in woodlands 2 years after timber harvest. Grou	ss and
Werner (1978) report densities of 1 plant/m ² and 0.17 pla	nt/m ² in
the 3 and 12 years old fields respectively. The stout flower	ing stem
in the second year of growth can be up to 6 feet tall (Whit	son et
al. 2000).	
Germination requirements (0–3)	0
Common mullein requires bare soil for successful establis	shment
and growth. In experiments in Ohio and Michigan, 50%	
emergence of seedlings took 9 days on bare soil, but 30 da	ys on
vegetated plots. Seedling growth rates were 4-7 times fas	
bare soils, producing 2,000 times more biomass within th	
time period (Gross 1984).	
Other invasive species in the genus $(0-3)$	3
Verbascum blattaria L. is considered a noxious weed in Co	olorado
(USDA 2002).	
Aquatic, wetland or riparian species (0–3)	0
Common mullein is a weed of pastures, abandoned fields,	and
roadsides (Gross and Werner 1978). It also is can be found	d in
meadows and river bottoms (Rutledge and McLendon 19	96).
Total for Biological Characteristics and Dispersal	9/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	2
Common mullein is not a weed of agricultural crops, as it	cannot
tolerate tilling (Gross and Werner 1978, Patcairn 2000). I	t is
often grown as an ornamental (Hoshovsky 1986, Gross an	
Werner 1978).	
Known level of impact in natural areas $(0-6)$	3
Common mullein can invade undisturbed meadows, disp	lacing
native herbs and grasses in California. It also is been obse	
establishing in burns in the Sierra Nevada Mountains. Hi	
densities of rosettes prevent colonization by native specie	
(Pitcairn 2000). Common mullein was reported as not be	
problem species in natural areas in Canada (White et al. 1	
Common mullein invades riverbanks in open coniferous	
British Colombia and Idaho border (J. Snyder pers. com.)	
Diffish Colombia and Idano border (J. Shyder pers. colli.)	•

Role of anthropogenic and natural disturbance in 3	Feasibility of Control Score
establishment (0–5)	Seed banks (0-3) 3
Common mullein is an initial colonist in newly disturbed sites	The seeds may remain viable for over 100 years (Kivilaan and
(Gross and Werner 1978, Pitcairn 2000). Seedling growth rates	Bandurski 1981), and viable seeds have been found in soil samples
were faster, producing more biomass within the same time period	archaeologically dated from A.D. 1300 (Ødum 1965, cited in
on bare soils relative to vegetated soils (Gross 1984). Seedlings	Gross and Werner 1978).
did not establish in small experimentally created openings, but	Vegetative regeneration (0–3) 1
they did colonize larger openings such as those created by animal	Plants will not die if cut above the root crown. This will cause
digging. Only in the open plots did plants survive and produce	increased growth of lateral branches, which will produce flowers
seeds (Gross 1980).	later (Gross and Werner 1978).
Current global distribution (0–5) 3	Level of effort required (0–4) 3
Common mullein occurs throughout Europe to 64°N in Norway,	Common mullein is difficult to control because of the large
east into Russia, and south to the Caucasus Mountains and to	number of seed and long lived seed bank. Hairs on the leaves
the western Himalayas. It also is occurs in Asia Minor and China	prevent herbicides from penetrating the leaf surface. Mechanical,
(Lid and Lid 1994, Gross and Werner 1978, Gubanov et al. 1995).	chemical and biological control methods can be used for common
Extent of the species U.S. range and/or occurrence of 5	mullein. Sowing sites with native grasses and forbs may decrease
formal state or provincial listing $(0-5)$	seed germination and the chance of successful establishment.
Common mullein occurs in nearly all of the United States	A weevil specific to common mullein was introduced to North
(USDA 2002). In Canada it occurs mainly in Ontario, Quebec,	America from Europe. The larvae destroy up to 50% of the
the eastern provinces, and British Columbia (Gross and Werner	seeds (Gross and Werner 1978, Hoshovsky 1986, Pitcairn 2000,
1978). Verbascum tapsus is a noxious weed in Colorado, Hawaii,	Rutledge and McLendon 1996).
and Manitoba (Royer and Dickinson 1999, USDA 2002).	Total for Feasibility of Control7/10
Total for Ecological Amplitude and Distribution 16/25	Total score for 4 sections52/100
	\$

Vicia cracca L.

common names: bird vetch, cow vetch

Ranking Summa	ry		Ecological Impact	Score
Ecoregion known or expected to occur	in		Impact on Ecosystem Processes (0–10)	7
South Coastal		Yes	Bird vetch alters edaphic conditions due to fixation of at	mospheric
Interior Boreal		Yes	nitrogen (USDA 2002).	
Arctic Alpine		Yes	Impact on Natural Community Structure (0–10)	7
	otential Max.	Score	Vicia cracca can form dense stands in Alaska. It can over	grow
Ecological Impact	40	27	herbaceous vegetation and climb over shrubs, such as al	der,
Biological Characteristics and Dispersal	25	16	willow, and spruce up to 2 m in height, forming a new he	
Amplitude and Distribution	25	21	layer (Lapina pers. obs.).	
Feasibility of Control	10	9	Impact on Natural Community Composition (0–10)	8
Relative Maximum		73	Bird vetch quickly overtops herbaceous and low-woody	
Climatic Compari			boreal forest edges in Alaska. No data is present, but nat	
	Collected in	CLIMEX	species certainly suffer from its presence (M.L. Carlson	-
	laska regions?	similarity?	Impact on Higher Trophic Levels (0–10)	5 pers obs.
South Coastal	Yes	-	Bird vetch is highly palatable to grazing and browsing ar	nimals
Interior Boreal	Yes	-	(USDA 2002). The seeds of bird vetch are toxic (Cornel	
Arctic Alpine	No	Yes	University: PPID). Flowers are visited by native bees and	
Vicia cracca has been collected in the south	-	,		
Ketchikan, and Unalaska] (UAM 2004) a			alter pollination ecology of the surrounding area (Aarss	en et al.
[Anchorage, Wasilla, Fairbanks, Rampart			1986, Klebesadel 1980, M.L. Carlson pers. obs.).	a- ///a
2003, Hultén 1968, UAM 2004), ecogeog	raphic regior	ns of	Total for Ecological Impact	27/40
Alaska. The climatic similarity between N	ome and area	as where	Biological Characteristics and Dispersal	Score
the species is documented has a moderate	match (CLII	MEX	Mode of Reproduction $(0-3)$	2
1999). There is a 77% similarity between 1			Bird vetch reproduces by seeds and also spreads vegetati	
Chirka-Kem', Russia, where the species of		,	growth of rhizomes (Aarssen et al. 1986, Klebesadel 198	30, Nolen
Additionally, the range of bird vetch inclu-	,	·	2002).	
Arkhangel'sk, Russia (Hultén 1968), whic			Long-distance dispersal (0–3)	2
			The seeds of bird vetch are large and not easily dispersed	
matches with Nome respectively. This suggests that establishment		pods explosively split open when it dries. Plant can sprea	ad when	
of bird vetch in arctic and alpine regions o	t Alaska may	be	tendrils and vine branches with seed pods cling to vecto	ors, are
possible.			broken off the plant, and carried to a new location (Dens	
			al. 2001).	

Spread by humans (0–3) 3	Role of anthropogenic and natural disturbance in 3
Bird vetch was first planted in Alaska in 1909. Later it was planted	establishment (0–5)
at the Fairbanks and Matanuska experiment stations where it	It establishes in disturbed grassy areas and along roadsides
was evaluated for forage (Klebesadel 1980). It can be introduced	(Nolen 2002). From these areas of disturbance bird vetch can
with topsoil (Densmore et al. 2001). Additionally, it can spread	invade habitats with moderate amounts of light penetration
along roads on cars and heavy equipment (J. Conn pers. obs.,	(M.L. Carlson pers. obs.).
M. Shephard pers. obs.).	Current global distribution (0–5) 5
Allelopathic (0–2) 0	Originally native to Europe, it now occurs in North America,
This species is not allelopathic (USDA 2002).	South Africa, temperate Asia, and New Zealand (Hultén 1968).
Competitive Ability $(0-3)$ 2	Extent of the species U.S. range and/or occurrence of 5
Bird vetch has the ability to fix nitrogen (USDA 2002) and	formal state or provincial listing $(0-5)$
competes for resources with other species.	Bird vetch now ranges from Alaska and British Columbia south
Thicket-forming/Smothering growth form $(0-2)$ 2	and east across Canada to Newfoundland, south to Georgia and
Bird vetch overgrows herbaceous vegetation and climbs "kudzu-	Alabama; a total of 36 states (USDA 2002). <i>Vicia cracca</i> listed as
style" up and over shrubs such as alder and willow as well as small	a noxious weed seed in Alaska (Group B) (Alaska Administrative
spruce trees (Densmore et al. 2001).	Code).
Germination requirements (0–3) 2	Total for Ecological Amplitude and Distribution21/25
Vicia cracca usually establishes in disturbed areas, including	Feasibility of Control Score
those with well-developed vegetation (Densmore et al. 2001).	Seed banks (0–3) 3
The seeds can easy germinate in wide range of conditions without	The seeds do not germinate until the seed coat is sufficiently
scarification (J. Snyder unpubl. data).	broken down (by decay or abrasion) to admit water (Densmore et
Other invasive species in the genus $(0-3)$ 3	al. 2001). Most hard-seeded legumes have seed dormancy lasting
Vicia benghalensis L. V. disperma DC., V. hirsuta (l.) S.F. Gray,	5 years or more (M.L. Carlson pers. obs.). J. Snyder (unpubl. data)
V. lathyroides L., V. pannonica Crantz, V. sativa L., V. tetrasperma	observed vetch seeds germinating without period of dormancy.
(L.) Schreber, and <i>V. villosa</i> Roth.	Vegetative regeneration (0–3) 2
Aquatic, wetland or riparian species $(0-3)$ 0	There is strong vegetative growth from dormant buds of
Bird vetch is a weed of roadsides and disturbed areas.	belowground roots (Aarssen et al. 1986).
Total for Biological Characteristics and Dispersal 16/25	Level of effort required (0–4) 4
Ecological Amplitude and Distribution Score	This species is very difficult to eradicate once established
Highly domesticated or a weed of agriculture $(0-4)$ 4	Total for Feasibility of Control9/10
In Alaska, <i>Vicia cracca</i> was introduced as a forage crop in	Total score for 4 sections73/100
Fairbanks and Palmer (Densmore et al. 2001, Klebesadel 1980).	\$
Known level of impact in natural areas $(0-6)$ 4	5
Bird vetch has ability to invade natural areas. The species has	
been observed growing in open mature deciduous forest near	
Fairbanks (Densmore et al. 2001), and it penetrates well beyond	
Fairbanks (Densmore et al. 2001), and it penetrates well beyond boreal forest edges in the Susitna Valley (I. Lapina, M.L. Carlson	
Fairbanks (Densmore et al. 2001), and it penetrates well beyond	

Vicia villosa Roth

Ranking Summa		
Ecoregion known or expected to occur	rin	
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine	D-4	<u>No</u> Score
Ecological Impact	Potential Max. 40	22
Biological Characteristics and Dispersal	22	11
Amplitude and Distribution	19	11
Feasibility of Control	10	3
Relative Maximum		53
Climatic Compar	ison	
*	Collected in	CLIMEX
1	Alaska regions?	similarity?
South Coastal	No	Yes
Interior Boreal	Yes	-
Arctic Alpine	No	No
Vicia villosa is reported from interior bor		
of Alaska (Hultén 1968). The climatic sir		
and areas where the species is documented		
(CLIMEX 1999). This species withstand	ls winter temp	eratures
to -30 °F (some cultivars to 7 °F), and req	uires 100 frost	-free
days (USDA 2002). Winter temperature	in Nome can r	each
-54 °F (WRCC 2001) and the number of	frost-free days	is at the
physiological limit of Vicia villosa. It is un	likely to estab	lish in
the arctic alpine ecogeographic region of		
been reported from Bergen, Norway (Lic		
has 76% climatic similarity with Juneau.		
south coastal ecogeographic region of Al		
Ecological Impact		Score
Impact on Ecosystem Processes $(0-10)$		7
Hairy vetch alters edaphic conditions du	e to fixation of	
atmospheric nitrogen (USDA 2002). It c	an significantl	y reduce
available soil water (Nielson and Vigil 20	005).	
Impact on Natural Community Structure		7
Hairy vetch often overgrows herbaceous		l forms a
dense herbaceous layer (Whitson et al. 2		
Impact on Natural Community Composit		3
Hairy vetch overtops herbaceous and lov		
cause reductions in the number of individ	dual native spe	cies in the
community (M. Shephard pers. obs.).		
Impact on Higher Trophic Levels $(0-10)$		5
Hairy vetch is reported to be both slightl		
palatable to grazing animals (USDA 200	, 0	· · ·
vetch is eaten by deer (Graham 1941). Vi	*	
insect pests and disease organisms. The f	lowers are visi	ted by
native bees and may alter pollination eco	logy of the sur	rounding
area (Aarssen et al. 1986).		00/40
Total for Ecological Impact		22/40
Total for Ecological Impact Biological Characteristics and I	Dispersal	Score
Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3)	•	Score 1
Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Winter vetch reproduces by seed only (A	arssen et al. 19	Score 1 986). This
Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Winter vetch reproduces by seed only (A plant produces moderate amounts of see	arssen et al. 19	Score 1 (86). This 2).
Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Winter vetch reproduces by seed only (A plant produces moderate amounts of see Long-distance dispersal (0–3)	arssen et al. 19 d (USDA 2002	Score 1 286). This 2). 0
Total for Ecological Impact Biological Characteristics and I Mode of Reproduction (0–3) Winter vetch reproduces by seed only (A plant produces moderate amounts of see	arssen et al. 19 d (USDA 2002	Score 1 286). This 2). 0

common names: winter vetch, hairy vetch

Spread by humans (0–3)	2
Hairy vetch is a forage plant that sometimes escapes culti	
(Welsh 1974). It is a crop seed contaminant (USDA, ARS	5 2004).
Allelopathic (0–2)	0
None (USDA 2002).	
Competitive Ability (0–3)	3
Winter vetch has the ability to fix nitrogen (USDA 2002)	
it competes for resources with other species. Winter vetch	
a very hardy species. It demonstrates high frost, drought,	
flood tolerance (Brandsæter et al. 2002, Walsh and Skujin	ns 1981,
Hoveland and Donnelly 1966).	
Thicket-forming/Smothering growth form $(0-2)$	2
Winter vetch has a climbing growth habit with stems up	to 6 feet
long (Hultén 1968).	
Germination requirements (0–3)	U
Unknown	_
Other invasive species in the genus $(0-3)$. 3
Vicia cracca L., V. sativa ssp. nigra (L.) Ehrh, V. benghalens	
L., V. disperma DC., V. hirsuta (L.) S.F. Gray, V. lathyroide	
V. pannonica Crantz, and V. tetrasperma (L.) Schreber (H	ultén
1968, USDA 2002, Whitson et al. 2000).	
Aquatic, wetland or riparian species $(0-3)$	0
Winter vetch has escaped cultivation and is common alor	ng
roadsides and disturbed areas (Whitson et al. 2000).	
Total for Biological Characteristics and Dispersal	11/22
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	4
Winter vetch has been used as a both a forage and rotatio	n crop
(Welsh 1974, Whitson et al. 2000).	тт
Known level of impact in natural areas $(0-6)$	U
Unknown. Role of anthropogenic and natural disturbance in	0
establishment (0–5)	0
Winter vetch establishes in areas with anthropogenic soil	
disturbance (Pojar and MacKinnon 1994, Whitson et al.	
Current global distribution (0–5)	2000).
Native range of winter vetch includes northern Africa, te	6
Asia, and Europe (USDA, ARS 2004).	inperate
Extent of the species U.S. range and/or occurrence of	5
formal state or provincial listing $(0-5)$	5
Winter vetch occurs in nearly all American states (USDA	2002)
It is not considered noxious in North America (Invaders	
	Database
System 2003). Total for Ecological Amplitude and Distribution	12/19
Feasibility of Control	Score
Seed banks (0–3)	0
The seeds of winter vetch can remain viable for less than 2	v
(McKee and Musil 1984).	
Vegetative regeneration (0–3)	1
Some of the winter vetch cultivars have good regrowth al	oility
(Brandsæter et al. 2002).	/
Level of effort required $(0-4)$	2
Control of winter vetch can be achieved relatively easily h	
mechanical methods or herbicides applications (Aarssen	•
1986).	
Total for Feasibility of Control	3/10
Total score for 4 sections	48/91
Total score for 4 sections	T 0/ 91

Zostera japonica Aschers. & Graebn.

Ranking Summary		
Ecoregion known or expected to occur in		
South Coastal		Yes
Interior Boreal		Yes
Arctic Alpine		No
	Potential Max.	Score
Ecological Impact	40	30
Biological Characteristics and Dispersal	25	10
Amplitude and Distribution	25	8
Feasibility of Control	3	1
Relative Maximum		53
Climatic Comparison		
_	Collected in	CLIMEX

	Alaska regions?	similarity?
South Coastal	No	Yes
Interior Boreal	No	Yes
Arctic Alpine	No	No
Zostera japonica has not been collected in Alaska (Hultén 1968,		

Welsh 1974, AKEPIC 2004, UAM 2004). Zostera japonica is a native of subtropical to cool seacoasts ranging from Vietnam, East Asia, mainland Russia, and the Sakhalin Islands (Miki 1933, Shin and Choi 1998). The CLIMEX matching program indicates the climatic similarity between Juneau and Akita, Japan is 55%. The native range of this species also includes Vladivostok and Nevel'sk, Russia which have a 60% and 57% climatic match with Anchorage, respectively. Aquatic species are generally less susceptible to variation in terrestrial climates. Climatic matches between the species' native range and Nome are low however. Dwarf eelgrass is likely to establish in the south coastal and the coastal portions of the interior boreal regions of Alaska.

Ecological Impact Score Impact on Ecosystem Processes (0–10) 8 The colonization of sparsely vegetated or bare intertidal flats by dwarf eelgrass represents a drastic modification of habitat. Increased eelgrass coverage slows waterflow which increases sedimentation and reduces mean sediment grain size. Eventually eelgrass patches may raise the elevation of mudflats and disrupt ocean currents (Harrison and Bigley 1982, Posey 1988). Significant changes in the ecology of intertidal sediments are predicted as the exotic eelgrass spreads to potential habitat in North America (Harrison and Bigley 1982). Impact on Natural Community Structure (0-10)7 Dwarf eelgrass can form dense mats on previously bare intertidal flats (Harrison and Bigley 1982). Faunal richness and abundance can be higher in patches of introduced eelgrass compared to adjacent unvegetated areas (Posey 1988). Impact on Natural Community Composition (0-10)8 Dwarf eelgrass is not likely to displace native co-occurring eelgrasses (Harrison 1982). Although the introduction of dwarf eelgrass can decrease shrimp and tubeworm populations (Harrison 1987). The richness and number of other species may be increased by the vegetative cover (Posey 1988). Impact on Higher Trophic Levels (0–10) 7 Dwarf eelgrass provides habitat and food for invertebrates, fish, and birds, but degrades the quality of habitat for shrimp and

tubeworms (Harrison 1987). **Total for Ecological Impact** 30/40

common names: dwarf eelgrass

•••••••••••••••••••••••••	8
Biological Characteristics and Dispersal	Score
Mode of Reproduction $(0-3)$	2
Dwarf eelgrass produces an abundance of seeds (Harris	son 1979,
Harrison and Bigley 1982). Long-distance dispersal (0–3)	1
Vegetative and flowering plants have been seen uproote	
floating, but it is not known if they can become establis	
grazing on seeds may act as dispersal vectors (Harrison	
Bigley 1982).	una
Spread by humans (0–3)	2
Dwarf eelgrass was apparently introduced to North An	nerica
with shipments of oysters (Carlton 1989). This plant ma	
transported inadvertently when entangled with boating	•
gear (Harrison and Bigley 1982).	5 0
Allelopathic (0–2)	0
No records concerning allelopathy were found.	
Competitive Ability (0–3)	0
Zostera japonica grows in the intertidal zone with Z. ma	irina
in both Japan and North America. Competition from Z	lostera
<i>marina</i> may limit the growth of <i>Z. japonica</i> (Harrison 1	982).
Zostera marina usually has well developed rhizomes an	d roots
which penetrate deeper into the sediment than those of	fZ.
japonica (Harrison 1982).	
Thicket-forming/Smothering growth form $(0-2)$	0
Dwarf eelgrass is not characterized by climbing or smo	
growth habit, and is not taller than the surrounding veg	·
(Flora of North America 1993, Hitchcock et al. 1969, S	hin and
Choi 1998).	
Germination requirements (0–3)	2
Dwarf eelgrass requires bare sand or mud for germinati	
establishment (Harrison and Bigley 1982), but usually	does not
establish in disturbed areas (Harrison 1987).	0
Other invasive species in the genus (0–3) No other Zostera species are known as weeds (USDA 2	
Aquatic, wetland or riparian species $(0-3)$	3
Dwarf eelgrass inhabits the intertidal zone of sandy or 1	-
coasts (Harrison and Bigley 1982, Hitchcock 1969, Shi	
Choi 1998).	
Total for Biological Characteristics and Dispersal	10/25
Ecological Amplitude and Distribution	Score
Highly domesticated or a weed of agriculture $(0-4)$	0
Dwarf eelgrass is not an agricultural weed nor is it grow	'n
deliberately.	
Known level of impact in natural areas (0–6)	3
Colonization of sand flats by native and exotic eelgrasse	
reduced the population range of the burrowing shrimp	
Columbia (Harrison 1987). Dense populations of dwar	0
infest approximately 17,000 ha of intertidal flats in Was	hington
(Harrison and Bigley 1982).	_
Role of anthropogenic and natural disturbance in	5
establishment (0–5)	1
Dwarf eelgrass may establish on undisturbed bare sand	
mud. Dredging, filling, and erosion associated with dik	
port construction are known to inhibit the establishme expansion of infestations (Harrison 1987).	nt and

