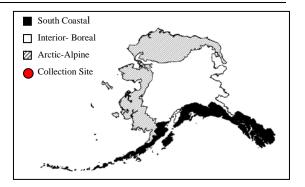
WEED RISK ASSESSMENT FORM			
Botanical name:	Hydrilla verticillata (L. f.) Royle		
Common name:	hydrilla		
Assessors:	Irina Lapina	Matthew L. Carlson, Ph.D.	
	Botanist, Alaska Natural Heritage	Assistant Professor, Alaska Natural Heritage	
	Program, University of Alaska	Program, University of Alaska Anchorage,	
	Anchorage, 707 A Street,	707 A Street,	
	Anchorage, Alaska 99501	Anchorage, Alaska 99501	
	tel: (907) 257-2710; fax (907) 257-2789	tel: (907) 257-2790; fax (907) 257-2789	
Reviewers:	Michael Shephard	Jeff Heys	
	Vegetation Ecologist Forest Health	Exotic Plant Management Program	
	Protection State & Private Forestry, 3301	Coordinator, National Park Service, Alaska	
	C Street, Suite 202, Anchorage, AK	Region - Biological Resources Team, 240 W.	
	99503; tel: (907) 743-9454; fax 907 743-	5th Ave, #114, Anchorage, AK 99501 tel:	
	9479	(907)644-3451, fax: 644-3809	
	Jeff Conn, Ph.D.	Erin Uloth	
	Weed Scientist, USDA Agricultural	Forest Health Protection State and Private	
	Research Service PO Box 757200	Forestry, 3301 C Street Suite 202 Anchorage,	
	Fairbanks, Alaska 99775 tel: (907) 474-	AK 99503	
	7652; fax (907) 474-6184	tel: (907) 743-9459, fax (907) 743-9479	

Outcome score:

А.	Climatic Comparison		
	This species is present or may potentially establish in the following		
	eco-geographic regions:		
1	South Coastal	Yes	
2	Interior-Boreal	Yes	
3	Arctic-Alpine	Yes	


В.	Invasiveness Ranking	Total (Total Answered*)	Total
		Possible	
1	Ecological impact	40 (40)	38
2	Biological characteristic and dispersal ability	25 (22)	17
3	Ecological amplitude and distribution	25 (25)	14
4	Feasibility of control	10 (10)	9
	Outcome score	100 (<mark>97</mark>) ^b	78 ^a
	Relative maximum score [†]		0.80

* For questions answered "unknown" do not include point value for the question in parentheses for "Total Answered Points Possible."

† Calculated as ^a/^b.

A. CLIMATIC COMPARISON:

	1.1. Has t	his species ever been collected or
	documented in Alaska?	
Y	es	Yes – continue to 1.2
		No $-$ continue to 2.1
	1.2. Whic	h eco-geographic region has it been
	collected	or documented (see inset map)?
	Proceed t	o Section B. Invasiveness Ranking.
Y	es	South Coastal
Y	es	Interior-Boreal
Y	es	Arctic-Alpine

Documentation: Hydrilla verticillata has not been documented in Alaska (Hultén 1968, Pfauth and Sytsma 2005, UAM 2004). Sources of information:

Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA. 1008 p.

Pfauth, M. and M. Sytsma. 2005. Alaska aquatic plant survey report 2005. US Fish and Wildlife Service Contract number: 7012050114, Center of Lakes and Reservoirs, Portland State University, Portland, OR. Available online http://www.clr.pdx.edu [March 13, 2006]. University of Alaska Museum. University of Alaska Fairbanks. 2004.

http://hispida.museum.uaf.edu:8080/home.cfm

2.1. Is there a 40% or higher similarity (based on CLIMEX climate matching) between climates any where the species currently occurs and

a. Juneau (South Coastal Region)?

Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking No

b. Fairbanks (Interior-Boreal)?

Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking No

c. Nome (Arctic-Alpine)?

Yes – record locations and similarity; proceed to Section B. Invasiveness Ranking No

– If "No" is answered for all regions, reject species from consideration

Documentation: The CLIMEX climate matching program indicates a climatic similarity between south coastal region of Alaska and areas of documented species' occurrence is high. The native range of hydrilla includes Akita, Japan and Thredbo, Australia (Cook and Lüönd 1982) which have 55% and 53% of climate similarity with Juneau, Alaska. The distribution range of hydrilla also includes Minsk, Belarus and Semipalatinsk, Russia (Cook and Lüönd 1982) which have a 62% and 61% climate similarity with Anchorage, respectively. Semipalatinsk and Blagoveshchensk, Russia, and Qiqihar, China have a 64%, 61%, and 50% climatic similarity with Fairbanks respectively. Further, aquatic species are generally less impacted by variation in terrestrial climates. Hydrilla verticillata is therefore likely to become established in the South Coastal and Interior Boreal Regions of Alaska. Sources of information:

CLIMEX for Windows, Version 1.1a. 1999. CISRO Publishing, Australia.

Cook, C.D.K. and R. Lüönd. 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany 13: 485-504.

B. INVASIVENESS RANKING

1. ECOLOGICAL IMPACT - -

1.1.	Imp	act on Natural Ecosystem Processes	
	۸	No perceivable impact on accessitem processes	

. _

А.	No percervable impact on ecosystem processes		0
B.	Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability)		3
C.	Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl)		7
D.	Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology; hydrology; or affects fire frequency, altering community composition; species fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species)		10
U.	Unknown		
	Score	8	
	Documentation:		
	Identify ecosystem processes impacted:		
	Hydrilla infestations slow the movement of water, causing flooding. Slow water flow can also increase the sedimentation rates, water temperature, pH level (Estes et al. 1990, Joyce et al. 1992) and decrease dissolved oxygen (Bossard et al. 2000). It also affects		

Δ

water nutrient turnover (Bole and Allan 1978, Sinha et al. 2000). Rational:

Sources of information:

Bole, J.B. and J.R. Allan. 1978. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Water research 12: 353-358.

	 Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221. Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp. Joyce, J.C., K.A. Langeland, T.K. Van and V.V. Vandiver, Jr. 1992. Organic sedimentation associated with hydrilla management. Journal of Aquatic Plant Management 30: 20-23. Sinha, S., R. Saxena and S. Singh. 2000. Fluoride removal from water by <i>Hydrilla</i> <i>verticillata</i> (l.f.) Royle and its toxic effects. Bulletin of Environmental Contamination and Toxicology 65: 683-690. 	
-	pact on Natural Community Structure	0
А.	No perceived impact; establishes in an existing layer without influencing its structure	0
В.	Influences structure in one layer (e.g., changes the density of one layer)	3
C.	Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer)	7
D. U.	Major alteration of structure (e.g., covers canopy, eradicating most or all layers below) Unknown	10
0.	Score	10
	Documentation:	
1.2 Inc	 Identify type of impact or alteration: Hydrilla forms a dense mat of vegetation at the water surface and limits light penetration degrading or eliminating all layers below (Bossard et al. 2000). Rational: Haller and Sutton (1975) reported ed that light penetration is reduced by at least 95% at one feet of depth. An aquatic vegetation sturdy in Florida found that areal coverage of submersed aquatic macrophytes increased from 8% in 1987 to 90% in 1989 and 1990 due to expansion of hydrilla (Estes et al. 1990). Sources of information: Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221. Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp. Haller, W.T., D.L. Sutton and W.C. Barlowe. 1974. Effect of salinity on growth of several aquatic macrophytes. Ecology 55: 891-894. 	
-	pact on Natural Community Composition	
А.	No perceived impact; causes no apparent change in native populations	0
В.	Influences community composition (e.g., reduces the number of individuals in one or more native species in the community)	3
C.	Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)	7
D.	Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)	10
U.	Unknown Score	10
	Documentation: Identify type of impact or alteration: Hydrilla infestations can cause reduction or extirpation of the population of native aquatic species (Bossard et al. 2000). Hydrilla may also shift the phytoplankton composition (Canfield et al. 1984). Infestations also adversely affect fish populations. Pational:	

Rational: Hydrilla may reduce seed production of native species, resulting eventually in a

	 reducing of a number of native species in the community (de Winton and Clayton 1996). An study in Florida found that frequency of occurrence fro the most abundant native submersed plants, coontail and southern naiad decreaded from 11% to 4% and 56% to 4% of samples, respectively, from 1987 to 1990 (Ester et al. 1990). Sources of information: Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221. Canfield, D.E.Jr., J.V. Shireman, D.E. Colle, W.T. Haller, E.E. Watkins and M.J. Maceina. 1984. Prediction of chlorophyll a concentration in Florida Lakes: importance of aquatic macrophytes. Can. J. Fish. Aquatic. Sci. 41: 497-501. de Winton, M.D. and J.S. Clayton. 1996. The impact of invasive submerged weed species on seed banks in lake sediments. Aquatic Botany 53: 31-45. Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp. 	
14 Imr	bact on higher trophic levels (cumulative impact of this species on the	
-	, fungi, microbes, and other organisms in the community it invades)	
A.	Negligible perceived impact	0
B.	Minor alteration	3
C.	Moderate alteration (minor reduction in nesting/foraging sites, reduction in habitat	7
	connectivity, interference with native pollinators, injurious components such as spines, toxins)	
D.	Severe alteration of higher trophic populations (extirpation or endangerment of an	10
	existing native species/population, or significant reduction in nesting or foraging sites)	
U.	Unknown	
	Score	10
	Documentation: Identify type of impact or alteration: Hydrilla is eaten by waterfowl and fish. Some studies support the view that hydrilla is beneficial as a fish food and cover (Estes et al. 1990), other researches suggest that fish populations are adversely affected when hydrilla coverage exceeds 30% (Colle and Shireman 1980). Hydrilla appears to be an important habitat for a number of mosquito species (Hearnden and Kay 1997). Rational:	
	 Sources of information: Colle, D.E. and J.V. Shireman. 1980. Coefficients of condition for largemouth bass, bluegill, and redear sunfish in <i>Hydrilla</i>-infested lakes. Transactions of the American Fisheries Society 109: 521-531. Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp. Hearnden, M.N. and B.H. Kay. 1997. Importance of <i>Hydrilla verticillata</i> (Hydrocharitaceae) as habitat for immature mosquitoes at the Ross River Reservoir, Australia. Journal of the American Mosquito Control Association 13: 164-170. 	40
	Total Possible	40
	Total	38

2. BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY

- 2.1. Mode of reproduction
 - A. Not aggressive reproduction (few [0-10] seeds per plant and no vegetative reproduction)
 - B. Somewhat aggressive (reproduces only by seeds (11-1,000/m²)

0 1

C.	Moderately aggressive (reproduces vegetatively and/or by a moderate amount of seed, $<1.000/m^2$)	2
D.	Highly aggressive reproduction (extensive vegetative spread and/or many seeded, $>1,000/m^2$)	3
U.	Unknown	

0.	Sc	core	3
	Documentation:		
	Describe key reproductive characteristics (including seeds per plant): Hydrilla reproduces by seeds, but seed production has minor importance. Vegetative reproduction is very efficient and occurs by fragmentation of the stem, or by the production of axillary buds (turions) and below-ground tubers. One plant can produ- an average of 6,046 tubers per season (Sutton et al. 1992). An experiment by Thulle (1990) showed that hydrilla can produced up to 46 axillary turions per 1.0 g dry wei (estimated of 2803 turions per m ³).	ce en	
	Rational:		
	About 50% of the fragments with a single whorl can sprout and form new plant, mo than 50% of the fragments with three whorls can sprout (Langeland and Sutton 1980)		
	Sources of information:		
	Langeland, K.A. and D.L. Sutton. 1980. Regrowth of hydrilla from axillary buds. Journal of Aquatic Plant Management 18; 27-29.		
	Sutton, D.L., T.K. Van and K.M. Portier. 1992. Growth of dioecious and monoeciou hydrilla from single tubers. Journal of Aquatic Plant Management 30: 15-2		
	Thullen, J.S. 1990. Production of axillary turions by the dioecious <i>Hydrilla verticillata</i> . Journal of Aquatic Plant Management 28: 11-15.		
2.2. Inn	ate potential for long-distance dispersal (bird dispersal, sticks to animal h	air,	
buoyant	fruits, wind-dispersal)		
A.	Does not occur (no long-distance dispersal mechanisms)		0
В.	Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)		2
С.	Numerous opportunities for long-distance dispersal (species has adaptations such as	;	3

pappus, hooked fruit-coats, etc.)

Unknown U.

Documentation:

Score 2 Documentation: Identify dispersal mechanisms: Tubers, turions and stem fragments disperse with flooding. Tubers survive ingestion by waterfowl and might be transported from one water body to another (Joyce et al. 1980). The importance of tubers dispersal, therefore, is unknown. Rational: Sources of information: Joyce, J.C., W.T. Haller and D.E. Colle. 1980. Investigation of the presence and survivability of hydrilla propagules in waterfowl. Aquatics 2: 10-14. 2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contamination, etc.) ۸ Does not occur Δ

А.	Does not occur	0
В.	Low (human dispersal is infrequent or inefficient)	1
C.	Moderate (human dispersal occurs)	2
D.	High (there are numerous opportunities for dispersal to new areas)	3
U.	Unknown	

Score 2

Identify dispersal mechanisms: Hydrilla was first introduced into North America as an aquarium plant. Turions or small pieces of hydrilla stems can travel on boat trailers or planes. Accidental introductions with planted waterlily have been reported (Washington State Department of Ecology

	2004).		
	Rational:		
	Hydrilla twigs survive 16 hours of desiccation (Basiouny et al. 1978, Kar and		
	Choudhuri 1982). Tubers can remain viable to several days out of water (Basiouny et al. 1978).		
	Sources of information:		
	Basiouny, F.M., W.T. Haller and L.A. Garrard. 1978. Survival of hydrilla (<i>Hydrilla</i>		
	<i>verticillata</i>) plants and propagules after removal from the aquatic habitat.		
	Weed Science 26(5): 502-504.		
	Kar, R.K. and M.A. Choudhuri. 1982. Effect of desiccation on internal changes with		
	respect of survival of <i>Hydrilla verticillata</i> . Hidrobiological bulletin 16(2): 213-	-	
	221. Werkington State Department of Feelgern Weter Orality Home 2004, New Network		
	Washington State Department of Ecology: Water Quality Home. 2004. Non-Native Freshwater Plants. Hydrilla (<i>Hydrilla verticillata</i>). Available:		
	http://www.ecy.wa.gov/programs/wq/plants/weeds		
2.4. All	elopathic		
A.	No		0
B.	Yes		2
U.	Unknown		2
0.	