Current global distribution (0–5) 0	Feasibility of Control Score
Dwarf eelgrass is distributed on sandy and muddy shores of	Seed banks (0–3) U
sheltered bays from subtropical Vietnam to East Asia, mainland	No records are found concerning seed viability.
Russia, and the Sakhalin Islands (Shin and Choi 1998). It has	Vegetative regeneration (0–3) 1
been recently introduced to British Columbia, Oregon, and	Although dwarf eelgrass is capable of resprouting from rhizomes
Washington (Harrison and Bigley 1982, Hitchcock 1969).	when storms remove the aboveground biomass, resprouting is
Extent of the species U.S. range and/or occurrence of 0	usually not very vigorous (Harrison 1979).
formal state or provincial listing $(0-5)$	Level of effort required (0–4) U
Dwarf eelgrass has been recently introduced to British Columbia,	Control methods for dwarf eelgrass have not been investigated.
Oregon, and Washington (Harrison and Bigley 1982, Hitchcock	Total for Feasibility of Control 1/3
1969). This plant is not listed in any state as noxious weed	Total score for 4 sections49/93
(Invaders Database System 2003, USDA 2002).	Ø
Total for Ecological Amplitude and Distribution8/25	Ÿ

References

- Aarssen, L.W., I.V. Hall, K.I.N. Jensen. 1986. The biology of Canadian weeds. 76. Vicia angustifolia L., V. cracca L., V. sativa L., V. tetrasperma (L.) Schreb. and V. villosa Roth. Canadian Journal of Plant Science. 66 (3):711-737.
- Acharya Goswami, D. and B. Matfield. 1975. Cytogenetic studies in the genus *Potentilla* L. New Phytologist 75(1): 135-146.
- AKEPIC. 2004. Alaska Exotic Plants Clearinghouse Database of exotic vegetation collected in Alaska. Alaska Natural Heritage Program, University of Alaska, U.S. Forest Service, National Park Service Database. Available: http://akweeds.uaa.alaska.edu/
- AKEPIC. 2005. Alaska Exotic Plants Clearinghouse Database of exotic vegetation collected in Alaska. Alaska Natural Heritage Program, University of Alaska, U.S. Forest Service, National Park Service Database. Available: http://akweeds.uaa.alaska.edu/
- AKEPIC. 2006. Alaska Exotic Plants Clearinghouse Database of exotic vegetation collected in Alaska. Alaska Natural Heritage Program, University of Alaska, U.S. Forest Service, National Park Service Database. Available: http://akweeds.uaa.alaska.edu/
- AKNHP. 2003. Non-native plants survey of Mat–Su Valleys. Report for USFS, State and Private Forestry, Anchorage, AK.
- Ahrens, J.F. 1975. Preliminary results with gyphosate for control of *Polygonum cuspidatum*. Proceedings of the Northeastern Weed Society 29:326.
- Aiken, S.B. 1981. A conspectus of Myriophyllum (Haloragaceae) in North America. Brittonia 33 (1):57-69.
- Aksoy, A., J.M. Dixon and W.H. Hale. 1998. Biological flora of the British Isles. Capsella bursa-pastoris (L.) Medikus (Thlaspi bursa-pastoris L., Bursa bursa-pastoris (L.) Shull, Bursa pastoris (L.) Weber). Journal of Ecology 86: 171-186.
- Alaska Administrative Code. Title 11, Chapter 34. 1987. Alaska Department of Natural Resources. Division of Agriculture.
- Alberta Agriculture, Food and Rural Development. 1995. Narrow-leaved hawk's beard: *Crepis tectorum*. [Online document].
- Alex, J.F. 1962. The taxonomy, history, and distribution of *Linaria dalmatica*. Canadian Journal of Botany 40: 295-307.
- Alex, J.F. and C.M. Switzer. 1976. Ontario weeds. Ontario Agricultural College, University of Guelph, Guelph, Ontario. P.p.165-200.
- Alfnes, A.T. 1975. Dispersion of especially troublesome weeds (*Rorippa sylvestris, Aegopodium podagraria, Campanula rapunculoides*) in nursery stock. Gartneryrket; 65: 772-774. In Norwegian.
- Alsaadawi, I.S. and E.L. Rice. 1982a. Allelopathic effects of *Polygonum aviculare* L. I. Vegetational patterning. Journal of Chemical Ecology 8(7): 993-1009.
- Alsaadawi, I.S. and E.L. Rice. 1982b. Allelopathic effects of *Polygonum aviculare* L. II. Isolation, characterization, and biological activities of phytotoxins. Journal of Chemical Ecology 8(7): 1011-1023.
- Alsaadawi, I.S., E.L. Rice and T.K.B. Karns. 1983. Allelopathic effects of *Polygonum aviculare* L. III. Isolation, characterization, and biological activities of phytotoxins other than phenols. Journal of Chemical Ecology 9(6):761-774.
- Amor, R.L. 1973. Ecology and control of blackberry (*Rubus fruticosus* L. Agg.) I. *Rubus* ssp. as weeds in Victoria. Weed Research 13: 218-223.
- Amphlett, J. and C. Rea. 1909. The Botany of Worcestershire. Birmingham.

- Anderson, D. Phalaris. In J. C. Hickman (ed.) The Jepson Manual of Higher Plants of California. University of California Press, Berkley. Pp. 1400.
- Anderson, E.W. and L.E. Brooks. 1975. Reducing erosion hazard on a burned forest in Oregon by seeding. Journal of Range Management 28(5): 394-398.
- Anderson, L.W.J. and D.F. Spencer. 1999. Foiling watermilfoil. Agricultural Research, 47 (3): 16-17.
- Anderson, R.L. 1996. Downy brome (*Bromus tectorum*) emergence variability in a Semiarid Region. Weed Technology. 10:750-753.
- Andersson, S. 1991. Floral display and pollination success in *Achillea ptarmica*. Holarctic Ecology 14: 186-191.
- Apfelbaum, S.I. and C.E. Sams. 1987. Ecology and control of reed canary grass. (*Phalaris arundinacea* L.). Natural Areas Journal 7(2):69-74.
- APMS The Aquatic Plant Management Society. 2004. *Phalaris arundinacea* Reed Canarygrass. [June 2, 2004].
- Arnold, R.M. 1982. Pollination, predation and seed set in *Linaria vulgaris* (Scrophulariaceae). American Midland Naturalist. 107 (2): 360-369.
- Ashton, P.A. and R.J. Abbott. 1992. Isozyme evidence and the origin of *Senecio vulgaris* (Compositae). Plant Systematics and Evolution 179: 167-174.
- Askew, S.D. and J.W. Wilcut. 2002. Pale smartweed interference and achene production in cotton. Weed Science 50: 357-363.
- Auchmoody, L.R. and R.S. Walters. 1988. Revegetation of a brine-killed forest site. Soil Science Society of America Journal. 52: 277-280.
- Austin, D.F. 2000. Bindweed (*Convolvulus arvensis*, Convolvulaceae) in North America, from medicine to menace. Journal of the Torrey Botanical Society 127(2): 172-177.
- Austin, M.P., R.H. Groves, L.M. Fresco, P.E. Kaye. 1985. Relative growth of six thistle species along a nutrient gradient with multispecies competition. Journal of Ecology 73(2): 667-684.
- Australia's Virtual Herbarium [INTERNET]. Melbourne: Royal Botanical Garden. 2005 Feb 09; Available from: http://www.rbg.vic.gov.au/cgi-bin/avhpublic/avh.cgi?session=1108009789507
- Badger, K.S. and I.A. Ungar. 1990. Effects of soil salinity on growth and ion content of the inland halophyte *Hordeum jubatum*. Botanical Gazette. 151(3): 314-321.
- Badger, K.S. and I.A. Ungar. 1994. Seed bank dynamics in an inland salt marsh, with special emphasis on the halophyte *Hordeum jubatum* L. International Journal of Plant Sciences. 155(1):66-72.
- Baker, D.V., T.L. Steinke, and S.K. McDonald. 2003. Flixweed Descurainia sophia. Colorado State University.
- Baker, H.G. 1974. The evolution of weeds. Annual Review of Ecology and Systematics 5: 1-24.
- Bakshi, T.S. and R.T. Coupland. 1960. Vegetative propagation in *Linaria vulgaris*. Canadian Journal of Botany 38: 243-249.
- Baranova O.G., Botanist, Udmurt State University, 1 Universitetskay, Izhevsk, Russia. Tel: 011-7-3412-755-772 Pers. com.
- Bard, G.E. 1952. Secondary succession on the Piedmont of New Jersey. Ecological Monographs. 22(3):195-215.
- Barko, J.W. and R.M. Smart. 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51(2): 219-235.
- Basiouny, F.M., W.T. Haller and L.A. Garrard. 1978. Survival of hydrilla (*Hyrdilla verticillata*) plants and propagules after removal from the aquatic habitat. Weed Science 26: 502-504.
- Baskin, J.M. and C.C. Baskin. 1990. Role of temperature and light in the germination ecology of buried seeds of *Potentilla recta*. Annals of Applied Biology 117(3): 611-616.

- Batcher, M.S. 2002. Element Stewardship Abstract for *Elytrigia repens* var. repens (L.) Desv. ex B.D. Jackson Synonyms: *Agropyron repens* L. (Beauv.), *Elymus repens* (L.) Gould Quackgrass. The Nature Conservancy. Arlington, VA.
- Batcher, M.S. and S.A. Stiles. 2005. Element stewardship abstract for *Lonicera maackii* (Rupr.) Maxim (Amur honeysuckle), *Lonicera morrowii* A. Gray (Morrow's honeysuckle), *Lonicera tatatica* L. (Tatarian honeysuckle), *Lonicera x bella* Zabel (Bell's honeysuckle). The bush honeysuckles. The Nature Conservancy. Arlington, Virginia.
- Batra, S.W. 1979. Insects associated with weeds in the northeastern United States. II. Cinquefoils, *Potentilla norvegica* and *P. recta* (Rosaceae). New York Entomological Society 87(3): 216-222.
- Batra, S.W.T. 1979. Insects associated with weeds in the northeastern United States. III. Chickweed, *Stellaria media*, and stitchwort, *S. graminea* (Caryophyllaceae). Journal of the New York Entomological Society 87(3): 223-235.
- Beck, K.G. 2004. Fact Sheet No. 3.102: Musk thistle. CO: Colorado State University, Cooperative Extension. Available: http://www.ext.colostate.edu/pubs/natres/03102.html [2005, May 2].
- Beck, K.G. Oxeye Daisy biology and management. Colorado State University.
- Beck, K.G. 2001. Biology and management of the toadflaxes. Colorado State, University Cooperative Extension. Available online: http://www.ext.colostate.edu/pubs/natres/03114.html
- Beckwith, S.L. 1954. Ecological succession on abandoned farm lands and its relationship to wildlife management. Ecological Monographs 24(4): 349-376.
- Beddows, A.R. 1959. Dactylis glomerata L. The Journal of Ecology 47(1): 223-239.
- Beddows, A.R. 1973. Biological flora of the British Isles: *Lolium multuflorum* Lam. (*L. perenne* L. ssp. multiflorum (Lam.) Husnot, *L. italicum* A. Braun). The Journal of Ecology. 61(2): 587-600.
- Beerling, D.J. 1993. The impact of temperature on the northern distribution limits of the introduced species *Fallopia japonica* and *Impatiens glandulifera* in North-West Europe. Journal of Biogeography. 20 (1): 45-53.
- Beerling, D.J., J.P. Bailey, and A.P. Conolly. 1994. *Fallopia japonica* (Houtt.) Ronse Decraene. Journal of Ecology 82:959-979.
- Beerling, D.J., and H.A. Dawah. 1993. Abundance and diversity of invertebrates associated with *Fallopia japonica* (Houtt. Ronse Decraene) and *Impatiens glandulifera* (Royle): two alien plant species in the British Isles. The Entomologist 112:127-139.
- Belcher, J.W. and S.D. Wilson. 1989. Leafy spurge and the species composition of mixed-grass prairie. Journal of Range Management 42: 172-175.
- Bell, L.W. 2004. Relative growth rate, resource allocation and root morphology in the perennial legumes, *Medicago sativa*, *Dorycnium rectum* and *D. hirsutum* grown under controlled conditions. Plant and Soil. 0: 1-13.
- Bender, J. and J. Rendall. 1987. Element Stewardship Abstract for *Lythrum salicaria* Purple Loosestrife. The Nature Conservancy. Arlington, VA.
- Bennett, B. 2007. What species are becoming a problem in the Yukon. 8th Annual Alaska Committee for Noxious and Invasive Plant Management Workshop presentation. 15 November 2007, Fairbanks, Alaska.
- Bennett, B. Botanist. Yukon Environment. NatureServe Yukon (V-5N). P.O. Box 2703, Whitehorse, Yukon Y1A2C6. Tel: (867) 667-5331, fax: (867) 393-6405. Pers. com.
- Bergelson, J. 1990. Life after death: site preemption by the remains of *Poa annua*. Ecology. 71(6): 2157-2165.
- Bergelson, J., J.A. Newman, E.M. Floresroux. 1993. Rates of weed spread in spatially heterogeneous environments. Ecology 74: 999-1011.

- Best, K.F., G.G. Bowes, A.G. Thomas and M.G. Maw. 1980. The biology of Canadian weeds. 39. *Euphorbia esula* L. Canadian Journal of Plant Science; 60: 651-663.
- Biesboer, D.D. 1996. Element stewardship abstract for *Euphorbia esula* Leafy spurge. The Nature Conservancy, Arlington, Virginia.
- Bixby, M. D. 2004. Wetland Vegetation at Shea Park. On-line document. Available: http://www.bixby.org/ parkside/multimedia/vegetation/ [January 12, 2005].
- Blackshaw, R.E. and L.M. Rode. 1991. Effect of ensiling and rumen digestion by cattle on weed seed viability. Weed Science39: 104-108.
- Blank, R.R. and J.A. Young. 2002. Influence of the exotic invasive crucifer, *Lepidium latifolium*, 0 on soil properties and elemental cycling. Soil Science 167(12): 821-829.
- Blank, R.R. and J.A. Young. 2004. Influence of three weed species on soil nutrient dynamics. Soil Science 169(5): 385-397.
- Bloom, C. T., C. C. Baskin, and J. M. Baskin. 1990. Germination ecology of the facultative biennial *Arabis laevigata* var. laevigata. American Midland Naturalist
- Blossey, B. 2003. Garlic Mustard. Ecology and management of invasive plants program http://www. invasiveplants.net/plants/garlicmustard.htm
- Blossey, B., V.A. Nuzzo, H.L. Hinz, E. Gerber. 2002. Garlic mustard. In Van Driesche, R., et al. 2002. Biological control of invasive plants in the Eastern United States, USDA Forest Service Publication FHTET-2002-04. 413 pp.
- Blossey, B. 2002. Purple Loosestrife. In: Driesche, R.V. et. al. 2002. Biological Control of Invasive Plants in the Eastern United States. USDA Forest Service Publication FHTET-2002-04, 413 pp.
- Boggs, K.W. Plant Ecologist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501 Tel: (907) 257-2783 Pers. comm.
- Bole, J.B. and J.R. Allan. 1978. Uptake of phosphorus from sediment by aquatic plants, *Myriophyllum spicatum* and *Hydrilla verticillata*. Water research 12: 353-358.
- Bonis, A. P.J. Grubb and D.A. Coomes. 1997. Requirements of gap-demanding species in chalk grassland: reduction of root competition versus nutrient-enrichment by animals. Journal of Ecology 85: 625-633.
- Bossard, C. and R. Lichti. *Carduus pycnocephalus*. In: Bossard C.C., J.M. Randsll, and M.C. Hoshovsky, editors. Invasive plants of California wildlands. Berkeley, Los Angeles, London: University of California Press; 2000. p 86-90.
- Bossard, C.C., J.M. Randall, M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. University of California Press. 360 pp.
- Bossard, C. 2004. *Myriophyllum spicatum*. In: Cal-IPC California Invasive Plant Council. Available: http://groups.ucanr.org/ceppc/ Berkeley, California.
- Bostock, S.J. and R.A. Benton. 1979. The reproductive strategies of five perennial Compositae. The Journal of Ecology 67: 91-107.
- Bowes, G.G. 1982. Changes in the yield of forage following the use of herbicides to control aspen poplar. Journal of Range Management. 35: 246-248.
- Brandsæter, L.O., A. Olsmo, A.M. Tronsmo and H. Fykse. 2002. Freezing resistance of winter annual and biennial legumes at different developmental stages. Crop Science 42: 437-443.
- Brar, G.S., J.F. Gomez, B.L. McMichael, A.G. Matches and H.M. Taylor. 1991. Germination of twenty forage legumes as influenced by temperature. Agronomy Journal 83: 173-175.
- Brenchley, W.E. and K. Warington. 1930. The weed seed population of arable soil: I. Numerical estimation of viable seeds and observations on their natural dormancy. The Journal of Ecology 18(2): 235-272.

British-Trees. 2004. Unsworth Associates Ltd. http://www.british-trees.com/index.htm [May 19, 2004].

- Broad, P.D. 1952. The occurrence of weed seeds in samples submitted for testing by the O.S.T.S. Journal of the National Institute of Agricultural Botany 6: 275-286.
- Brooks, R.R. and H.M. Crooks. 1980. Studies on uptake of heavy metals by the Scandinavian 'kisplanten' *Lychnis alpina* and *Silene dioica*. Plant and Soil 54: 491-496.
- Brothers, T.S. and A. Springarn. 1992. Forest fragmentation and alien plant invasion of central Indiana oldgrowth forests. Conservation Biology 6: 91-100.
- Broughton, D.A. and J.H. McAdam. 2002. The non-native vascular flora of the Falkland Island. Botanical Journal of Scotland 54(2): 153-190.
- Brunner, H., R.V. Harris, and R.L. Amor. 1975. A note on the dispersal of seeds on blackberry (*Rubus procerus* P.J. Muell.) by foxes and emus. Weed Research 16: 171-173.
- Bureau of Land Management. 2004. Weed Management of Colorado. BLM National list of invasive weed species of concern. Colorado State Office. Available: http://www.co.blm.gov/index.htm [November 11, 2004].
- Burnside, O.C., R.G. Wilson, S. Weisberg and K.G. Hubbard. 1996. Weed Science 44: 74-86.
- Burnside, O.C., R.G. Wilson, S. Weisberg, and K.G. Hubbard. 1996. Seed longevity of 41 weed species buried 17 years in Eastern and Western Nebraska. Weed Science 44: 74-86.
- Bush, T., D. Ogle, L.St. John, M. Stannard and K.B. Jensen. 2005. Plant guide. Orchardgrass *Dactylis glomerata* L. USDA NRCS Pullman Plant Materials Center. Pullman, Washington.
- Butler, J.L. and D.R. Cogan. 2004. Leafy spurge effects on patterns of plant species richness. Journal of Range Management. 57: 305-311.
- Butterfield, C., J. Stubbendieck, and J. Stumpf. 1996. Species abstract of highly disruptive exotic plants. Jamestown, ND: Northern Prairie Wildlife Research Center Home Page. http://www.npwrc.usgs.gov/ resource/othrdata/exoticab.htm (Version 16JUL97).
- Byers, D. L. 1988. Life history variation of Alliaria petiolata in a range of habitats in New Jersey. M. S. Thesis. Rutgers University, New Brunswick, NJ. Pp. 132.
- Byers, D.L. and J.A. Quinn. 1987. The effect of habitat variation in *Alliaria petiolata* on life history characteristics. Abstracts. American Journal of Botany 74:647.
- Byers, D.L. and J.A. Quinn. 1998. Demographic variation in *Alliaria petiolata* (Brassicaceae) in four contrasting habitats. Journal of the Torrey Botanical Society 125:138-149.
- CalEPPC California Exotic Pest Plant Council. 1999. Exotic Plant Pest List (http://ucce.ucdavis.edu/files/ filelibrary/5319/4898.pdf, October 19, 1999). California Exotic Pest Plant Council. California.
- Cal-IPC California Invasive Plant Council. 2005. *Brachypodium sylvaticum* alert. Available: http://groups.ucanr.org/ceppc/ (February 2, 2005].
- Cal-IPC California Invasive Plant Council. 2005. *Dactylis glomerata*. Plant Assessment Form. Available: http://www.cal-ipc.org/ [February 2, 2005].
- Cal-IPC California Invasive Plant Council. 2005. *Rumex acetosella* Plant Assessment Form. Available: http://www.cal-ipc.org/ [February 2, 2005].
- Cal-IPC California Invasive Plant Council. 2005. *Rumex crispus*. Plant Assessment Form. Available: http://www.cal-ipc.org/ [February 28, 2003].
- Calder, D.M. 1961. Plant ecology of subalpine shingle river-beds in Canterbury, New Zealand. The Journal of Ecology. 49(3): 581-594.
- Callihan, R.H. and T.W. Miller. 1999. Idaho's Noxious Weeds. University of Idaho. http://www.oneplan.org/.

- Cameron, E. 1935. A study of the natural control of ragwort (*Senecio jacobaea* L.). Journal of Ecology, 23: 265-322.
- Campbell, M.H. 1985. Germination, emergence and seedling growth of *Hypericum perforatum* L. Weed Research 25: 259-266.
- Campbell, M.H. and E.S. Delfosse. 1984. The biology of Australian Weeds. 13. *Hypericum perforatum* L. The Journal of the Australian Institute of Agricultural Science 50(2): 63-73.
- Canadian Wildlife Service. 2004. Invasive plants and their biology, impact and control options. Available: http://www.cws-scf.ec.gc.ca/publications/inv/cont_e.cfm [December 15, 2004].
- Canfield, D.E.Jr., J.V. Shireman, D.E. Colle, W.T. Haller, E.E. Watkins and M.J. Maceina. 1984. Prediction of chlorophyll a concentration in Florida Lakes: importance of aquatic macrophytes. Can. J. Fish. Aquatic. Sci. 41: 497-501.
- Carlson, M.L., Assistant Professor Biology, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 Pers. obs.
- Carlsson-Graner, U., T. Elmqvist, J. Ågren, H. Gardfjell, and P. Ingvarsson. 1998. Floral sex ratios, disease and seed set in dioecious *Silene dioica*. Journal of Ecology 86: 79-91.
- Carey, J.H. 1995. *Lolium multiflorum*. In: Fire Effects Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/ [2004, December 22].
- Carpenter, A.T., and T.A. Murray. 2005. Element Stewardship Abstract for *Bromus tectorum* L. (*Anisantha tecrorum* (L.) Nevski). The Nature Conservancy. Arlington, VA.
- Carpenter, A. and T. Murray. 1998. Element Stewardship Abstract for *Linaria dalmatica* and *Linaria vulgaris*. The Nature Conservancy, Wildlands Weeds Management & Research, Weed Science Program, University of California, Davis, CA.
- Carpinelli M. 2003. Spotted knapweed *Centaurea biebersteinii* DC. Plant Conservation Alliance, Alien Plant Working Group. Available: http://www.nps.gov/plants/alien/fact/cebi1.htm [September 21, 2004].
- Case, A.A. 1957. Some aspects of nitrate intoxication in livestock. Journal of the American veterinary medical association 130(8): 323-329.
- Casler, M.D., R.E. Barker, E.C. Brummer, Y.A. Papadopolous and L.D. Hoffman. 2003. Selection for orchardgrass seed yield in target vs. nontarget environments. Crop Science 43: 532-538.
- Cavers, P.B. and J.L. Harper. 1964. *Rumex obtusifolius* L. and *R. crispus* L. The Journal of Ecology 52(3): 737-766.
- Cavers, P.B. and J.L. Harper. 1967. The comparative biology of closely related species living in the same area: IX. Rumex: The nature of adaptation to a sea-shore habitat. The Journal of Ecology 55(1): 73-82.
- Chancellor, R.J. 1985. Changes in the weed flora of an arable field cultivated for 20 years. Journal of Applied Ecology 22: 491-501.
- Charkevicz, S.S. 1987. Vascular plants of Soviet Far East.: Lycopodiophyta, Equisetophyta, Polypodiophyta, Pinophyta (Gymnospermae), Magnoliophyta (Angiospermae). Vol. 2. Leningtad "Nauka". 448 p. In Russian.
- Charles, E.W. 2001. Exotic bush honeysuckles (*Lonicera* spp.). Plant Conservation Alliance, Alien Plant Working Group. Available: http://www.nps.gov/plants/alien/index.htm [May 11, 2004].
- Chepil, W.S. 1946. Germination of weed seeds. I. Longevity, periodicity of germination, and vitality of seeds in cultivated soil. Scientific Agriculture 26: 307-346.
- Child, L.E. and P.M. Wade. 2000. The Japanese Knotweed manual. The management and control of an invasive alien weed. Downland Reprographics Limited, West Stoke, Chichester, West Sussex. 123 pp.

- Chippindale, H.G. and W.E.J. Milton. 1934. On the viable seeds present in the soil beneath pasture. The Journal of Ecology 22(2): 508-531.
- Chittka L. and S. Schürkens. 2001. Successful invasion of a floral market. Nature 411: 653.
- City of Federal Way. 2004. Steel Lake. Integrated aquatic vegetation management plan. Washington: City of Federal Way, Public Works Department, Surface Water Management Division. 69 p.
- Clabby, G. and B.A. Osborne. 1999. Biological flora of the British Isles. *Mycelis muralis* (L.) Dumort. (*Lactuca muralis* (L.) Gaertner. Journal of Ecology 87: 156-172.
- Clark, N. 1953. The biology of St. John's wort (*Hypericum perforatum* L. var angustifolium DC.) in Ovens Valley, Victoria, wit particular references to entomological control. Australian Journal of Botany 1(1): 95-120.
- Cocks, P.S. and C.M. Donald. 1973. The germination and establishment of two annual pasture grasses (*Hordeum leporinum* Link. and *Lolium rigidum* Gaud.). Australian Journal of Agricultural Research 24: 1-10.
- Cody, W.J. 1996. Flora of the Yukon Territory. Eastern Cereal and Oilseed Research Centre Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario. NRC Research Press. 643 p.
- Cogliastro, A., D. Gagnon, D. Coderre, P. Bhereur. 1990. Response of seven hardwood tree species to herbicide, rototilling, and legume cover at two southern Quebec plantation sites. Canadian Journal of Forestry. 20: 1172-1182.
- Cole, M.A.R. Vegetation management guideline: white and yellow sweet clover (*Melilotus alba* Desr. and *Melilotus officinalis* (L.) Lam.). Natural Areas Journal 11(4): 214-215.
- Colle, D.E. and J.V. Shireman. 1980. Coefficients of condition for largemouth bass, bluegill, and redear sunfish in Hydrilla-infested lakes. Transactions of the American Fisheries Society 109: 521-531.
- Congdon, R.A. and A.J. McComb. 1981. The vegetation of the blackwood river estuary, South-West Australia. The Journal of Ecology. 69(1): 1-16.
- Conn, J. Weed Scientist, USDA Agricultural Research Service PO Box 757200 Fairbanks, Alaska 99775 tel: (907) 474-7652; fax (907) 474-6184. Pers. com.
- Conn, J.S. 1990. Seed viability and dormancy of 17 weed species after burial for 4.7 years in Alaska. Weed Science. 38: 134-138.
- Conn, J.S. and R.E. Deck. 1995. Seed viability and dormancy of 17 weed species after 9.7 years of burial in Alaska. Weed Science 43: 583-585.
- Conn, J. 2003. White sweet clover invasions on Alaskan rivers. Paper presented at 2003 Alaska Noxious and Invasive Plants Management Workshop. Anchorage, Alaska.
- Conolly, A.P. 1977. The distribution and history in the British Isles of some alien species of *Polygonum* and *Reynoutria*. Watsonia 11:291-311.
- Conservation of Arctic Flora and Fauna. Circumpolar Arctic Vegetation Map. Borgir Nordurslod Akureyri Iceland; Available from: http://www.caff.is/
- Cook, C.D.K. and R. Lüönd. 1982. A revision of the genus *Hydrilla* (Hydrocharitaceae). Aquatic Botany 13: 485-504.
- Cook, R.T., S.E.R. Bailey, and C.R. McCrohan. 1996. Slug preferences for winter wheat cultivars and common agricultural weeds. Journal of Applied Ecology 33: 866-872.
- Coombs E.M. and C.E. Turner. 1995. Scotch broom *Cytisus scoparius* Pea Family Fabaceae (Leguminosae). Biological Control of Weeds in the West.
- Cooper, J.I. and B.D. Harrison. 1973. The role of weed hosts and the distribution and activity of vector nematodes in the ecology of tobacco rattle virus. Annals of Applied Biology 73: 53-66.

- Corbin, J.D., M. Thomsen, J. Alexander and C.M. D'Antonio. 2004. Out of the frying pan: invasion of exotic perennial grasses in coastal prairies. In, C. Pirosko, (ed). Proceedings of the California Invasive Plant Council Symposium. Vol. 8: 2004. pp. 27-28.
- Corliss, J. 1993. Tall whitetop's crowding out the natives. Agricultural Research 41: 5.
- Cornel University: Poisonous Plants Informational Database. http://www.ansci.cornell.edu
- Costea, M. and F.J. Tardif. The biology of Canadian weeds. 131. *Polygonum aviculare* L. Canadian Journal of Plant Science 85: 481-506.
- Crawley, M.J. 1990. Rabbit grazing, plant competition and seedling recruitment in acid grassland. The Journal of Applied Ecology 27(3): 803-820.
- Crompton, C.W., I.V. Hall, K.I.N. Jensen, P.D. Hildebrand, P.D. 1988. The biology of Canadian weeds. 83. *Hypericum perforatum* L. Canadian Journal of Plant Science 68(1): 149-162.
- Cronin, G., K.D. Wissing and D.M. Lodge. 1998. Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submerses vs. floating leaves. Freshwater Biology 39:243-257.
- Cronquist, A. 1955. Lactuca L. Lettuce. In: Hitchcock, C.L., A. Cronquist, M. Ownbey, J.W. Thompson. 1955. Vascular plants of the Pacific Northwest. Part 5: Compositae. Seattle and London: University of Washington Press. 343 p.
- Csurhes, S. and R. Edwards. 1998. Potential environmental weeds in Australia: Achillea ptarmica L. Queensland Department of Natural Resources, Australian Government, Department of the Environment and Heritage.
- CUPPID Cornel University: Poisonous Plants Informational Database. 2004. Available: http://www.ansci. cornell.edu
- CWMA Colorado Weed Management Association. 2004. Noxious weeds and non-native plants Dame's rocket (*Hesperis matronalis*). Available: http://www.cwma.org/tansy.html [October 11, 2004].
- CWMA Colorado Weed Management Association. 2004. Tansy (*Tanacetum vulgare*). Available: http://www.cwma.org/tansy.html [October 11, 2004].
- CWMA Colorado Weed Management Association. 2000. Noxious weeds and non-native plants: Scentless chamomile (*Matricaria perforata*). Available: http://www.cwma.org/scentless_chimomile.html [October 12, 2004].
- Daehler, C.C. 2000. *Spartina alterniflora* Loisel. In: Invasive plants of California's wildlands. Edited by Bossard, C.C., J.M. Randall, and M.C. Hoshovsky. University of California Press. p. 296-299.
- Daehler, C.C., and D.R. Strong. 1994. Variable reproductive output among clones of *Spartina alterniflora* (Poaceae) invading San Francisco Bay, California: The influence of herbivory, pollination, and establishment site. American Journal of Botany. 81(3): 307-313.
- Dal-Bello, G.M. and M.R. Carranza. 1995. Weed diseases in La Plata area II. Identification of pathogens with potential for weed biocontrol programmes. Revista de la Facultad de Agronomia, La Plata 71(1): 7-14.
- Dale, M.R., M.K. Ahmed, G. Jelenkovic and C.R. Funk. 1975. Characteristics and performance of interspecific hybrids between Kentucky bluegrass and Canada bluegrass. Crop Science; 15: 797-799.
- Darlington, H.T. and G.P. Steinbauer. 1961. The eighty-year period for Dr. Beal's seed viability experiment. American Journal of Botany 48(4): 321-325.
- Darwent, A.L., W. Lobay, W. Yarish and P. Harris. 1975. Distribution and importance in northwestern Alberta of toadflax and its insect enemies. Canadian Journal of Plant Science 55: 157-162.
- Darwent, A.L. 1975. The biology of Canadian weeds. 14. *Gypsophila paniculata* L. Canadian Journal of Plant Science. 55: 1049-1058.

Darwent, A.L. and R.T. Coupland. 1966. Life history of Gypsophila paniculata. Weeds 14: 313-318.

- Davey, H.W. 1919. Experiments in the control of St. John's wort. Journal of Agriculture 17: 378-379.
- Davies, M.S. and G.L. Long. 1991. Performance of two contrasting morphs of *Brachypodium sylvaticum* transplanted into shaded and unshaded sites. Journal of Ecology 79: 505-517.
- Davison, A.W. 1971. The ecology of *Hordeum murinum* L.: II. The ruderal habit. The Journal of Ecology 59(2): 493-506.
- DCR Department of Conservation and Recreation. 2004. Invasive Alien Plant Species of Virginia. Conserving Virginia's Natural and Recreational Resources. http://www.dcr.state.va.us/dnh/invlist.htm [May 11, 2004].
- de Jong, T.J. and P.G.L. Klinkhamer. 1988. Population ecology of the biennials *Cirsium vulgare* and *Cynoglossum officinale* in a coastal sand-dune area. Journal of Ecology 76:366-382.
- de Winton, M.D. and J.S. Clayton. 1996. The impact of invasive submerged weed species on seed banks in lake sediments. Aquatic Botany 53: 31-45.
- Dempster, L.T. 1993. Plantaginaceae in J. C. Hickman (ed.) The Jepson manual: higher plants of California. University of California Press, Berkley, California. Pp. 1400.
- Densmore, R.V., P.C. McKee, C. Roland. 2001. Exotic plants in Alaskan National Park Units. Report on file with the National Park Service Alaska Region, Anchorage, Alaska. 143 pp.
- Densmore, R. Research Ecologist, USGS. 1011 E. Tudor Rd., MS701, Anchorage, AK 99503-6103. Tel: (907) 786-3916; fax (907) 786-3636. Pers. com.
- Densmore, R.V., P.C. McKee, and C. Roland. 2001. Exotic plants in Alaskan National Park Units. Report on file with the National Park Service Alaska Region, Anchorage, Alaska. 143 pp.
- Desrochers, A.M., J.F. Bain, S.I. Warwick. 1988. The biology of Canadian weeds. 89. *Carduus nutans* L. and *Carduus acanthoides* L. Canadian Journal of Plant Science 68: 1053-1068.
- Dickinson, T.A. and C.S. Campbell. 1991. Population structure and reproductive ecology in the Maloideae (Rosaceae). Systematic Botany, 16 (2): 350-362.
- DiTomaso, J.M. and E.A. Healy. 2003. Aquatic and riparian weeds of the West. California: University of California, Agriculture and Natural Resources; 442 p.
- DiTomaso, J.M. and E.A. Healy. 2003. Aquatic and riparian weeds of the West. California: University of California, Agriculture and Natural Resources; Pp. 314-341.
- Dirzo, R. and J.L. Harper. 1980. Experimental studies on slug-plant interactions: II. The effect of grazing by slugs on high density monocultures of *Capsella bursa-pastoris* and *Poa annua*. The Journal of Ecology 68(3): 999-1011.
- Dore, W.G. and J. McNeill. 1980. Grasses of Ontario. Monograph 26. Ottawa, Ontario: Biosystematics Research Institute, Research Branch Agriculture Canada.
- Dorn, N.J., G. Cronin and D.M. Lodge. 2001. Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitat. Oecologia 128: 406-415.
- Dorph-Petersen, K. 1925. Examination of the occurrence and vitality of various weed seed species under different conditions, made at the Danish State Seed Testing Station during the years 1896-1923. 4th International Seed Testing Congress, 1924, Cambridge, England. pp. 128-138.
- Douglas, G.W., G.B. Straley, D. Meidinger, and J. Pojar. 1998. Illustrated flora of British Columbia. V. 2. Ministry of Environment, Lands and Parks Ministry of Forests. British Columbia. 401 pp.
- Douglas, G.W. and D. Meidinger. 1998. Brassicaceae. In: Douglas, G.W., G.B. Straley, D. Meidinger, and J. Pojar. Illustrated flora of British Columbia. V. 2. Ministry of Environment, Lands and Parks Ministry of Forests. British Columbia. 401 pp.

- Douglas, G.W. and A. MacKinnon. 1998. Caryophyllaceae. In: Douglas, G.W., G.B. Straley, D. Meidinger, and J. Pojar. Illustrated flora of British Columbia. V. 2. Ministry of Environment, Lands and Parks Ministry of Forests. British Columbia. 401 pp.
- Douglas, G.W. and A. MacKinnon. Polygonaceae. In: Douglas, G. W., D. Meidinger and J. Pojar. 1999. Illustrated flora of British Columbia. V. 4. Ministry of Environment, Lands and Parks Ministry of Forests. British Columbia. Pp. 60-102.
- Duebbert, H.F., E.T. Jacobson, K.F. Higgins, and E.B. Podoll. Establishment of seeded grasslands for wildlife habitat in the prairie pothole region. Special Scientific Report – Wildlife No. 234. Washington, D.C.: U.S. Department of the Interior, Fish and Wildlife Service; 1981. 21 p.
- Duke, J.A. 1983. Handbook of energy crops. Unpublished. Available: Center for New Crops and Plants Products. Purdue University. Department of Horticulture and Landscape Architecture. West Lafayette, IN. http://www.hort.purdue.edu/newcrop/default.html [June 8, 2004].
- Dunn, P.H. 1985. Origin of leafy spurge in North America. Weed Science Society of America. 3:7-13.
- Duvel, J.W.T. 1904. Preservation of seed buried in the soil. Botanical Gazette 37(2): 146-147.
- Eckardt, N. 1987. Element stewardship abstract for *Melilotus alba* sweetclover or white sweetclover, *Melilotus officinalis* yellow sweetclover. The Nature Conservancy, Minneapolis. 10 pp.
- Edwards, D.I. and D.P. Taylor. 1963. Host range of an Illinois population of the stem nematode (*Ditylenchus dipsaci*) isolated from onion. Nematologica 9: 305-312.
- Elakovich, S.D. and J.W. Wooten. 1989. Allelopathic potential of sixteen aquatic and wetland plants. Journal of Aquatic Plant Management 27: 78-84.
- Elliott, C.L., J.D. McKendrick, and D. Helm. 1987. Plant biomass, cover, and survival of species used for stripmine reclamation in south-central Alaska, U.S.A. Arctic and Alpine Research. 19(4):572-577.
- Elliott, F.C. 1949. Bromus inermis and B. pumpellianus in North America. Evolution 3(2):142-149.
- Elmore, C.L. and D.W. Cudney. 2003. Field bindweed. Integrated pest management for home gardeners and landscape professionals. Pest notes. Davis (CA): University of California, Agriculture and Natural Resources. Publication nr 7462. 4 p.
- Else, M.J. and D.N. Riemer. 1984. Factors affecting germination of seeds of fragrant waterlily (*Nymphaea odorata*). Journal of Aquatic Plant Management 22: 22-25.
- Endress, B.A. and C.G. Parks. 2004. Element stewardship abstract for *Potentilla recta* L. Sulfur cinquefoil. The Nature Conservancy. Arlington, Virginia.
- Ennos, R.A. 1981. Detection of selection in populations of white clover (*Trifolium repens* L.). Biological Journal of the Linnean Society 15:75-82.
- Erneberg, M. 1999. Effects of herbivory and competition on an introduced plant in decline. Oecologia 118: 203-209.
- Ertter, B. 1993. Rubus. In: Hickman JC, editor. The Jepson manual. Higher plants of California. Berlekey, Los Angeles, London: University of California Press. p 974-975.
- Escarre, J. and J.D. Thompson. 1991. The effects of successional habitat variation and time of flowering on seed production in *Rumex acetosella*. The Journal of Ecology 79(4): 1099-1112.
- Esser, L.L. 1993. Phleum pratense. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [November 5, 2004].
- Esser, L.L. 1993. *Taraxacum officinale*. In: Fire Effects Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/

- Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp.
- Evans, J.E. 1984. Canada thistle (*Cirsium arvense*): A literature review of management practices. Natural Areas Journal 4:11-21.
- Evans, L.T. 1953. The ecology of the halophytic vegetation at Lake Ellesmere, New Zealand. The Journal of Ecology. 41(1): 106-122.
- Evershed, A.F.C.-H. and C. Warburton. 1918. Pheasants and agriculture. The Journal of agricultural science 9: 63-91.
- Faarlund, and Sunding. 1992. Illustrated Flora of Norway and Northern Europe. Domino Books, Ltd., Jersey. Pp. 544.
- Fabricius, L.J. and J.D. Nalewaja. 1968. Competition between wheat and wild buckwheat. Weed Science 16: 204-208.
- Facelli, J.M., E. D'Angela, R.J.C. Leon. 1987. Diversity changes during pioneer stages in subhumid pampean grassland succession. American Midland Naturalist. 117(1): 17-25.
- Fenner, M. 1978a. Susceptibility to shade in seedlings of colonizing and closed turf species. New Phytologist 81: 739-744.
- Fenner, M. 1978b. A comparison of the abilities of colonizers and closed-turf species to establish from seed in artificial swards. Journal of Ecology 66: 953-963.
- Fiedler, P.L. and R.A. Leidy. 1987. Plant communities of Ring Mountain Preserve, Marin County, California. Madroño 34(3): 173-192.
- Firbank, L. and S. Smart. 2002. The changing status of arable plants that are important food items for farmland birds. Aspects of Applied Biology 67: 165-170.
- Flora Europaea. Royal Botanic Garden Edinburgh. Available: http://www.rbge.org.uk/rbge/web/index.jsp. [June 28, 2004].
- Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 7+ vols. New York and Oxford.
- Floridata. 2002. *Digitalis purpurea*. Available: http://floridata.com/ref/d/digi_pur.cfm [November 11, 2004].
- Fonda, R.W. 1974. Forest succession in relation to river terrace development in Olympic National Park, Washington. Ecology 55(5): 927-942.
- Forage Information System. 2004. Timothy (*Phleum pratense* L.). Available: http://forages.oregonstate.edu [November 4, 2004].
- Forages. Topics: Species and Forage Variety Trials. Timothy. 2004. Available: http://www.forages.psu.edu [Mart 2, 2004].
- Forcella, F. and H. Wood. 1986. Demography and control of *Cirsium vulgare* (Savi) Ten. In relation to grazing. Weed Research 26:199-206.
- Forsberg, D.E. and K.F. Best. 1964. The emergence and plant development of wild buckwheat (*Polygonum convolvulus*). Canadian Journal of Plant Science 44: 100-103.
- Foulds, W. 1978. Response to soil moisture supply in three *leguminous* species. I. Growth, reproduction, and mortality. New Phytologist, 80: 535-545.
- Fowler, H.G. 1983. Individual specializations on nectarines of *Euphorbia esula* by Formica pallidefulva workers. Sociobiology 8: 99-103.

- Frankton, C. and G.A. Mulligan. 1970. Weeds of Canada. Canada Department of Agriculture. Canada. p. 112-113.
- Frick, B. 1984. The biology of Canadian weeds. 62. *Lappula squarrosa* (Retz.) Dumort. Canadian Journal of Plant Science 64: 375-386.
- Friesen, G. and L.H. Shebeski. 1960. Economic losses caused by weed competition in Manitoba grain fields. I. Weed species, their relative abundance and their effect on crop yields. Canadian Journal of Plant Science 40:457-467.
- Frodge, J.D., D.A. Marino, G.B. Pauley and G.L. Thomas. 1995. Mortality of largemouth bass (*Micropterus salmoides*) and steelhead trout (*Oncorhynchus mykiss*) in densely vegetated littoral areas tested using in situ bioassay. Lake and Reservoir Management 11 (2): 343-358.
- Froud-Williams, R.J. and R. Ferris. 1987. Germination of proximal and distal seeds of *Poa trivialis* L. from contrasting habitats. Weed Research; 27: 245-250.
- Funk, D.T. 2005. Alnus glutinosa (L.) Gaerth. European alder. USDA Forest Service, Northeastern Area, State and Private Forestry. Available: http://www.na.fs.fed.us/ via the INTERNET. Accessed 2005 March 3.
- Furbish, C.E. 2001. Exotic plant survey of the Chilkoot Trail Unit, Klondike Gold Rush National Historical Park. Natural Resources Management Program. 49 pp.
- Garnatje, T., R. Vilatersana, C.T. Roche, N. Garcia-Jacas, A. Susanna and D.C. Thill. 2002. Multiple introductions from the Iberian peninsula are responsible for invasion of *Crupina vulgaris* in western North America. New Phytologist 154: 419-428.
- Gasser, H. 1968. A growth analysis of *Phleum pratense* and of *Dactylis glomerata* grown in pure and mixed stands at two densities. Botanical Gazette. 129(4): 351-361.
- Gealy, D.R., F.L. Young, and L.A. Morrow. 1985. Germination of mayweed (*Anthemis cotula*) achenes and seed. Weed Science 33: 69-73.
- Gealy, D.R., S.A. Squier, and A.G. Ogg Jr. 1994. Soil environment and temperature affect germination and seedling growth of mayweed chamomile (*Anthemis cotula*). Weed Technology 8: 668-672.
- Gettle, R.M., J.R. George, K.M. Blanchet, D.R. Buxton and K.J. Moore. 1996a. Frost-seeding legumes into established switchgrass: establishment, density, persistence, and sward composition. Agronomy Journal 88: 98-103.
- Gettle, R.M., J.R. George, K.M. Blanchet, D.R. Buxton and K.J. Moore. 1996b. Frost-seeding legumes into established switchgrass: forage yield and botanical composition of the stratified canopy. Agronomy Journal 88: 555-560.
- Gibson, D.I. and A.D. Courtney. 1977. Effects of *Poa trivialis, Stellaria media*, and *Rumex obtusifolius* on the growth of Lolium perenne in the glasshouse. Annals of Applied Biology 86: 105-110.
- Gillham, M.E. 1956. Ecology of the Pembrokeshire Islands: V. Manuring by the colonial seabirds and mammals, with a note on seed distribution by gulls. The Journal of Ecology 44(2): 429-454.
- Gilman, E.F. and D.G. Watson. 1994. *Sorbus aucuparia* European Mountain-Ash. Fact Sheet ST-599, Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
- Gisler, M. Program manager/botanist. Institute for Applied Ecology, 227 SW 6th, Corvallis, Oregon 97333. tel. (541) 753-3099 pers. comm.
- Glegg, L.M. and J. Grace. 1974. The distribution of *Heracleum mantegazzianum* (Somm. & Levier) near Edinburgh. Transactions of Botanical Society of Edinburgh 42: 223-229.
- Glenn, D.M. and W.V. Welker. 1996. Sod competition in peach production: II. Establishment beneath mature trees. Journal of the American Society for Horticultural Science; 121:670-675.

- Goltz, L. 1988. Honey and pollen plants. Part X. Miscellaneous honey plants. American Bee Journal 128: 97-100.
- Gooch, S.M.S. 1963. The occurrence of weed seeds in samples tested by the official seed testing station, 1960-1. Journal of the National Institute of Agricultural Botany 9(3): 353-371.
- Graham, E.H. 1941. Legumes for erosion control and wildlife. Misc. Publ. 412. Washington, DC: U.S. Department of Agriculture. 153 p.
- Granström, A. 1987. Seed viability of fourteen species during five years of storage in a forest soil. Journal of Ecology, 75, p.321-331.
- Granström, A. and J. Schimmel. 1993. Heat effects on seeds and rhizomes of a selection of boreal forest plants and potential reaction to fire. Oecologia 94: 307-313.
- Grant, E.A. and W.G. Sallens. 1964. Influence of plant extracts on germination and growth of eight forage species. J. Br. 18 Grass Soc. 19: 191-197.
- Green, H.E. 1937. Dispersal of Senecio jacobaea. Journal of Ecology. 25:569.
- Grieshop, M.J. and R.M. Nowierski. 2002. Selected factors affecting seedling recruitment of Dalmatian toadflax. Journal of Range Management 55: 612-619.
- Grime, J.P., G. Mason, A.V. Curtis, J. Rodman, S.R. Band. 1981. A comparative study of germination characteristics in a local flora. The Journal of Ecology. 69(3): 1017-1059.
- Gross, K.L. 1980. Colonization by *Verbascum thapsus* (Mullein) of an old-field in Michigan: experiments on the effects of vegetation. Journal of Ecology. 68(3): 919-927.
- Gross, K.L. 1984. Effect of seed size and growth form on seedling establishment of six monocarpic perennial plants. The Journal of Ecology. 72(2): 369-387.
- Gross, K.L. and P.A. Werner. 1978. The biology of Canadian weeds. 28. *Verbascum thapsus* L. and *V. blattaria* L. Canadian Journal of Plant Science. 58: 401-413.
- Gross, K.L. and P.A. Werner. 1982. Colonizing abilities of 'biennial' plant species in relation to ground cover: implications for their distributions in a successional sere. Ecology. 63(4): 921-931.
- Groves, R.H., M.P. Austin and P.E. Kaye. 2003. Competition between Australian native and introduced grasses along a nutrient gradient. Austral Ecology 28: 491-498.
- Gubanov, I.A., K.B. Kiseleva, B.C. Novikov, and B.N. Tihomirov. 1995. Flora of vascular plants of Center European Russia. Moscow. Argus. 558 pp. In Russian. University of Wyoming. Laramie, Wyoming. 630 pp.
- Gubanov, I.A., K.V. Kiseleva, V.S. Novikov, and V.N. Tihomirov. An Illustrated identification book of the plants of Middle Russia, Vol. 2: Angiosperms (dicots: archichlamydeans). Moscow: Institute of Technological Research; 2003. 666 p.
- Gubanov, I.A., K.V. Kiseleva, V.S. Novikov, and V.N. Tihomirov. An illustrated identification book of the plants of Middle Russia, Vol. 1: Vascular cryptograms, gymnosperms, angiosperms (monocots). Moscow: Institute of Technological Researches; 2003. 526 p. In Russian.
- Guide to weeds in British Columbia. 2002. British Columbia, Ministry of Agriculture, Food and Fisheries, Open Learning Agency. Available: http://www.weedsbc.ca/resources.html [April 23, 2005].
- Gulmon, S.L. 1979. Competition and coexistence: three annual grass species. American Midland Naturalist. 101(2): 403-416.
- Guretzky, J.A., K.J. Moore, A.D. Knapp, and E.C. Brummer. 2004. Emergence and survival of legumes seeded into pasture varying in landscape position. Crop Science 44: 227-233.
- Haferkamp et al. 1953. Studies on aged seeds. I. Relation of age of seed to germination and longevity. Agronomy Journal 45: 434-437.

- Haggar, R.J. 1979. Competition between *Lolium perenne* and *Poa trivialis* during establishment. Grass and Forage Science; 34: 27-36.
- Hakansson, S. and B. Wallgren. 1972. Experiments with *Sonchus arvensis* L. II. Reproduction, plant development and response to mechanical disturbance. Swedish Journal of Agricultural Research 2: 3-14.
- Hall, I.V. 1955. Floristic changes following the cutting and burning of a woodlot for blueberry production. Canadian Journal of Agricultural Science 35: 143-152.
- Haller, W.T., D.L. Sutton, and W.C. Barlowe. 1974. Effect of salinity on growth of several aquatic macrophytes. Ecology 55: 891-894.
- Haller, W.T. and D.L. Sutton. 1975. Community structure and competition between *Hydrilla* and *Vallisneria*. Hyacinth Control Journal 13: 48-50.
- Halloran, G.M. and A.L. Pennell. 1981. Regenerative potential of barley grass (*Hordeum leporinum*). The Journal of Applied Ecology 18(3): 805-813.
- Hamrick, J.L. and J.M. Lee. 1987. Effect of soil surface topography and litter cover on the germination, survival, and grow of musk thistle (*Carduus nutans*). American Journal of Botany 74(3): 451-457.
- Harker, K.N., V.S. Baron, D.S. Chanasyk, and F.C. Stevenson. 2000. Grazing intensity effects on weed populations in annual and perennial pasture systems. Weed Science 48: 231-238.
- Harmon, G.W. and F.D. Keim. 1934. The percentage and viability of weed seeds recovered in the feces of farm animals and their longevity when buried in manure. Journal of the American Society of Agronomy 26: 762-767.
- Harper, J.L. 1957. *Ranunculus acris* L. The Journal of Ecology 45(1): 289-342.
- Harper, J.L. and W.A. Wood. 1957. Biological flora of the British Isles: *Senecio jacobaea* L. Journal of Ecology. 45: 617-637.
- Harris, S.A. 2000. *Digitalis purpurea* L. In: Invasive plants of California's wildlands. Edited by Bossard, C.C., J.M. Randall, and M.C. Hoshovsky. University of California Press. p. 158-161.
- Harris, S.A. 2000. *Senecio jacobaea* L. In: Invasive plants of California's wildlands. Edited by Bossard, C.C., J.M. Randall, and M.C. Hoshovsky. University of California Press. p. 291-295.
- Harris, P. and A. McClay. 2003. Scentless chamomile. *Tripleurospermum inodorum* (L.) Sch. Bip. In: Classical biological control of weeds. Biology of target weeds. Available: http://res2.agr.ca/lethbridge/weedbio/plant/bchamom_e.htm [October 12, 2004].
- Harrison, H.F., Jr. and J.K. Peterson. 1997. Inhibitory effects of corn spurry (*Spergula arvensis* L.) on cole crops and English pea. Allelopathy Journal 4: 283-290.
- Harrison, P.G. 1979. Reproductive strategies in intertidal populations of two co-occurring seagrasses (*Zostera* spp.). Canadian Journal of Botany 57: 2635-2638.
- Harrison, P.G. 1982. Seasonal and year-to-year variations in mixed intertidal populations of *Zostera japonica* Aschres. & Graebn. and Ruppia maritima L. S.L. Aquatic Botany 14: 357-371.
- Harrison, P.G. 1987. Natural expansion and experimental manipulation of seagrass (*Zostera* spp.) abundance and the response of infaunal invertebrates. Estuarine, Coastal and Shelf Science 24(6): 799-812.
- Harrison, P.G. and R. Bigley. 1982. The recent introduction of the seagrass *Zostera japonica* Aschers. and Graebn. to the Pacific coast of North America. Canadian Journal of Fisheries and Aquatic Sciences 39(12): 1642-1648.
- Hartman, R.L. 1993. Gypsophila Baby's-breath. In Hickman, J. C. (ed.) The Jepson Manual: Higher Plants of California. p. 481.
- Hayden, A. 1934. Distribution and reproduction of Canada thistle in Iowa. American Journal of Botany 21: 355-373.

- Hearnden, M.N. and B.H. Kay. 1997. Importance of *Hydrilla verticillata* (Hydrocharitaceae) as habitat for immature mosquitoes at the Ross River Reservoir, Australia. Journal of the American Mosquito Control Association 13: 164-170.
- Heathcote, G.D. and W.J. Byford. 1975. Surveys of sugar-beet seed crops, mangold clamps and weeds in England for aphids and viruses, 1963-73. The Journal of Agricultural Science 84: 87-95.
- Heffernan, K.E., P.P. Coulling, J.E. Townsend, and C.J. Hutto. 2001. Ranking Invasive Exotic Plant Species in Virginia. Natural Heritage Technical Report 01-13. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 27pp. plus appendices.
- Heidel, B. 1987. Element stewardship abstract for *Carduus nutans* Musk thistle. The Nature Conservancy. Arlington, Virginia. Available: http://tncweeds.ucdavis.edu/esadocs/allipeti.html [2005, May 2].
- Heidorn, R. 1991. Vegetation management guideline: purple loosestrife (*Lythrum salicaria* L.). Natural Areas Journal. 11(3): 172-173.
- Heiligmann, R.B. 2006. Controlling undesirable trees, shrubs, and vines in your woodland. Ohio State University Extension Fact Sheet. School of Natural Resources. Available: http://ohioline.osu.edu.
- Heutte, T. Botanist, USDA Forest Service. Ketchikan-Misty Fiords and Wrangell Ranger Districts, 648 Mission Street, Ketchikan, Alaska 99901. Tel: (907) 228-4132 – Pers. obs.
- Heys, J., Exotic Plant Management Program Coordinator, National Park Service, Alaska Region Biological Resources Team, 240 W. 5th Ave, #114, Anchorage, AK 99501 tel: (907)644-3451, fax: 644-3809 – pers. obs.
- Hill, K.A., R.P.C. Townsend, M.J. Hill, and J.G. Hampton. 1999. Weed seeds in white clover seed lots: losses during seed cleaning. Agronomy Society of New Zealand. Proceedings annual conference 29: 27-30.
- Hitchcock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest. An illustrated manual. University of Washington Press, Seattle and London. P. 623.
- Hodkinson, D. and K. Thompson. 1997. Plant dispersal: the role of man. Journal of Applied Ecology, 34: 1484-1496.
- Hoffmann, M.H. 2001. The distribution of *Senecio vulgaris*: capacity of climatic range models for predicting adventitious ranges. Flora 196: 395-403.
- Hofmann, M. and J. Isselstein. 2004. Effects of drought and competition by a ryegrass sward on the seedling growth of a range of grassland species. Journal of Agronomy and Crop Science 190: 277-286.
- Hoppes, W.G. 1988. Seedfall pattern of several species of bird-dispersed plants in Illinois woodland. Ecolology. 69(2): 320-329.
- Hoshovsky, M. 1986. Element Stewardship Abstract for *Cytisus scoparius* and *Genista monspessilanus*. Scotch Broom, French Broom. The Nature Conservancy. Arlington, VA.
- Hoshovsky, M.C. 1989. Element stewardship abstract for *Rubus discolor*, (*Rubus procerus*) Himalayan blackberry. Arlington, Virginia: The Nature Conservancy. Available: http://tncweeds.ucdavis.edu/esadocs/rubudisc.html via the INTERNET. Accessed 2005 Feb 07.
- Hoshovsky, M.C. 2000. *Rubus discolor* Weihe & Nees. In: Bossard CC, Randall JM and Hoshovsky MC, editors. Invasive plants of California's wildlands. Berkeley, Los Angeles, London: University of California Press. p 277-281.
- Hoshovsky, M.C. 1986. Element stewardship abstract for *Verbascum thapsus* Common mullein. The Nature Conservancy, Arlington, Verginia.
- Houssard, C. and J. Escarre. 1991. The effects of seed weight on growth and competitive ability of *Rumex acetosella* from two successional old-fields. Oecologia 86(2): 236-242.
- Howald, A. 2000. *Lepidium latifolium* L. In: Bossard, C.C., J.M. Randall, M.C. Hoshovsky, editors. Invasive plants of California's wildlands. Berkeley, CA: University of California Press: 222-227.

- Howard, J.L. 2002. *Descurainia sophia*. In: Fire Effect Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer) Available: http://www.fs.fed.us/database/feis/
- Howarth, S.E. and J.T. Welliams. 1968. Biological flora of the British Isles. *Chrysanthemum Leucanthemum* L. Journal of Ecology 56:585-595.
- Hoveland, C.S. and E.D. Donnelly. 1966. Response of *Vicia* genotypes to flooding. Agronomy Journal 58: 341-345.
- Hull, A.C.Jr and J.O. Evans. 1973. Musk thistle (*Carduus nutans*): An undesirable range plant. Journal of Range Management 26(5): 383-385.
- Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA. 1008 p.
- Hume, L., J. Martinez, and K. Best. 1983. The biology of Canadian weeds. 60. *Polygonum convolvulus* L. Canadian Journal of Plant Science 63: 959-971.
- Hurka, H. and R. Haase. 1982. Seed ecology of *Capsella bursa-pastoris* (Cruciferae): dispersal mechanism and the soil seed bank. Flora 172: 35-46.
- Hurteau, M.D. and R. Briggs. 2003. Common yarrow *Achillea millefolium* L. Plant fact sheet. United States Department of Agriculture. Available: http://plants.usda.gov [13 December, 2004].
- Hutchings, M.J. and E.A.C. Price. 1999. *Glechoma hederacea* L. (*Nepeta glechoma* Benth., *N. hederacea* (L.) Trev.). Journal of Ecology. 87: 347-364.
- Hutchison, M. 1992. Vegetation management guideline: Canada thistle (*Cirsium arvense* (L.) Scop.). Natural Areas Journal. 12: 160-161.
- Hutchison, M. 1992. Vegetation management guideline: Reed Canary Grass (*Phalaris arundinaceae* L.). Natural Areas Journal 12(3): 159.
- Inderjit and K.M.M. Dakshini. 1998. Allelopathic interference of chickweed, *Stellaria media* with seedling growth of wheat (*Triticum aestivum*). Canadian Journal of Botany 76: 1317-1321.
- Integrated Pest Management Program. 2004. Alaska statewide list of invasive garden flowers. University of Alaska Fairbanks, Cooperative Extension Service.
- International Legume Database & Informational Service. 2003. Available: http://www.ildis.org/. [June 28, 2004].
- Invaders Database System. The University of Montana. 2003. Montana Noxious Weed Trust Fund. Department of Agriculture. http://invader.dbs.umt.edu/
- Ivens, G.W. 1979. Stinking mayweed. New Zealand Journal of Agriculture 138: 21-23.
- ITIS Integrated Taxonomic Information System. 2002. *Hordeum jubatum* L. Available: http://www.itis. usda.gov/index.html. [November 10, 2004].
- ITIS Integrated Taxonomic Information System. 2002. http://www.itis.usda.gov
- Jacono, C.C. and M.M. Richerson. 2003. Nonindigenous Aquatic Plants. *Myriophyllum spicatum* L. U.S. Department of the Interior. Geological Survey. Biological Resources Division. Center for Aquatic Resource Studies. http://nas.er.usgs.gov.
- Jacono, C. 1998. *Spartina alterniflora* Loisel. Nonindigenous aquatic species. U.S. Department of the Interior. Geological Survey. Biological Resources Division. Center for Aquatic Resource Studies. Available: http:// nas.er.usgs.gov/plants/docs/sp_alter.html [November 8, 2004].
- Japanese Knotweed Alliance. 2004. On Line Document. http://www.cabi-bioscience.org/html/japanese_ knotweed_alliance.htm.
- Jennersten, O., L. Berg, and C. Lehman. 1988. Phenological differences in pollinator visitation, pollen deposition and seed set in the sticky catchfly, *Viscaria vulgaris*. The Journal of Ecology. 76 (4): 1111-1132.

- Jessen, K. and H. Helbaek. 1944. Cereal and weeds in Great Britain and Ireland in prehistoric and early historic times. K. danske vidensk. Selsk. Biol. Skr., 3: 1-68.
- Jessep, C.T. 1990. Aspects of the biology of nodding thistle (*Carduus nutans* L.) in Canterbury, New Zealand. New Zealand Journal of Agricultural Research 33: 173-183.
- Jesson, L., D. Kelly, and A. Sparrow. 2000. The importance of dispersal, disturbance, and competition for exotic plant invasions in Arthur's Pass National Park, New Zealand. New Zealand Journal of Botany 38: 451-468.
- Johnson, D., L. Kershaw, A. MacKinnon, and J. Pojar. 1995. Plants of the western boreal forest and aspen parkland. Alberta, Canada: Lone Pine. p. 103.
- Joyce, J.C., W.T. Haller and D.E. Colle. 1980. Investigation of the presence and survivability of hydrilla propagules in waterfowl. Aquatics 2: 10-14.
- Joyce, J.C., K.A. Langeland, T.K. Van and V.V. Vandiver, Jr. 1992. Organic sedimentation associated with hydrilla management. Journal of Aquatic Plant Management 30: 20-23.
- Juras, L., E. Johnson, and R. Holm. 2004. Scentless chamomile. Saskatchewan Agriculture, Food and Rural Revitalization, Saskatchewan, Canada. Available: http://www.agr.gov.sk.ca/default.asp [October 12, 2004].
- Kadereit, J.W. 1984. Studies on the biology of *Senecio vulgaris* L. ssp. *denticulatus* (O.F. Muell.) P.D. Sell. New Phytologist 97: 681-689.
- Kadrmas, T. and W.S. Johnson. 2004. Identifying and managing sulfur cinquefoil. Cooperative Extension, University of Nevada, Reno. Available: http://www.unce.unr.edu/publications/FS03/FS0304.pdf Accessed 2005 Feb 21.
- Kar, R.K. and M.A. Choudhuri. 1982. Effect of desiccation on internal changes with respect of survival of *Hydrilla verticillata*. Hidrobiological bulletin 16(2): 213-221.
- Kay, Q.O.N. 1971. Biological flora of the British Isles. Anthemis cotula L. The Journal of Ecology 59(2): 623-636.
- Kay, Q.O.N., A.J. Lack, F.C. Bamber, and C.R. Davies. 1984. Differences between sexes in floral morphology, nectar production and insect visits in a dioecious species, *Silene dioica*. New Phytologist 98(3): 515-529.
- Kaye, T. 2001. *Brachypodium sylvaticum* (Poaceae) in the Pacific Northwest. Botanical Electronic News. Available: http://www.ou.edu/cas/botany-micro/ben/ben277.html [February 1, 2005].
- Keiffer, C.H. and I.A. Ungar. 2002. Germination and establishment of halophytes on brine-affected soils. Journal of Applied Ecology. 39: 402-415.
- Kellman, M. 1974. Preliminary seed budgets for two plant communities in coastal British Columbia. Journal of Biogeography 1(2): 123-133.
- Kiltz, B.F. 1930. Perennial weeds which spread vegetatively. Journal of the American Society of Agronomy 22(3): 216-234.
- King County. 2004. Policemen's helmet *Impatiens glandulifera*. Department of Natural Resources and Parks, Water, and Land Resources Division Noxious Weed Control Program. 206296-0290 TTY Relay: 711. Available: http://dnr.metrokc.gov/wlr/LANDS/Weeds/impatiens.htm [November 2, 2004].
- Kivilaan, A. and R.S. Bandurski. 1981. The one hundred-year period for Dr. Beal's seed viability experiment. American Journal of Botany 68(9): 1290-1292.
- Klebesadel, L.J. 1980. Birdvetch. Forage crop, ground cover, ornamental, or weed? Agroborealis January/1980: 46-49.
- Klett, A.T., H.F. Duebbert, and G.L. Heismeyer. 1984. Use of seeded native grasses as nesting cover by ducks. Wildlife Society Bulletin, 12: 134-138.
- Klinkhamer, P.G.L. and T.J. De Jong. 1993. *Cirsium vulgare* (Savi) Ten. (*Carduus lanceolatus L., Cirsium lanceolatum* (L.) Scop., non Hill). Biological flora of the British Isles. Journal of Ecology 81: 177-191.

- Klinkhamer, P.G. and T.J. De Jong. 1988. The importance of small-scale disturbance for seedling establishment in *Cirsium vulgare* and *Cynoglossum officinale*. J. of Ecology. 76:383-392.
- Klinkhamer, P.G., T.J. De Jong, and E. van der Meijen. 1988. Production, dispersal and predation of seeds in the biennial *Cirsium vulgare*. Journal of Ecology. 76:403-414.
- Klott, P.M. 1981. A reassessment of the ecology of barley grass in Australia. *Hordeum leporinum, Hordeum glaucum,* weeds, invading pastures. Proceedings of the sixth Australian Weeds Conference; Broadbeach International Hotel, City of Gold Coast, Queensland, 13-18 September.
- Klott, P.M. and K.G. Boyce. 1982. Allelopathic effects of wireweed (*Polygonum aviculare*). Australian Weeds 1(3): 11-14.
- Kreps, L.B. *Euphorbia esula* L. In: Bossard, C.C., J.M. Randall, and M.C. Hoshovsky, editors. Invasive plants of California's wildlands. Berkeley, Los Angeles, London: University of California Press; 2000. p. 188-193.
- Krieckhaus, B. J., Biologist, USDA, Forest Service, Tongass National Forest, 204 Siginaka Way, Sitka, AK 99835. Tel: (907) 747-4242 Pers. comm.
- Krueger, W.C. and G.B. Donart. 1974. Relationship of soil to seasonal deer forage quality. Journal of Range management 27(2): 114-117.
- Kubanis, S.A. 1982. Revegetation techniques in arctic and subarctic environments. Office of the Federal Inspector Alaska Natural Gas Transportation System, Office of Environment, Biological Programs. 40 pp.
- Kufeld, R.C. 1973. Foods eaten by the Rocky Mountain elk. Journal of Range Management. 26: 106-113.
- Lammerink, J. 1968. Genetic variability in commencement of flowering in *Medicago lupulina* L. in the South Island of New Zealand. New Zealand Journal of Botany; 6: 33-42.
- Langeland, K.A. 1996. *Hydrilla verticillata* (L.F.) Royle (Hydrocharitaceae), "The perfect aquatic weed". Castanea 61: 293-304.
- Langeland, K.A. and D.L. Sutton. 1980. Regrowth of hydrilla from axillary buds. Journal of Aquatic Plant Management 18; 27-29.
- Lantz, L.E. 2000. Reed Canarygrass (*Phalaris arundinacea* L.). Washington State Noxious Weed Control Board.
- Lapina, I. Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 Pers. obs.
- Larson, M.M., S.H. Patel, and J.P. Vimmerstedt. 1995. Allelopathic interactions between herbaceous species and trees grown in topsoil and spoil media. Journal of Sustainable Forestry 3(1): 39-52.
- Lawson, H.M. 1972. Weed competition in transplanted spring cabbage. Weed Research 12: 254-267.
- Leach, H.R. 1956. Food habits of the Great Basin deer herds of California. California Fish and Game. 38: 243-308.
- Leather, S.R. 1985. Does the bird cherry have its "fair share" of insect pests? An appraisal of the species area relationships of the phytophagous insects associated with British *Prunus* species. Ecological Entomology 10: 43-56.
- Leather, S.R. 1996. Biological flora of the British Isles. Prunus padus L. Journal of Ecology 84: 125-132.
- Leishman, M.R., G.J. Masters, I.P. Clarke, and V.K. Brown. 2000. Seed bank dynamics: the role of fungal pathogens and climate change. Functional Ecology; 14: 293-299.
- Lenssen, J.P., M. van de Steeg, M. Harry, and H. de Kroon. 2004. Does disturbance favour weak competitors? Mechanisms of changing plant abundance after flooding. Journal of Vegetation Science; 15: 305-314.
- Leopold, I., D .Günther, J. Schmidt, and D. Neumann. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry 50: 1323-1328.

- Lesica, P.L. and T.H. DeLuca 2000. Sweetclover a potential problem for the northern Great Plains. Journal of Soil Water Conservation 55:259-260.
- Lewis, J. 1973. Longevity of crop and weed seeds: survival after 20 years in soil. Weed Research 13: 179-191.

Lewis, P. and M. Lynch. 1998. Campanulas. A gardener's guide. Portland, Oregon: Timber Press.

Lid, J. and D. T. Lid. 1994. Flora of Norway. The Norske Samlaget, Oslo. Pp. 1014.

Liskey, E. 1999. Poa trivialis: friend and foe. Grounds Maintenance; 34: G1, G2, G4, G12.

- Livingston, R.B. and M.L. Allessio. 1968. Buried viable seed in successional field and forest stands, Harvard Forest, Massachusetts. Bulletin of the Torrey Botanical Club 95(1): 58-69.
- Lloyd, W.A. (1912) Sweet clover: a field survey of its distribution, soil adaptation, habits and agricultural value. Ohio Agricultural Experiment Station Bulletin, 244.
- Lomer, F. and G.W. Douglas. 1998. Clusiaceae. In: Douglas, G.W., G.B. Straley, D. Meidinger, and J. Pojar, editors. Illustrated flora of British Columbia. Volume 2. Dicotyledons (Balsaminaceae through Cuscutaceae). British Columbia: Ministry of Environment, Lands and Parks, Ministry of Forests. p. 336-342.
- Lovett-Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (*Ranunculus repens*): I. The dynamic of ramets in contrasting habitats. The Journal of Ecology 69(3): 743-755.
- Lovett-Doust, J., L. Lovett-Doust, and A.T. Groth. 1990. The biology of Canadian weeds. 95. *Ranunculus repens*. Canadian Journal of Plant Science 70: 1132-1141.
- Luken, J.O., L.M. Kuddes, T.C. Tholeneier. 1997. Response of understory species to gap formation and soil disturbance in *Lonicera maackii* thickets. Restoration Ecology 5:229-235.
- Lutman, P.J.W., G.W. Cussans, K.J. Wright, B.J. Wilson, G. McN. Wright and H.M. Lawson. 2001. The persistence of seeds of 16 weed species over six years in two arable fields. Weed Research 42: 231-241.
- Lutman, P.J.W. 2000. Estimation of seed production by *Stellaria media*, *Sinapis arvensis*, and *Tripleurospermum inodorum* in arable crops. Weed Research 42: 359-369.
- Lym, R.G. and R.K. Zollinger. 1992. Spotted Knapweed (*Centaurea maculosa* Lam.). North Dakota State University. NDSU Extension Service. http://www.ext.nodak.edu/extpubs/plantsci/weeds/w842w.htm
- Lym, R.G. 1998. The biology and integrated management of leafy spurge (*Euphorbia esula*) on North Dakota rangeland. Weed Technology 12: 367-373.
- Lyons, K.E. 1998. Element stewardship abstract for *Convolvulus arvensis* L. Field bindweed. The Nature Conservancy: Arlington, Virginia.
- Lyons, K.E. 1998. Element stewardship abstract for *Phalaris arundinacea* L. Reed canarygrass. The Nature Conservancy. Arlington, Virginia.
- MacDonald, C. and M.J. Russo. 1989. Element Stewardship Abstract for *Senecio jacobaea*. The Nature Conservancy. Arlington, VA.
- Mack, R. N. and D. A. Pyke. 1983. The demography of *Bromus tectorum*: variation in time and space. Journal of Ecology, 71:69-93.
- MacLachlan, W., S. Gill, E. Dutky, R. Balge, and S. Klick. 1996. Production of yarrows as cut flowers. College of Agriculture and Natural Resources, University of Maryland. Available: http://www.agnr.umd.edu/ MCE/Publications/ [January 20, 2005].
- Maddox, D.M., A. Mayfield, and N.H. Poritz. 1985. Distribution of yellow starthistle (*Centaurea solstitialis*) and Russian knapweed (*Centaurea repens*). Weed Science 33: 315-327.
- MAFF Ministry of Agriculture, Food and Fisheries. 2004. Pest management. Government of British Columbia. Available:

- MAFF Ministry of Agriculture, Food and Fisheries. Government of British Columbia. Pest Management. Aggressive ornamentals. Baby's breath (*Gypsophila paniculata*). Available: http://www.agf.gov.bc.ca/ cropprot/index.htm [January 19, 2005].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. Weeds. Narrow-leaved hawk's beard. Available: http://www.gov.mb.ca/agriculture/index.shtml [13 April 2004].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2004. Pest management Weeds Hemp-nettle. Available: http://www.gov.mb.ca/agriculture/index.shtml [June 14, 2004].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2004. Weeds Foxtail Barley. Available: http://www.gov.mb.ca/agriculture/crops/weeds/index.html [November 8, 2004].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2004. Crops, Alfalfa seed production. Available: http://www.gov.mb.ca/agriculture/index.shtml [October 4, 2005].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2004. Pest management Weeds Broad-leaved plantain. Available: http://www.gov.mb.ca/agriculture/index.shtml [February 10, 2004].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2001. Common groundsel. http://www.gov. mb.ca/agriculture/crops/weeds/index.html [April 17, 2006].
- MAFRI Manitoba Agriculture, Food and Rural Initiatives. 2004. Weeds, Insects & Diseases: Dandelion. Available: http://www.gov.mb.ca/agriculture/crops/weeds/fab07s00.html [October 5, 2004].
- Maine Natural Areas Program. 2004. Japanese Knotweed fact sheet. On line document. http://www.state. me.us/doc/nrimc/mnap/factsheets/invasivesfact.html
- Malyschev, L.I., Peschkova, G.G, editors. Flora Sibiriae. T. 2. Poaceae (Gramineae). Novosibirsk: Nauka; 1990. 359 p. In Russian.
- Malyugin, I.E. 1980. Promising speices of cherry for amenity planting in Donbass. Rastitel'nye Resursy 16: 145-150. (In Russian).
- Manitoba Agriculture and Food. 2002. Pest Management Weeds Broad-leaved plantain. http://www.gov. mb.ca/agriculture/crops/weeds/fab60s00.html
- Mann, H. 1991. Purple Loosestrife: a botanical dilemma. Osprey 22:67-77.
- Mann, H.H. 1939. The weed herbage of a slightly acid arable soil. The Journal of Ecology 27: 89-113.
- Mann, H.H. and T.W. Barnes. 1950. The competition between barley and certain weeds under controlled conditions. IV. Competition with Stellaria media. Annals of Applied Biology 37: 139-148.
- Maranion, T. and J.W. Bartoloome. 1993. Reciprocal transplants of herbaceous communities between Quercus agrifolia woodland and adjacent grassland. The Journal of Ecology 81(4): 673-682.
- Markenschlager, F. 1934. Migration and distribution of red clover in Europe. Herbage reviews 2: 88-92.
- Marriott, C.A., G.R. Bolton and J.M. Fisher. 2003. Changes in species composition of abandoned sown swards after imposing seasonal cutting treatments. Grass and Forage Science; 58: 37-49.
- Marshall, E.J.P., V.K. Brown, N.D. Boatman, P.J.W. Lutman, G.R. Squire and L.K. Ward. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Research 43: 77-89.
- Masters, R.A., B. Kappler. 2002. Noxious weeds of Nebraska: Leafy spurge. Nebraska: University of Nebraska Cooperative Extension EC02-174-S. 10 p.
- Materne, M. 2000. Plant guide Smooth cordgrass *Spartina alterniflora* Loisel. USDA, NRCS, Louisiana State Office, Plant Materials, Baton Rouge, Louisiana. Available: http://plants.usda.gov/ [December 13, 2004].
- Matlack, G.R. and J.L. Harper. 1986. Spatial distribution and the performance of individual plants in a natural population of *Silene dioica*. Oecologia 70: 121-127.
- Matthews, L.J. 1972. Weed control, stinking mayweed. The New Zealand Journal of Agriculture 124 (2): 69.

- Mauer, T., M.J. Russo, M. Evans. 1987 Element Stewardship Abstract for *Centaurea maculosa* Spotted Knapweed. The Nature Conservancy, Arlington, VA.
- McClintock, E. 1993. Cotula. In Hickman, J. C. (ed.) The Jepson Manual: Higher Plants of California. pp. 354-355.
- McClintock, E. 1993. Cytisus. In J. C. Hickman (ed.) The Jepson Manual of Higher Plants of California. University of California Press, Berkley. Pp. 1400.
- McCloskey, M., L.G. Firbank, A.R. Watkinson and D.J. Webb. 1996. The dynamics of experimental arable weed communities under different management practices. Journal of Vegetation Science 7: 799-808.
- McKee, C. Wildlife Biologist, USDI Geological Survey PO Box 74633 Fairbanks, AK 99707 tel: (907) 455-0636; fax (907) 455-0601.
- McKee, R. and A.F. Musil. 1948. Relation of temperature and moisture to longevity of seed of blue lupin, *Lupinus angustifolium*, Austrian winter fieldpea, *Pissum arvense*, and hairy vetch, *Vicia villosa*. American Journal of Agronomy 40: 459-465.
- McKell, C.M., C. Duncan, and C.H. Muller. 1969. Competitive relationships of annual ryegrass (*Lolium multiflorum* Lam.). Ecology. 50(4): 653-657.
- McKone, M. J. 1985. Reproductive biology of several bromegrasses (Bromus): breeding system, pattern of fruit maturation, and seed set. American Journal of Botany 72(9): 1334-1339.
- McLean, A., T.M. Lord, A.J. Green. 1971. Utilization of the major plant communities in the Similkameen Valley, British Columbia. Journal of Range Management. 24: 346-142.
- McLean, A. and M.B. Clark. 1980. Grass, trees, and cattle on clearcut-logged areas. Journal of Range Management 33(3): 213-217.
- McNeill, J. 1980. The biology of Canadian weeds. 46. *Silene noctiflora* L. Canadian Journal of Plant Science 60: 1243-1253.
- McNeilly, T. 1981. Ecotypic differentiation in *Poa annua*: interpopulation differences in response to competition and cutting. New Phytologist/ 88(3): 539-547.
- McVean, D.N. 1953. Alnus glutinosa (L.) Gaerth. The Journal of Ecology 41(2): 447-466.
- McVean, D.N. 1955. Ecology of *Alnus glutinosa* (L.) Gaerth.: II. Seed distribution and germination. The Journal of Ecology 43(1): 61-71.
- Meijden, E. van der and R.R. van der Waals-kooi. 1979. The population ecology of *Senecio jacobaea* in the Netherlands sand dune system. I. Reproductive strategy and the biennial habit. Journal of Ecology. 67: 131-154.
- Merigliano, M.F. and P. Lesica. 1998. The native status of reed canarygrass (*Phalaris arundinacea* L.) in the Inland Northwest, USA. Natural Areas Journal 18(3):223-230.
- Mertens, S.K. and J. Hansen. 2002. Weed seed production, crop planting pattern, and mechanical weeding in wheat. Weed Science 50: 748-756.
- Messersmith, C.G., R.G. Lym, and D.S. Galitz. 1985. Biology of leafy spurge. Weed Science Society of America. 3:42-56.
- Meyer, D.W. and M. Badaruddin. 2001. Frost tolerance of ten seedling legume species at four growth stages. Crop Science 41: 1838-1842.
- Miao, S.L., F.A. Bazzaz, R.B. Primack. 1991. Persistence of maternal nutrient effects in *Plantago major*: the third generation. Ecology. 72(5): 1634-1642.
- Michigan State University Extension. 1999. *Caragana arborescens* Siberian Peashrub. Ornamental Plants plus Version 3.0 – 00000281 11/12/99. http://www.msue.msu.edu/imp/modzz/00000281.html. [June 8, 2004].

- Miki, S. 1933. On the sea-grasses in Japan (I). *Zostera* and *Phyllospadix*, with special reference to morphological and ecological characters. The Botanical Magazine 47: 842-862.
- Milthorpe, F.L. 1961. The nature and analysis of competition between plants of different species. Mechanisms in Biological Competition 15: 334-355.
- Milton, S.J., W.R.J. Dean and S. Klotz. 1997. Effects of small-scale animal disturbances on plant assemblages of set-aside land in Central Germany. Journal of Vegetation Science 8: 45-54.
- Mitich, L.W. 1994. Ground ivy. Weed Technology. 8:413-415.
- Mochalova, O.A. and V.V. Yakubov. 2004. Flora of Commander Islands. Vladivostok: Institute of Biology and Soil Science. 120 pp. In Russian.
- Monaco, T.J. and E.L. Cumbo. 1972. Growth and development of curly dock and broadleaf dock. Weed Science 20: 64-67.
- Montana Plant Life. 2004. Siberian Pea-shrub. Caragana arborescens Lam http://montana.plant-life.org/ index.html [June 9, 2004].
- Moore, B.C., W.H. Funk and E. Anderson. 1994. Water quality, fishery, and biologic characteristics in a shallow, eutrophic lake with dense macrophyte population. Lake and Reservoir Management 8(2): 175-188.
- Mooring, M.T., A.W. Cooper, and E.D. Seneca. 1971. Seed germination response and evidence for height ecophenes in *Spartina alterniflora* from North Carolina. American Journal of Botany. 58(1): 48-55.
- Morin, E., A. Bouchard, P. Jutras. 1989. Ecological analysis of disturbed riverbanks in the Montreal area of Quebec. Environmental Management 13(2): 215-225.
- Mortensen, K. and M.M. Molloy. 1993. Survey for seed-borne diseases on weed species from screening samples obtained from seed cleaning plants across Canada in 1987/88. Canadian Plant Disease Survey 73: 129-136.
- Mumford, P.M. 1988. Alleviation and induction of dormancy by temperature in *Impatiens glandulifera* Royle. Now Phytologist, 109:107-110.
- Murant, A.F. 1970. The importance of wild plants in the ecology of nematode-transmitted plant viruses. Outlook on agriculture 6: 114-121.
- Murphy, S.D. and L.W. Aarssen. 1995. In vitro allelopathic effects of pollen from three *Hieracium* species (Asteraceae) and pollen transfer to sympatric Fabaceae. American Journal of Botany. 82(1): 37-45.
- Murphy, S.D. and L.W. Aarssen. 1995. Allelopathyc pollen extract from *Phleum pretense* L. (Poaceae) reduces seed set in sympatric species. International Journal of Plant Sciences. 156(4): 435-444.
- Murray R.E. and R.E. Hodson. 1986. Influence of macrophyte decomposition on growth rate and community structure of Okefenokee swamp bacterioplankton. Applied and Environmental Microbiology 51: 293-301.
- Murry, L.E. and W. Tai. 1980. Genome relations of *Agropyron sericeum, Hordeum jubatum* and their hybrids. American Journal of Botany. 67(9):1374-1379.
- Nadeau, L.B., and J.R. King. 1991. Seed dispersal and seedling establishment of *Linaria vulgaris* Mill. Canadian Journal of Plant Science 71:771-782.
- Nadeau, L.B., M.R.T. Dale and J.R. King. 1991. The development of spatial pattern in shoots of *Linaria vulgaris* (Scrophulariaceae) growing on fallow land or in a barley crop. Canadian Journal of Botany 69: 2539-2544.
- Nadeau, L.B., J.R. King and K.N. Harker. 1992. Comparison of growth of seedlings and plants grown from root pieces of yellow toadflax (*Linaria vulgaris*). Weed Science 40: 43-47.
- NAPPO North American Plant Protection Organization. 2003. Pest fact sheet: *Ranunculus repens* L. Available: http://nappo.org/PRA-sheets/PestFactsheets.htm via the INTERNET. Accessed 2005 Feb 26.
- NAPPO North American Plant Protection Organization. 2003. Pest fact sheet, *Matricaria inodora* L. *Tripleurospermim perforata* (Merat) M. Lainz. Available: http://www.nappo.org/ [June 2003].

Natur Historiska Riksmuseet Database. 2004. http://www.nrm.se/wise/

New, J.K. 1961. Spergula arvensis L. The Journal of Ecology 49: 205-215.

- Nielsen, D.C. and M.F. Vigil. 2005. Legume green fallow effect on soil water content at wheat planting and wheat yield. Agronomy Journal 97: 684-689.
- Nielsen, J.M. Invasive Plants Program, University of Alaska Fairbanks, Cooperative Extension Service, 2221 E. Northern Lights Blvd. #118 Anchorage, Alaska 99508-4143. Tel: (907) 786-6315 Pers. comm.
- Nixon, C.M., M.W. McClain and K.R. Russell. 1970. Deer food habits and range characteristics in Ohio. Journal of Wildlife Management 34(4): 870-886.
- Nolen, A. 2002. Vetch infestation in Alaska. Alaska Plant Material Center, Division of Agriculture, Department of Natural Resources. 35 pp.
- Noxious Weed Control Program. 2003. King County Noxious Weed List. Giant hogweed (*Heracleum mantegazzianum*). Department of Natural Resources and Parks. Water and Land Resources Division. Washington. Available: http://dnr.metrokc.gov/wlr/LANDS/weeds/hogweed.htm [January 28, 2005].
- Noxious Weed Control Board. 2004. Washington State. http://www.nwcb.wa.gov/INDEX.htm
- Noxious Weed Control Program. 2003. King County Noxious Weed List. Orange Hawkweed *Hieracium aurantiacum*. Department of Natural Resources and Parks. Water and Land Resources Division. http:// dnr.metrokc.gov/weeds/ [Jan 14, 2003].
- Noxious Weed Control Board. Washington State. 2003. Perennial sowthistle (*Sonchus arvensis* L. ssp. *arvensis*). Available: http://www.nwcb.wa.gov/INDEX.htm [October 7, 2004].
- Nuzzo, V., 2000. Element Stewardship Abstract for *Alliaria petiolata (Alliaria officinalis)* Garlic Mustard. The Nature Conservancy, Arlington, VA.
- Nuzzo, V. 1997. Element Stewardship Abstract for Cirsium arvense. The Nature Conservancy, Arlington, VA.
- ODNR Ohio Department of Natural Resources. 2003. Invasive plants of Ohio Amur, morrow and tatarian honeysuckle. *Lonicera maackii*, *L. morrowii*, *L. tatarica*. Available: http://www.dnr.state.oh.us/dnap/invasive/lamurhoneysuck.htm [May 11, 2004].
- O'Donovan, J.T. 1994. Green foxtail (*Setaria viridis*) and pale smartweed (*Polygonum lapathifolium*) interference in field crops. Weed Technology 8: 311-316.
- Ogg, A.G., R.H. Stephens, and D.R. Gealy. Growth analysis of mayweed chamomile (*Anthemis cotula*) interference in peas (Pisum sativum).McGuffin, M. 1997. American Herbal Product Association's safety handbook. Boka Raton, Fla. CRC Press. 231pp.
- Ohio perennial and biennial weed guide. 2006. Mouse-ear chickweed. The Ohio State University. Available: http://www.oardc.ohio-state.edu/weedguide/ [January 18, 2006].
- Ohio perennial and biennial weed guide. 2004. Broadleaf plantain. The Ohio State University. Available: http://www.oardc.ohio-state.edu/weedguide/ [November 30, 2004].
- Ohio State University. Ohio Perennial & Biennial Weed Guide. Timothy *Phleum pratense*. Available: http://www.oardc.ohio-state.edu/weedguide/ [November 4, 2004].
- Ohio perennial and biennial weed guide [Internet]. Ohio: Ohio State University. 2005 Feb 21. Available: http://www.oardc.ohio-state.edu/weedguide/
- Ohio Perennial and Biennial Weed Guide Bouncingbet. The Ohio State University. Available: http://www.oardc.ohio-state.edu/weedguide/listall.asp [15 April 2004].
- Owenby, M. 1950. Natural hybridization and amphiploidy in *Tragopogon*. American Journal of Botany 37: 487-499.

- Paddock, Raymond, E. III. Environmental Technician, Native Lands and Resources, Central Council Tlingit and Haida Indian Tribes of Alaska. 320 West Willoughby Ave. Suite 300, Juneau, AK 99801. Tel: (907) 463-7184 – Pers. comm.
- Palmblad, I.G. 1968. Competition in experimental populations of weeds with emphasis on the regulation of population size. Ecology. 49(1): 26-34.
- Panciera, M.T., S.D. Sparrow, R.G. Gavlak and W.E. Larson. 1990. Evaluation of forage legume potential at Fairbanks, Point MacKenzie, and Soldotna. Alaska Agricultural and Forestry Experiment Station. Research Progress Reports 13.
- Parchoma G. 2004. Scentless chamomile. *Matricatia perforata* Merat. In: Guide to Weeds in British Columbia. Ministry of Agriculture, Food and Fisheries. Open Learning Agency. Available: http://www.weedsbc.ca/ index.html
- Parker, I.M. 2000. Invasion dynamics of *Cytisus scoparius*: A matrix model approach. Ecological Applications 10:726-743.
- Parker, K.F. 1990. An illustrated guide to Arizona weeds. The University of Arizona Press, Tucson. Available http://www.uapress.arizona.edu/online.bks/weeds/titlweed.htm
- Parker, I.M., S.K. Mertens, D.W. Schemske. 1993. Distribution of seven native and two exotic plants in a tallgrass prairie in southeastern Wisconsin: the importance of human disturbance. American Midland Naturalist 130: 43-55.
- Parsons, W.T. 1957. St. John's wort in Victoria. History, distribution, control. The Journal of Agriculture, Victoria 55: 781-788.
- Pavlychenko, T.K. and J.B. Harrington. 1934. Competitive efficiency of weeds and cereal crops. Canadian Journal of Research 10:77-93.
- Pavone, L.V. and R.J. Reader. 1982. The dynamics of seed bank size and seed state of *Medicago lupulina*. Journal of Ecology. 70: 537-547.
- Pavone, L.V. and R.J. Reader. 1985. Effect of microtopography on the survival and reproduction of *Medicago lupulina*. Journal of Ecology; 73: 685-695.
- Peterson, J.K., M.E. Snook, H.F. Harrison, Jr., and P.F. Mason. 1998. Isolation and structural identification of sucrose esters from corn spurry (*Spergula arvensis*); inhibition of seed germination. Journal of Chemical Ecology 24: 1803-1816.
- Pfauth, M. and M. Sytsma. 2005. Alaska aquatic plant survey report 2005. U.S. Fish and Wildlife Service Contract number: 7012050114, Center of Lakes and Reservoirs, Portland State University, Portland, OR. Available online **http://www.clr.pdx.edu** [March 13, 2006].
- Piggin, C.McE., M.L. Hallett, and D.F. Smith. 1973. The germination response of seed of some annual pasture plants to alternating temperatures. Seed Science and Technology 1: 739-748.
- Pitcairn, M.F. 2000. *Verbascum thapsus* L. In: Invasive plants of California's wildlands. Edited by Bossard, C.C., J.M. Randall, and M.C. Hoshovsky. University of California Press. p. 321-326.
- Pitcher, D. and M.J. Russo. 1988. Element stewardship abstract for *Carduus pycnocephalus* Italian thistle. The Nature Conservancy. Arlington, Virginia. Available: http://tncweeds.ucdavis.edu/esadocs/cardpycn. html [2005, May 2].
- Plant Conservation Alliance Alien Plant Working Group. On-line document http://www.nps.gov/plants/ alien/fact/alpe1.htm
- Plants for a future. 2002. *Achillea ptarmica*. Available: http://www.ibiblio.org/pfaf/cgi-bin/arr_html?Achille a+ptarmica&CAN=LATIND [January 20, 2005].
- Plants For A Future. 2004. Campanula rapunculoides. Available from: http://www.pfaf.org/index.html

- Plants For A Future. 2002. Plant Portrait *Caragana arborescens* Pea tree. http://www.comp.leeds.ac.uk/pfaf/ index.html [June 8, 2004].
- Plants for a future. 2002. Species Database. *Cotula coronopifolia*. Available: http://www.ibiblio.org/pfaf/D_search.html [January 12, 2005].
- Plants for a future. 2002. *Gypsophila paniculata*. Available: http://www.ibiblio.org/pfaf/cgi-bin/arr_html?G ypsophila+paniculata&CAN=LATIND [January 24, 2005].
- Plants for a future. 2002. *Hieracium umbellatum*. Available: http://www.comp.leeds.ac.uk/pfaf/index.html [July 7, 2004].
- Plants for a Future. 2002. *Tanacetum vulgare*. http://www.comp.leeds.ac.uk/pfaf/index.html [October 11, 2004].
- Plants of Hawaii [Internet]. USGS, National Park Service. 2003 March 12; Available from: http://www.hear.org/starr/hiplants/index.html
- Platt, W.J. 1975. The colonization and formation of equilibrium plant species associations on badger disturbances in a tall-grass prairie. Ecological Monographs. 45: 285-305.
- Pojar, J., and A. MacKinnon. 1994. Plants of the Pacific Northwest Coast: Washington, Oregon, British Columbia, and Alaska. B.C. Ministry of Forests and Lone Pine Publishing. Redmond, Washington. 527 pp.
- Pojar, J. Rosaceae. In: Douglas, G.W., D. Meidinger, and J. Pojar, editors. Volume 4. Decotyledons (Orobanchaceae through Rubiaceae). Illustrated flora of British Columbia. British Columbia: Ministry of Environment, Lands and Parks, Ministry of Forest; 1999. p 258-370.
- Polunin, N. 1959. Circumpolar arctic flora. Oxford: At the Clarendon Press. 514 p.
- Popay, A.I. and E.H. Roberts. 1970. Ecology of *Capsella bursa-pastoris* (L.) Medik. and *Senecio vulgaris* L. in relation to germination behaviour. The Journal of Ecology 58: 123-139.
- Popey, A.I. 1981. Germination of seeds of five annual species of barley grass. The Journal of Applied Ecology 18(2): 547-558.
- Posey, M. H. 1988. Community changes associated with the spread of an introduced seagrass, *Zostera japonica*. Ecology 69(4): 974-983.
- Powell, G.W., M.D. Pitt and B.M. Wikeem. 1994. Effect of forage seeding on early growth and survival of lodgepole pine. Journal of Range Management 47: 379-384.
- Powell, G.W., A. Sturko, B.M. Wikeen, and P. Harris. 1994. Field Guide to the biological control of weeds in British Columbia. Land Management Handbook No. 27. Province of British Columbia, Ministry of Forests.
- Powell, G.W. and E.W. Bork. 2004. Competition and facilitation in mixtures of aspen seedlings, alfalfa, and marsh reedgrass. Can. J. For. Res. 34: 1858-1869.
- Powell, G.W. 1996. Analysis of sulphur cinquefoil in British Columbia. Working Paper 16. Victoria, BC: British Columbia Ministry of Forests Research Program. 36 p.
- Prasad, R. 2002. Scotch broom, Cytisus scoparius L. in British Columbia. Natural Resources Canada. http://www.pfc.cfs.nrcan.gc.ca/biodiversity/broom%5Fe.html.
- Prather, T.S., S.S. Robins, D.W. Morishita, L.W. Lass, R.H. Callihan, and T.W. Miller. 2003. Idaho's Noxious Weeds. University of Idaho in cooperation with the Idaho Weed Coordinating Committee Idaho State Department of Agriculture. Available: http://www.oneplan.org/ [January 14, 2005].
- Pratt, D.A. and H.E. Ahles, R.C. Bell. 1984. Buried viable seed in a ponderosa pine community. Canadian Journal of Botany. 62:44-52.
- Price, E.A.C. and M.J. Hutchings, 1996. The effects of competition on growth and form in *Glechoma hederacea*. Oikos. 75: 279-290.

- Proctor, V.W. 1968. Long-distance dispersal of seeds by retention in digestive tract of birds. Science 160: 321-322.
- Prots, B. and S. Klotz. 2004. The invasion ecology of Himalayan Balsam (*Impatiens glandulifera* Royle). UFZ Centre for Environmental Research. Leipzig. Available: http://www.hdg.ufz.de/index.php?en=1094 [November 2, 2004].
- Putwain, P.D. and J.L. Harper. 1970. Studies in the dynamics of plant populations: III. The influence of associated species on populations of *Rumex acetosa* L. and *R. acetosella* L. in grassland. The Journal of Ecology 58(1): 251-264.
- Putwain, P.D., D. Machin and J.L. Harper. 1968. Studies in the dynamics of plant populations: II. Components and regulation of a natural population of *Rumex acetosella* L. The Journal of Ecology 56(2): 421-431.
- Pyle, L.L. 1995. Effects of disturbance on herbaceous exotic plants species on the flood plain of the Potomac river. American Midland Naturalist 134:224-253.CLIMEX for Windows, Version 1.1a. 1999. CISRO Publishing, Australia.
- Pysek, P. 1991. *Heracleum mantegazzianum* in the Czech Republic the dynamics of spreading from the historical perspective. Folia geobotanica and phytotaxonomica 26: 439-454.
- Pysek, P. and K. Prach. 1993 July. Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. Journal of Biogeography 20 (4): 413-420.
- Pysek, P. and A. Pysek. 1995. Invasion by *Heracleum mantegazzianum* in different habitats in the Czech Republic. Journal of vegetation science 6 (5): 711-718.
- Qasem, J.R. and T.A. Hill. 1989. Possible role of allelopathy in the competition between tomato, *Senecio vulgaris* L. and *Chenopodium album* L. Weed Research 29: 349-356.
- Quayyum, H.A., A.U. Mallik and P.F. Lee. 1999. Allelopathic potential of aquatic plants associated with wild rice (*Zizania palustris*): I. Bioassay with plant and lake sediment samples. Journal of Chemical Ecology 25(1): 209-220.
- Randall, J.M. and M. Rejmánek. 1993. Interference of bull thistle (*Cirsium vulgare*) with growth of ponderosa pine (*Pinus ponderosa*) seedlings in a forest plantation. Canadian J. of Forest Research. 23: 1507-13.
- Rasy, M. Integrated Pest Management Technician. Cooperative Extension Service, University of Alaska Fairbanks. 2221 E. Northern Lights Boulevard, Suite 118, Anchorage, AK 99508-4143; tel. (907) 786-6309 – Pers. obs.
- Reidar, E. Professor, Natural History Museum, Botanical Museum, University of Oslo, Box 1172 Blindern, N-0318 Oslo, Norway, phone:47 22 85 16 32, fax: 47 22 85 18 35.
- Remaley, T. 2004. Musk thistle *Carduus nutans* L. Aster family (Asteraceae). The Plant Conservation Alliance's Alien Plant Working Group. Available: http://www.nps.gov/plants/alien/fact/canu1.htm [2005, May 2].
- Remaley, T. 1998. Eurasian watermilfoil *Myriophyllum spicatum* L. Plant Conservation Alliance, Bureau of Land Management. Available: http://www.nps.gov/plants/index.htm [Feb 18, 2004].
- Remberton, R.W. 1988. Myrmecochory in the introduced range, leafy spurge (*Euphorbia esula* L.) American Midland Naturalist 119: 431-435.
- Renz, M.J. 2000. Element stewardship abstract for *Lepidium latifolium* L. perennial pepperweed, tall whitetop. The Nature Conservancy. Arlington, Virginia. Available: http://tncweeds.ucdavis.edu/esadocs/lepilati. html [2005, May 2].
- Rice, P.M. INVADERS Database System (http://invader.dbs.umt.edu). Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824.
- Rice, P.M., J.C. Tonye, D.J. Bedunah and C.E. Carlson. 1997. Plant community diversity and growth form responses to herbicide applications for control of *Centaurea maculosa*. Journal of Applied Ecology 34: 1397-1412.

- Rice, P.M. 2006. INVADERS Database System (http://invader.dbs.umt.edu). Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824.
- Rice, P.M. 1991. Sulfur cinquefoil: a new threat to biological diversity. Western Wildlands 17: 234-240.
- Richardson, R.G. 1975. Regeneration of blackberry (*Rubus procerus* P. J. Muell.) from root segments. Weed Research 15: 335-337.
- Riley, J. Horticulture Agent, UAF Cooperative Extension Service, 2221 E. Northern Lights Blvd. #118 Anchorage, AK 99508-4143; tel: (907) 786-6306. Pers. com.
- Rinella, M.J. and R.L. Sheley. 2002. Orange and meadow hawkweed. Montana State University Extension Service Bozeman, MT. http://www.montana.edu/wwwpb/pubs/
- Roberts, H.A. and J.E. Neilson. 1981. Seed survival and periodicity of seedling emergence in twelve weedy species of Compositae. Annals of Applied Biology 97: 325-334.
- Roberts, H.A. and P.M. Feast. 1973. Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. The Journal of Applied Ecology. 10(1): 133-143.
- Roberts, H.A. and F.G. Stokes. 1966. Studies on the weeds of vegetable crops. VI. Seed populations of soil under commercial cropping. Journal of Applied Ecology 3: 181-190.
- Robocker, W.C. 1970. Seed characteristics and seedling evergence of Dalmatian toadflax. Weed Science 18(6): 720-725.
- Robson, D.B., J.D. Knight, R.E. Farrell, and J.J. Germida. 2004. Natural revegetation of hydrocarboncontaminated soil in semi-arid grasslands. Canadian Journal of Botany.82: 22-30.
- Robson, S. 2004. Baby's breath (*Gypsophila paniculata*). Idaho State University. Available: http://www.cnr. uidaho.edu/range454/2003%20Pet%20weeds/babys_breath.html [January 24, 2005].
- Rosenstock, S.S. and R. Stevens. 1989. Herbivore effects on seeded alfalfa at four pinyon-juniper sites in central Utah. Journal of Range Management 42: 483-490.
- Rowe, P. and J.M. Swearingen. 2003. Garlic mustard Alliaria petiolata. PCA Alien Plant Working Group.
- Royer, F., and R. Dickinson. 1999. Weeds of the Northern U.S. and Canada. The University of Alberta press. 434 pp.
- Russell A. B. 1997. Poisonous plants of North Carolina. Department of Horticultural Science, North Carolina State University.
- Rutledge, C. R., and T. McLendon. 1996. An Assessment of Exotic Plant Species of Rocky Mountain National Park. Department of Rangeland Ecosystem Science, Colorado State University. 97 pp. Jamestown, ND: Northern Prairie Wildlife Research Center Home Page. http://www.npwrc.usgs.gov/resource/othrdata/ explant/explant.htm (Version 15DEC98).
- Ryan, P.G., V.R. Smith, and N.J.M. Gremmen. 2003. The distribution and spread of alien vascular plants on Prince Edward Island. South African Journal of Marine Science 25: 555-562.
- SAF Saskatchewan Agriculture and Food. 2000. Common groundsel (*Senecio vulgaris*). Available: http://www.agr.gov.sk.ca/default.asp [April 17, 2006].
- SAFRR Saskatchewan Agriculture, Food and Rural Revitalization. 1984. Hemp-nettle (*Galeopsis tetrahit*). Available: http://www.agr.gov.sk.ca/default.asp [March 15, 2005].
- SAFRR Saskatchewan Agriculture, Food and Rural Revitalization. 1984. Hemp-nettle (*Galeopsis tetrahit*). Available: http://www.agr.gov.sk.ca/default.asp [June 14, 2004].
- Sagar, G.R. and J.L. Harper. 1964. *Plantago major* L., *P. media* L. and *P. lanceolata* L. The Journal of Ecology. 52(1): 189-221.
- Sampson, A.W. and K.W. Parker. 1930. St. Johns-wort on rangelands of California. California Agricultural Experiment Station Bulletin 503. Berkeley, California. 48 pp.

- Saner, M.A., D.R. Clements, M.R. Hall, D.J. Doohan and C.W. Crompton. 1995. The biology of Canadian weeds. 105. *Linaria vulgaris* Mill. Canadian Journal of Plant Science 75(2): 525-537.
- Sarukhan, J. 1974. Studies on plant demography: *Ranunculus repens* L., *R. bulbosus* L. and *R. acris* L.: II. Reproductive strategies and seed population dynamics. The Journal of Ecology 62(1): 151-177.
- Sarukhan, J. and J.L. Harper. 1973. Studies on plant demography: *Ranunculus repens* L., *R. bulbosus* L. and *R. acris* L.: population flux and survivorship. The Journal of Ecology 61(3): 675-716.
- Sather, N. 1987. Element Stewardship Abstract for *Bromus inermis* Awnless Brome, Smooth Brome. The Nature Conservancy. Arlington, VA.
- Sather, N. 1996. Element Stewardship Abstract for *Poa pratensis, Poa compressa* Kentucky Bluegrass, Canada Bluegrass. The Nature Conservancy. Arlington, VA.
- Scheiman, D.M., E.K. Bollinger, and D.H. Johnson. 2003. Effects of leafy spurge infestation on grassland birds. Journal of Wildlife Management 67: 115-121.
- Schirman, R. 1981. Seed production and spring seedling establishment of diffuse and spotted knapweed. J. Range Management 34: 45-47.
- Schmidt, F.J.W. 1936. Winter food of the sharp-tailed grouse and pinnated grouse in Wisconsin. Wilson Bulletin September: 186-203.
- Schneider, E.L. and T. Chaney. 1981. The floral biology of *Nymphaea odorata* (Nymphaeaceae). The Southwestern Naturalist 26 (2): 159-165.
- SE-EPPC Southeast Exotic Pest Plant Council. 2001. Invasive Exotic Pest Plants in Tennessee. Report from the Tennessee Exotic Pest Plant Council. Available: http://www.se-eppc.org/states/TN/TNIList.html via the INTERNET. Accessed 2005 March 4.
- Seiger, L. 1991. Element Stewardship Abstract for *Polygonum cuspidatum*. The Nature Conservancy in collaboration with the International Network of Natural Heritage Programs and Conservation Data Centers. Natural Heritage Databases. Arlington, VA.
- Selleck, G.W., R.T. Coupland, and C. Frankton. 1962. Leafy spurge in Saskatchewan. Ecological Monographs 32: 1-29.
- Shamsi, S.R.A. and F.H. Whitehead. 1974. Comparative eco-physiology of *Epilobium hirsutum* L. and *Lythrum salicaria* L. I. General biology, distribution, and germination. J. Ecol. 62:279-290.
- Shaw R.H. and L.A. Seiger. 2002. Japanese Knotweed Biological Control of Invasive Plants in the Eastern United States. In Van Driesche, R. et al., 2002. Biological Control of Invasive Plants in the Eastern United States, USDA Forest Service Publication FHTET-2002-04, 413 pp.
- Shephard, M. Inventory & Monitoring Coordinator, Southwest Alaska Park Network, National Park Service, 240 W. 5th Avenue, Anchorage, Alaska 99501. Tel (907) 907-644-3681; fax (907) 644-3809 Pers. comm.
- Sherwood, L.V. 1945. Field bindweed, *Convolvulus arvensis* L., root fragments may grow. Journal of the American Society of Agronomy 37(4): 307-313.
- Shin, H. and H. Choi. 1998. Taxonomy and distribution of *Zostera* (Zosteraceae) in eastern Asia, with special reference to Korea. Aquatic Botany 60: 49-66.
- Sidhu, S.S. 1971. Some aspects of the ecology of black medick (*Medicago lupulina* L.). Ph.D. Thesis, University of Western Ontario, London, Ontario.
- Simmonds, N.W. 1945a. *Polygonum persicaria* L. The Journal of Ecology 33(1): 121-131.
- Simmonds, N.W. 1945b. *Polygonum lapathifolium* L. The Journal of Ecology 33(1): 132-139.
- Singh, S. 1925. Interception of weeds in imported wheat grain consignments. Annual of Agricultural Research 22(1): 83-87.

- Sinha, S., R. Saxena, and S. Singh. 2000. Fluoride removal from water by *Hydrilla verticillata* (l.f.) Royle and its toxic effects. Bulletin of Environmental Contamination and Toxicology 65: 683-690.
- Smith, A.E. 1990. Potential allelopathic influence of certain pasture weeds. Crop protection 9(6): 410-414.
- Smith, J.G. 1963. A subalpine grassland seeding trial. Journal of Range Management. 16: 208-210.
- Smith, L.M. and L.T. Kok. 1984. Dispersal of musk thistle (Carduus nutans) seeds. Weed science 32: 120-125.
- Snow, B. and D. Snow. 1988. Birds and berries. A study of an ecological interaction. T&AD Poyser, Calton. Pp. 56-57.
- Snyder J.M., UAF Cooperative Extension Service. 2221 E. Northern Lights Blvd. #118 Anchorage, AK 99508-4143 Tel: (907) 786-6310 alt.tel: (907) 743-9448.
- Snyder, C. and M. Shephard. 2004. Spotted knapweed. United States Department of Agriculture. Prepared by Forest Service Alaska Region. Leaflet R10-TP-125 May 2004.
- Snyder, S.A. 1992. Elytrigia repens. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [May 7, 2004].
- Snyder, S.A. 1992. Phalaris arundinacea. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2004, May 5].
- Sobey, D.G. 1981. Biological flora of the British Isles. *Stellaria media* (L.) Vill. Journal of Ecology 69: 311-335.
- Sobey, D.G. and J.B. Kenworthy. 1979. The relationship between herring gulls and the vegetation of their breeding colonies. The Journal of Ecology 67(2): 469-496.
- Southwick, E.E., G.M. Loper and S.E. Sadwick. 1981. Nectar production, composition, energetics and pollinator attractiveness in spring flowers of western New York. American Journal of Botany. 68(7): 994-1002.
- Sparrow, S.D., V.L. Cochran and E.B. Sparrow. 1993. Herbage yield and nitrogen accumulation by seven legume crops on acid and neutral soils in a subarctic environment. Canadian Journal of Plant Science 73: 1037-1045.
- Spellman, B. 2007. Impacts of sweetclover on riparian plant communities. 8th Annual Statewide CNIPM Workshop. Presentation 15 November 2007.
- Spence, S.K. 1998. Bioassay-directed isolation of the allelopathic constituents of the aquatic plant *Nymphaea odorata*. Dissertation Abstracts International Part B: Science and Engineering 58(10): 4762.
- Spencer, D.F. and M. Rejmanek. 1989. Propagule type influences competition between two submersed aquatic macrophytes. Oecologia 81: 132-137.
- Spencer P., Ecologist, National Park Service, Alaska Region Biological Resources Team, 240 W. 5th Ave, #114, Anchorage, AK 99501 tel: (907) 644-3448 Pers. com.
- Spira, T. and L.K. Wagner. 1983. Viability of seeds up to 211 years old extracted from adobe brick buildings of California and Northern Mexico. American Journal of Botany 70(2): 303-307.
- Staniforth, J.G. and P.A. Scott. 1991. Dynamics of weed populations in a northern subarctic community. Canadian Journal of Botany. 69: 814-821.
- Staniforth, R.J. and P.B. Cavers. 1997. Distribution and habitats of four annual smartweeds in Ontario. Canadian Field-Naturalist 93(4): 378-385.
- Stanton, F. 1974. Wildlife guidelines for range fire rehabilitation. Tech. Note 6712. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 90 p.
- Starr, F., K. Starr, and L. Loope. 2003. *Rubus discolor* Himalayan blackberry Rosaceae. Plants of Hawaii. Available: http://www.hear.org/starr/hiplants/index.html via the INTERNET. Accessed 2003 Feb 07.

- Stebbins, L.G. 1993. *Tragopogon*: Goat's Beard. In Hickman, J. C. (ed.) The Jepson Manual: Higher Plants of California. pp. 354-355.
- Steenhagen, D.A. and R.L. Zimdahl. 1979. Allelophathy of leafy spurge (*Euphorbia esula*). Weed Science 27:1-3.
- Steinbach, K. and G. Gottsberger. 1994. Phynology and pollination biology of five *Ranunculus* species in Giessen, Central Germany. Phyton 34(2): 203-218.
- Steinbauer, G.P. and B. Grigsby. 1958. Dormancy and germination characteristics of the seeds of sheep sorrel, *Rumex acetosella* L. Proceedings of the Association of Official Seed Analysts on North America 48: 118-120.
- Stensvold, M. 2000. Noxious weed surveys and projects conducted on the Tongass National Forest 1997-2000. Technical report on file, Tongass National Forest. 2 pp.
- Stephenson, D.W. 1993. Barley grass control with herbicides in subterranean clover pasture. 2. Effect on pasture and wheat in the year following spraying. Australian Journal of Experimental Agriculture 33: 743-749.
- Stevens, O.A. 1932. The number and weight of seeds produced by weeds. American Journal of Botany 19(9): 784-794.
- Stevens, O.A. 1957. Weights of seeds and numbers per plant. Weeds 5: 46-55.
- Steward, K.K. 1992. Survival and growth of stem fragments from various *hydrilla* races. Florida Scientist 55: 129-135.
- Stewart, F. and J. Grace. 1984. An experimental study of hybridization between *Heracleum mantegazzianum* Somm &Levier and *H. sphondylium* L. subsp. *sphondylium* (Umbelliferae). Watsonia 15: 73-83.
- Stoa, T. E. (1933) Persistence of viability of sweet clover seed in a cultivated soil. Journal of the American Society of Agronomy, 177-181.
- Story, J.M., K.W. Boggs, and R.M. Nowierski. 1989. Effect of two introduced seed head flies on spotted knapweed. Montana AgResearch Winter 1989: 14-17.
- Story, J.M., K.W. Boggs, and W.R. Good. 1991. First report of the establishment of Agapeta zoegana L. (Lepidoptera: Cochylidae) on spotted knapweed, *Centaurea maculosa* Lamarck, in the United States. The Canadian Entomologist March/April 1991: 411-412.
- Sullivan, J. 1992. Dactylis glomerata. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2006, April 5].
- Sullivan, J. 1992. Medicago sativa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2005, October 4].
- Sullivan, J. 1992. Melilotus officinalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2004, March 31].
- Sutton, D.L., T.K. Van and K.M. Portier. 1992. Growth of dioecious and monoecious hydrilla from single tubers. Journal of Aquatic Plant Management 30: 15-20.
- Swan, D.G. and R.J. Chancellor. 1976. Regenerative capacity of field bindweed roots. Weed Science 24(3): 306-308.
- Swearing, J.M. 2002. Purple loosestrife, *Lythrum salicaria*. U.S. National Park Service. On Line Report. **www. nps.gov/plants/alien/fact/lysa1.htm**.
- Swenson, J.E. 1985. Seasonal habitat use by sharp-tailed grouse, *Tympanuchus phasianellus*, on mixed-grass prairie in Montana. Canadian Field-Naturalist 99(1): 40-46.

- Sytsma, M., M. Pfauth, and D. Isaacson. 2003. Spartina response plan for Oregon. 4th Alaska noxious and invasive plants management workshop.
- Tesky, J.L. 1992. *Hordeum jubatum*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2004, November 10].
- Thompson, D.Q. 1991. History of purple loosestrife (*Lythrum salicaria* L.) Biological control efforts. Natural Areas Journal. 11(3): 148-150.
- Thompson, Daniel Q., Ronald L. Stuckey, Edith B. Thompson. 1987. Spread, Impact, and Control of Purple Loosestrife (*Lythrum salicaria*) in North American Wetlands. U.S. Fish and Wildlife Service. 55 pages. Jamestown, ND: Northern Prairie Wildlife Research Center Online. http://www.npwrc.usgs.gov/ resource/plants/loosstrf/index.htm (Version 04JUN1999).
- Thompson, K. and J.P. Grime, 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats, Journal of Ecology. 67: 893-921.
- Thompson, P.A. 1975. Characterization of the germination responses of *Silene dioica* (L.) Clairv., Populations from Europe. Annals of Botany 39(159): 1-19.
- Thórhallsdóttir, T.E. 1999. The dynamics of five grasses and white clover in a simulated mosaic sward. Journal of Ecology 78:909-923.
- Thorne, R.F. Hydrocharitaceae Waterweed family. In: Hickman, J.C., editor. The Jepson manual higher plants of California. Berkeley, Los Angeles, London: University of California Press; 1993. Pp. 1150-1151.
- Thullen, J.S. 1990. Production of axillary turions by the dioecious *Hydrilla verticillata*. Journal of Aquatic Plant Management 28: 11-15.
- Tiley, G.G.D. and Philp B. 1992. Strategy for the control of giant hogweed (*Heracleum mantegazzianum*) on the River Ayr in Scotland. Aspects of Applied Biology 29: 463-466.
- Tiley, G.E.D., S.D. Felicite, and P.M. Wade. 1996. Biological flora of the British Isles. *Heracleum mantegazzianum* Sommier & Levier. Journal of Ecology 84: 297-319.
- Tirmenstein, D. 1989. *Rubus discolor*. In: Fire Effects Information System [online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ via the INTERNET. Accessed 2005 Feb 07.
- Tisdale, E.W., M. Hironaka, W.L. Pringle. 1959. Observations on the autecology of *Hypericum perforatum*. Ecology 40(1): 54-62.
- Timmons, F.L. 1949. Duration of viability of bindweed seed under field conditions and experimental results in the control of bindweed seedlings. Agronomy Journal 41: 130-133.
- Trivedi, S. and R.S. Tripathi. 1982a. The effect of soil texture and moisture on reproductive strategies of *Spergula arvensis* L. and *Plantago major* L. Weed Research 22: 41-49.
- Trivedi, S. and R.S. Tripathi. 1982b. Growth and reproductive strategies of two annual weeds as affected by soil nitrogen and density levels. New Phytologist 91: 489-500.
- Todd, F.G., F.R. Stermitz, P. Schultheis, A.P. Knight, and J. Traub-Dargatz. 1995. Tropane alkaloids and toxicity of *Convolvulus arvensis*. Phytochemistry 39(2): 301-303.
- Tolmatchev, A.I., editor. 1975. Flora Arctica URSS. Vol. VII. Papaveraceae Cruciferae. Leninopoli: Editio Nauka. 180 pp.
- Tolmachev, A.I., Packer, J.G., Griffiths, G.C.D, editors. Flora of the Russian arctic. Vol. I. Polypodiaceae Gramineae. Edmonton, Alberta, Canada: The University of Alberta Press; 1995. 330 p. In Russian.
- Toole, E.H. 1946. Final result of the Duvel buried seed experiment. Journal of Agricultural Research 72: 201-210.

- Townshend, J.L. and T.R. Davidson. 1962. Some weed hosts of the northern root-knot nematode, *Meloidogyne hapla* Chitwood, 1949, in Ontario. Canadian Journal of Botany 40: 543-548.
- Townsend, J.F. 2001. Plant species invasiveness rank form for *Melilotus officinalis*. In: Heffernan, K.E., P.P. Coulling, J.E. Townsend, and C.J. Hutto. 2001. Ranking Invasive Exotic Plant Species in Virginia. Natural Heritage Technical Report 01-13. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 27pp. plus appendices.
- Tu, M. 2002. *Brachypodium sylvaticum* (Huds.) P. Beauv. (Slender false-brome, false-brome). TNC Invasive Species Initiative page. Available: http://tncweeds.ucdavis.edu/alert/alrtbrac.html [February 1, 2005].
- Turkington, R., M.A. Cahn, A. Vardy, and J.L. Harper. 1979. The growth, distribution and neighbour relationships of *Trifolium repens* in a permanent pasture. Journal of Ecology 67:231-243. http://www.npwrc.usgs.gov/resource/othrdata/Explant/explant.htm (Version 15DEC98).
- Turkington, R. and P.B. Cavers. 1979. The biology of Canadian weeds. 33. *Medicago lupulina* L. Canadian Journal of Plant Science; 59: 99-110.
- Turkington, R.A., P.B, Cavers, and E. Rempel. 1978. The biology of Canadian weeds. 29. *Melilotus alba* Desr. and *M. officinalis* (L.) Lam. Canadian Journal of Plant Science, 58, 523-537.
- Turkington, R. 1994. Effect of propagule source on competitive ability of pasture grasses: spatial dynamics of six grasses in simulated swards. Canadian Journal of Botany; 72: 111-121.
- Turkington, R., N.C. Kenkel and G.D. Franko. 1980. The biology of Canadian weeds. 42. *Stellaria media* (L.) Vill. Canadian Journal of Plant Science 60: 981-992.
- Tyser, R.W. and C.W. Key. 1988. Spotted knapweed in natural area fescue grasslands: an ecological assessment. Northwest Science, 62: 151-160.
- Uchytil, Ronald J. 1992. *Melilotus alba*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2006, February 10].
- Uchytil, R.J. 1993. *Poa pratensis*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2004, January 5].
- University of Alaska Museum. University of Alaska Fairbanks. 2003. http://hispida.museum.uaf.edu:8080/ home.cfm
- University of Alaska Museum. University of Alaska Fairbanks. 2004. http://hispida.museum.uaf.edu:8080/ home.cfm
- UAF University of Alaska Fairbanks, Cooperative Extension Service. Reducing the spread of non-native invasive plants in Alaska. Voluntary codes of conduct for the gardening public. Publication No. FGV-00142.
- USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www. ars-grin.gov/var/apache/cgi-bin/npgs/html/taxon.pl?300618 [March 8, 2005].
- USDA (United States Department of Agriculture), NRCS (Natural Resource Conservation Service). 2002. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
- USDA, NRCS. 2006. The PLANTS Database, Version 3.5 (http://plants.usda.gov). Data compiled from various sources by Mark W. Skinner. National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
- Van, T.K. and K.K. Steward. 1990. Longevity of monoecious hydrilla propagules. Journal of Aquatic Plant Management 28: 74-76.

- Van, T.K., W.T. Haller, and G. Bowes. 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761-768.
- Van Assche, J.A., K.L.A. Debucquoy, and W.A.F. Rommens. 2003. Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae). New Phytologist, 158: 315-323.
- van der Toorn, J. 1980. On the ecology of *Cotula coronopifolia* L. and *Ranunculus sceleratus* L. I. Geographic distribution, habitat, and field observation. Acta Botanica Neerlandica. 29(5/6): 385-396.
- van der Toorn, J. and H.J. ten Hove. 1982. On the ecology of *Cotula coronopifolia* L. and *Ranunculus sceleratus* L. II. Experiment on germination, seed longevity, and seedling survival. Acta Oecologica 3 (17): 409-418.
- Vazquez-Yanes, C., A. Orozco-Segovia, E. Rincon, M.E. Sanchez-Coronado, P. Huante, J.R. Toledo, and V.L. Barradas. 1990. Light beneath the litter in a tropical forest: effect on seed germination. Ecology 71(5): 1952-1958.
- Villano, K. 2007. Wildfire and invasive plants in Alaska: Recent findings. 8th Annual Statewide CNIPM Workshop. Presentation 15 November 2007.
- Volkart, A. 1924. Report on the determination of provenance of clover and grass seeds. Report of the 4th International Seed Testing Conference. Pp. 83-97.
- Vujnovic, K. and R.W. Wein. 1997. The biology of Canadian weeds. 106. *Linaria dalmatica* (L.) Mill. Canadian Journal of Plant Science 77(3): 483-491.
- Walkup, C.J. Spartina alterniflora. In: Fire Effects Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/ [2004, December 13].
- Wall, D.A. and I.N. Morrison. 1990. Competition between *Silene vulgaris* (Moench) Garcke and alfalfa (*Medicago sativa* L.). Weed Research 30: 145-151.
- Waloff, N. and O.W. Richards. 1977. The effect of insect fauna on growth mortality and natality of broom, *Sarothamnus scoparius*. Journal of Applied Ecology 14:787-798.
- Walsh, J.F. and J. Skujins. 1981. Drought effects on the N2-fixing (acetylene reducing) ability of vetch and sweetclover growing under saline conditions. Agronomy Journal 73: 756-758.
- Walton, D.W.H. 1975. European weeds and other alien species in the subantarctic. Weed Research 15: 271-282.
- WAPMS The Western Aquatic Plant Management Society. 2004. *Spartina alterniflora* Smooth cordgrass A problem aquatic plant in the Western USA. Available: http://www.wapms.org/index.html [December 13, 2004].
- Wardle, D.A., K.S. Nicholson, and A. Rahman. 1993. Influence of plant age on the allelopathic potential of nodding thistle (*Carduus nutans* L.) against pasture grasses and legumes. Weed Research 33: 69-78.
- Wardle, D.A., K.S. Nicholson, and A. Rahman. 1996. Use of a comparative approach to identify allalopathic potential and relationship between allelopathy bioassays and "competition" experiments for ten grasslands and plant species. Journal of Chemical Ecology 22(5): 933-948.
- Warner, P.J., C.C. Bossard, M.L. Brooks, J.M. DiTomaso, J.A. Hall, A.M. Hawald, D.W. Johnson, J.M. Randall, C.L. Roye, M.M. Ryan, and A.E. Stanton. 2003 Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands. (www.caleppc.org and www.swvma.org. California Exotic Pest Plant Council and Southwest Vegetation Management Association. 24 pp.
- Warr, G.J. 1981. Barley grass *Hordeum leporinum* can lower sheep production. Penetrating awns injure sheep. The agricultural gazette of New South Wales 92(1): 27-28.
- Warwick, S.I., J.F. Bain, R. Wheatcroft, B.K. Thompson. 1989. Hybridization and introgression in *Carduus nutans* and *C. acanthoides* reexamined. Systematic Botany 14(4): 476-494.
- Washington State Department of Ecology: Water Quality Home. 2004. Non-Native Freshwater Plants. Hydrilla (*Hydrilla verticillata*). Available: http://www.ecy.wa.gov/programs/wq/plants/weeds

- Washington State Department of Ecology: Water Quality Home. 2003. Non-Native Freshwater Plants. Eurasian Watermilfoil. http://www.ecy.wa.gov/programs/wq/plants/weeds.
- Washington Department of Ecology, Water Quality Program. 2005. Non-native freshwater plants fragrant water lily. Washington. Available from: http://www.ecy.wa.gov/programs/wq/wqhome.html
- Watson, S.J., A.L. Mauchline, V.K. Brown and R.J. Froud-Williams. 2003. Post-dispersal losses of *Stellaria media* and *Polygonum aviculare* seeds in spring barley (*Hordeum vulgare*). Aspects of Applied Biology 69: 203-208.
- WDNR Wisconsin Department of Natural Resources. Non-native plants. Exotic bush honeysuckles: Tartarian hoheysuckle (*Lonicera tatarica*), Morrow's honeysuckle (*Lonicera morrowii*), Bella Honeysuckle (*Lonicera x bella*). 2003. http://www.dnr.state.wi.us [May 11, 2004].
- Weaver, J.E. and R.W. Darland. 1948. Changes in vegetation and production of forage resulting from grazing lowland prairie. Ecology 29 (1): 1-29.
- Weaver, S.E. and W.R. Riley. 1982. The biology of Canadian weeds. 53. *Convolvulus arvensis* L. Canadian Journal of Plant Science 62: 461-472.
- Weaver, T., J. Lichthart and D. Gustafson. 1990. Exotic invasion of timberline vegetation, Northern Rocky Mountains, USA. In: Schmidt, W.C., K.J. McDonald, editors. Proceedings – symposium on whitebark pine ecosystems: ecology and management of a high-mountain resource; 1989 March 29-31; Bozeman, MT. Gen. Tech. Rep. INT-270. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 208-213.
- Weeds Australia. 1998. Noxious Weed List. On Line Database. http://www.weeds.org.au/noxious.htm
- Weeds of Alaska Database. 2004. AKEPIC Mapping Project Inventory Field Data. Alaska Natural Heritage Program, University of Alaska – U.S. Forest Service – National Park Service. Available: http://akweeds. uaa.alaska.edu/
- Welbank, P.J. 1963. A comparison of competitive effects of some common weed species. Annals of Applied Biology 51:107-125.
- Welk, E., K. Schubert and M.H. Hoffmann. 2002. Present and potential distribution of invasive garlic mustard (*Alliaria petiolata*) in North America. Diversity and Distributions 8: 219-233.
- Welker, W.V. and D.N. Riemer. 1982. Fragrant waterlily (*Nymphaea odorata*) control with multiple applications of glyphosate. Weed Science 30: 145-146.
- Welling, C. 2004. Eurasian watermilfoil management program. Minnesota Department of Natural Resources. Available: http://www.dnr.state.mn.us/index.html [Feb 18, 2004].
- Welsh, S. L. 1974. Anderson's flora of Alaska and adjacent parts of Canada. Brigham University Press. 724 pp.
- Werger, M.J.A., T. Hirose, H.J. During, G.W. Heil, K. Hikosaka, T. Ito, U.G. Nachinshonhor, D. Nagamatsu, K. Shibasaki, S. Takatsuki, J.W. van Rheenen, and N.P.R. Anten. 2002. Light partitioning among species and species replacement in early successional grasslands. Journal of Vegetation Science 13: 615-626.
- Werner, P.A. and J.D. Soule. 1976. The biology of Canadian weeds. 18. *Potentilla recta* L., *P. norvegica* L., and *P. argentea* L. Canadian Journal of Plant Science 56:591-603.
- Westgate, J. M. & Vinall, H. N. (1912) Sweet clover. United States Department of Agriculture Farmers Bulletin, 485.
- Whatcom Weeds. 2003. Reed Canarygrass (*Phalaris arundinacea* L.). Whatcom County Noxious Weed Control Board. Whatcom County Public Works. Bellingham, Washington. [June 8, 2004].
- Wheeler, C.T., D.A. Perry, O. Helgerson, J.C. Gordon. 1979. Winter fixation of nitrogen in Scotch broom (*Cytisus scoparius* L.). New Phytologist 82: 697-701.

- White, D.J., E. Haber, C. Keddy. 1993. Invasive plants of natural habitats in Canada: an integrated review of wetland and upland species and legislation governing their control. Canadian Wildlife Service. Ottawa, Canada. 121 p.
- Whitson, T.D., L.C. Burrill, S A. Dewey, D.W. Cudney, B.E. Nelson, R.D. Lee, R. Parker. 2000. Weeds of the West. The Western Society of Weed Science in cooperation with the Western United States Land Grant Universities, Cooperative Extension Services. University of Wyoming. Laramie, Wyoming. 630 pp.
- Wiersema, J.H. 1997. Nymphaeaceae Salisbury Water-lily Family. Nymphaea In: Flora of North America. Vol. 3. Magnoliophyta: Magnoliidae and Hammamelidae. Oxford University Press, Oxford. pp. 66-77.
- Wierzbicka, M. and D. Panufnik. 1998. The adaptation of *Silene vulgaris* to growth on a calamine waste heap (S. Poland). Environmental Pollution 101: 415-426.
- Wilken, D.H, and E.L. Painter. 1993. *Bromus Brome*. In J. C. Hickman (ed.) The Jepson Manual of Higher Plants of California. University of California Press, Berkley. Pp. 1400.
- Wilken, D.H. 1993. *Lolium*. in J.C. Hickman (ed.) The Jepson manual: higher plants of California. University of California Press, Berkley, California. Pp. 1400.
- Wilken, D.H. 1993. *Prunus*. In J. C. Hickman (ed.) The Jepson Manual of Higher Plants of California. University of California Press, Berkley. Pp. 1400.
- Williams, E.D. 1983. Effects of temperature, light, nitrate and pre-chilling on seed germination of grassland plants. Annals of Applied Biology 103: 161-172.
- Williamson, J and S. Harrison. 2002. Biotic and abiotic limits to the spread of exotic revegetation species. Ecological Applications 12(1): 40-51.
- Wilson, J.B., G.L. Rapson, M.T. Sykes, A.J. Watkins, and P.A. Williams. 1992. Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. Journal of Biogeography. 19(2): 183-193.
- Wilson, J.D., A.J. Morris, B.E. Arroyo, S.C. Clark and R.B. Bradbury. 1999. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agriculture, Ecosystems and Environment 75: 13-30.
- Wilson, R.E. 1970. Succession in stands of *Populus deltoides* along the Missouri River in Southeastern South Dakota. American Midland Naturalist 83(2): 330-342.
- Wisconsin Department of Natural Resources. 2004. Non-native plants. Available: http://dnr.wi.gov/ Accessed 2005 March 7.
- Wisconsin Department of Natural Resources. Invasive species. http://www.dnr.state.wi.us
- Wisconsin Department of Natural Resources: abstract. Non-native plants. Spotted Knapweed (*Centaurea maculosa*). 2004. http://www.dnr.state.wi.us [2004 September 8].
- Wisconsin Department of Natural Resources. 2003. Dame's rocket (*Hesperis matronalis*). Available: http://www.dnr.state.wi.us [December 15, 2004].
- Wisconsin Department of Natural Resources: abstract. Non-native plants. Purple Loosestrife (*Lythrum salicaria*). 2003. http://www.dnr.state.wi.us [May 7, 2004].
- Wisconsin Department of Natural Resources. 2003. Yellow sweet clover (*Melilotus officinalis*) White sweet clover (*Melilotus alba*).
- Wisconsin Department of Natural Resources. 2003. Non-native plants. Kentucky bluegrass (*Poa pratensis*), Canada bluegrass (*Poa compressa*). http://www.dnr.state.wi.us [July 9, 2004].
- Wolf, J. J., S. W. Beatty, and G. Carey. 2003. Invasion by sweet clover (*Melilotus*) in montane grasslands, Rocky Mountain National Park. Annals of the Association of American Geographers, 93(3), 2003, pp. 531–543.

- Wolfe-Bellin, K.S. and K.A. Moloney. 2000. The effect of gopher mounds and fire on the spatial distribution and demography of a short-lived legume in tallgrass prairie. Canadian Journal of Botany; 78: 1299-1308.
- Woodcock, E.F. 1925. Observations on the poisonous plants of Michigan. American Journal of Botany. 12(2):116-131.
- Woods, K., K.W. Hilu, J.H. Wiersema and T. Borsch. 2005. Pattern of variation and systematics of *Nymphaea* odorata: I. Evidence from morphology and inter-simple sequence repeats (ISSRs). Systematic Botany 30(3): 471-480.
- WRCC Western Regional Climate Center 2001. Desert Research Institute. http://www.wrcc.dri.edu [March 9, 2005].
- Wright, M. 1984. Giant hogweed: time for action is now (*Heracleum mantegazzianum*, Great Britain). New Scientist. 101(1404): 44.
- WSDE Washington State Department of Ecology: Water Quality Home. Technical Information About *Phalaris arundinacea* (Reed Canarygrass). http://www.ecy.wa.gov/programs/wq/plants/weeds/index. html [Dec 2, 2003].
- WS-NWCB. Washington State. Noxious Weed Control Board. 2005. Sulfur cinquefoil (*Potentilla recta* L.). Available: http://www.nwcb.wa.gov/ via the Internet. Accessed 2005 March 22.
- WSSA Weed Science Society of America. 2003. Flixweed (*Descurainia sophia*). Available: http://www.wssa. net/subpages/weed/larrymitich/flixweed.html. [Nov 24, 2003].
- Young, J.A., C.E. Turner, and L.F. James. 1995. Perennial pepperweed. Rangelands 17: 121-123.
- Zedler, P.H., C.R. Gautier, G.S. McMaster. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64(4): 809-818.
- Zouhar, K. 2002. *Carduus nutans*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2005, May 4].
- Zouhar, K. 2001. *Cirsium arvense*. In: Fire Effect Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer) Available: http://www.fs.fed.us/database/feis/
- Zouhar, K. 2002. *Cirsium vulgare*. In: Fire Effect Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer) Available: http://www.fs.fed.us/database/feis/ [2004, March 25].
- Zouhar, K. 2004. *Convolvulus arvensis*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2005, January 12].
- Zouhar, K. 2001. *Linaria* spp. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Science Laboratory (Producer). Available: http:// www.fs.fed.us/database/feis/ [2004, April 13].
- Zouhar, K. 2003. *Potentilla recta*. In: Fire Effects Information System, (Online). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences

Appendix C. Blank Invasiveness Form

Alaska non-native plant invasiveness ranking form

Common name: Assessors: Reviewers:	
	_
Date: Date of previous ranking, if any:	
Outcome score:	
A. Climatic Comparison	
This species is present or may potentially establish in the following eco-geographic regions:	
1 South Coastal	
2 Interior-Boreal	
3 Arctic-Alpine	
Total (Total Answered ¹	
B.Invasiveness RankingPoints Possible)Total	
1 Ecological impact 40 ()	
2 Biological characteristic and dispersal ability 25 ()	
3 Ecological amplitude and distribution 25 ()	
4 Feasibility of control 10 ()	
Outcome score 100 ()b	a
Relative maximum score ²	
¹ For questions answered "unknown" do not include point value for the question in parentheses for "Total Answered Points Possible."	
² Calculated as $a/b \times 100$.	
A. Climatic Comparison:	
1.1. Has this species ever been collected or documented in Alaska? • Collection Site	
Yes – continue to 1.2	
No – continue to 2.1	
Which ecogeographic region has it been collected or documented	
(see inset map)? Proceed to Section B. Invasiveness Ranking.	Bh
South Coastal	
Interior-Boreal Arctic-Alpine	
Arcuc-Aipline	
Documentation:	
Sources of information:	
Is there a 40 percent or higher similarity (based on CLIMEX climate matching) between climates any where the	2
2.1. species currently occurs and	
a. Juneau (South Coastal Region)?	
Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking	
b. Fairbanks (Interior-Boreal)?	
Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking	
c. Nome (Arctic-Alpine)?	
Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking	
-If "No" is answered for all regions, reject species from consideration	
Documentation: Sources of information:	

B. Invasiveness Ranking 1. Ecological Impact

1. Ecological Impact	
1.1. Impact on Natural Ecosystem Processes	
A. No perceivable impact on ecosystem processes	0
^B Has the potential to influences ecosystem processes to a minor degree (e.g., has a perceivable but mild	2
B. influence on soil nutrient availability)	3
C. Has the potential to cause significant alteration of ecosystem processes (e.g., increases sedimentation rate along streams or coastlines, reduces open water that are important to waterfowl)	tes 7
C. along streams or coastlines, reduces open water that are important to waterfowl)	/
May cause major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species	
D. alters geomorphology; hydrology; or affects fire frequency, altering community composition; species fix substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more like	xes 10
substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more like	ely
to favor non-native species)	
U. Unknown	
S	core
Documentation:	

Documentation:	
Identify ecosystem processes impacted:	
Rational:	
Sources of information:	
1.2. Impact on Natural Community Structure	
A. No perceived impact; establishes in an existing layer without influencing its structure	0
B. Has the potential to influences structure in one layer (e.g., changes the density of one layer)	3
Has the potential to cause significant impact in at least one layer (e.g., creation of a new layer or elimination	7
C. of an existing layer)	/
D. Likely to cause major alteration of structure (e.g., covers canopy, eradicating most or all layers below)	10
U. Unknown	
Score	<u>,</u>
Documentation:	
Identify type of impact or alteration:	
Rational:	
Sources of information:	
1.3. Impact on Natural Community Composition	
A. No perceived impact; causes no apparent change in native populations	0
Has the potential to influences community composition (e.g., reduces the number of individuals in one or	2
B. more native species in the community)	3
Has the potential to significantly alters community composition (e.g., produces a significant reduction in	_
C. the population size of one or more native species in the community)	7
Likely to cause major alteration in community composition (e.g., results in the extirpation of one or several	
D. native species, reducing biodiversity or change the community composition towards species exotic to the	10
	10
natural community)	
U. Unknown	
Score	:

Documentation:

Documentation:	
Identify type of impact or alteration:	
Rational:	
Sources of information:	
1.4. Impact on higher trophic levels (cumulative impact of this species on the animals, fungi, microbes, and other	
organisms in the community it invades)	
A. Negligible perceived impact	0
B. Has the potential to cause minor alteration	3
C. Has the potential to cause moderate alteration (minor reduction in nesting/foraging sites, reduction in habitat connectivity, interference with native pollinators, injurious components such as spines, toxins)	7
D. Likely to cause severe alteration of higher trophic populations (extirpation or endangerment of an existing native species/population, or significant reduction in nesting or foraging sites)	10
U. Unknown Score	

Documentation:		
Identify type of impact or alteration:		
Rational:		
Sources of information:		
Total Po	ossible	
	Total	
2. Biological Characteristics and Dispersal Ability		
2.1. Mode of reproduction		
A. Not aggressive reproduction (few [0-10] seeds per plant and no vegetative reproduction)		0
B. Somewhat aggressive (reproduces only by seeds $(11-1,000/m^2)$		1
C. Moderately aggressive (reproduces vegetatively and/or by a moderate amount of seed, $<1,000/m^2$)		2
D. Highly aggressive reproduction (extensive vegetative spread and/or many seeded, >1,000/m ²)		3
U. Unknown		
-	Score	
Documentation:		
Describe key reproductive characteristics (including seeds per plant):		
Rational:		
Sources of information:		
2.2. Innate potential for long-distance dispersal (bird dispersal, sticks to animal hair, buoyant fruits, wind-di	spersal)	0
A. Does not occur (no long-distance dispersal mechanisms)		0
B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)	c	2
C. Numerous opportunities for long-distance dispersal (species has adaptations such as pappus, hooked	fruit-	3
coats, etc.)		
U. Unknown		
	Score	
Documentation:		
Identify dispersal mechanisms: Rational:		
Sources of information:		
2.3. Potential to be spread by human activities (both directly and indirectly—possible mechanisms include: c	ommorei.	al
	Ummercu	
sales, use as forage/revegetation, spread along highways, transport on boats, contamination, etc.)		0
A. Does not occur B. Low (human discovered is infra quant or in off signt)		0
B. Low (human dispersal is infrequent or inefficient)		1
C. Moderate (human dispersal occurs) D. High (there are numerous opportunities for dispersal to new areas)		2 3
U. Unknown		3
C. Chkhown	Score	
Documentation:		
Identify dispersal mechanisms:		
Rational:		
Sources of information:		
2.4. Allelopathic		
A. No		0
B. Yes		2
U. Unknown		
	Score	
Documentation:		
Describe effect on adjacent plants:		
Rational:		
Sources of information:		
Sources of miormation.		

 2.5. Competitive ability A. Poor competitor for limiting factors B. Moderately competitive for limiting factors C. Highly competitive for limiting factors and/or nitrogen fixing ability U. Unknown 	Score	0 1 3
 Documentation: Evidence of competitive ability: Rational: Sources of information: 2.6. Forms dense thickets, climbing or smothering growth habit, or otherwise taller than the surrounding A. No 		0
B. Forms dense thicketsC. Has climbing or smothering growth habit, or otherwise taller than the surrounding vegetationU. Unknown	Score	1 2
Documentation: Describe grow form: Rational: Sources of information:		
2.7. Germination requirementsA. Requires open soil and disturbance to germinateB. Can germinate in vegetated areas but in a narrow range or in special conditionsC. Can germinate in existing vegetation in a wide range of conditionsU. Unknown	S	0 2 3
Documentation: Describe germination requirements: Rational: Sources of information:	Score	
 2.8. Other species in the genus invasive in Alaska or elsewhere A. No B. Yes U. Unknown 		0 3
Documentation: Species: Sources of information:	Score	
 2.9. Aquatic, wetland, or riparian species A. Not invasive in wetland communities B. Invasive in riparian communities C. Invasive in wetland communities U. Unknown 	Score	0 1 3
Documentation: Describe type of habitat: Rational: Sources of information:		
Tot	al Possible Total	

3. Distribution
3.1. Is the species highly domesticated or a weed of agriculture
A. No0B. Is occasionally an agricultural pest2
C. Has been grown deliberately, bred, or is known as a significant agricultural pest 4
U. Unknown
Score
Documentation: Identify reason for selection, or evidence of weedy history:
Rational:
Sources of information:
3.2. Known level of ecological impact in natural areas A. Not known to cause impact in any other natural area0
Known to cause impacts in natural areas, but in dissimilar habitats and climate zones than exist in regions
B. of Alaska
C. Known to cause low impact in natural areas in similar habitats and climate zones to those present in Alaska 3
D. Known to cause moderate impact in natural areas in similar habitat and climate zones 4
E. Known to cause high impact in natural areas in similar habitat and climate zones 6 U. Unknown
Score
Documentation:
Identify type of habitat and states or provinces where it occurs: Sources of information:
3.3. Role of anthropogenic and natural disturbance in establishment
A. Requires anthropogenic disturbances to establish 0
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances 3
C. Can establish independent of any known natural or anthropogenic disturbances 5 U. Unknown
Score
Documentation:
Identify type of disturbance:
Rational: Sources of information:
3.4. Current global distribution
A. Occurs in one or two continents or regions (e.g., Mediterranean region) 0
B. Extends over three or more continents3C. Extends over three or more continents, including successful introductions in arctic or subarctic regions5
C. Extends over three or more continents, including successful introductions in arctic or subarctic regions 5 U. Unknown
Score
Documentation:
Describe distribution: Rational:
Sources of information:
3.5. Extent of the species U.S. range and/or occurrence of formal state or provincial listing
A. 0-5 percent of the states0B. 6-20 percent of the states2
B. 6-20 percent of the states 2 21-50 percent, and/or state listed as a problem weed (e.g., "Noxious," or "Invasive") in 1 state or Canadian
C. province 4
D. Greater than 50 percent, and/or identified as "Noxious" in 2 or more states or Canadian provinces 5
U. Unknown Score
Documentation:
Identify states invaded:
Rational:
Sources of information: Total Possible
Total

4. Feasibility of Control

4. Feasibility of Control	_
4.1. Seed banks	
A. Seeds remain viable in the soil for less than 3 years	0
B. Seeds remain viable in the soil for between 3 and 5 years	2
C. Seeds remain viable in the soil for 5 years and more	3
U. Unknown	
Score	<u>د</u>
Documentation: Identify longevity of seed bank: Rational: Sources of information: 4.2. Vegetative regeneration	
A. No resprouting following removal of aboveground growth	0
B. Resprouting from ground-level meristems	1
C. Resprouting from extensive underground system	2
D. Any plant part is a viable propagule	3
U. Unknown	5
Score	<u>د</u>
Documentation:	
Describe vegetative response:	
Rational:	
Sources of information:	
4.3. Level of effort required	
A. Management is not required (e.g., species does not persist without repeated anthropogenic disturbance)	0
B. Management is relatively easy and inexpensive; requires a minor investment in human and financial	2
resources	2
Management requires a major short-term investment of human and financial resources, or a moderate long-	3
C. term investment	3
D. Management requires a major, long-term investment of human and financial resources	4
U. Unknown	
Score	±
Documentation:	
Identify types of control methods and time-term required: Rational:	
Sources of information:	
Total Possible	
Tota	
Total for 4 sections Possible	
Total for 4 sections	
	'

References: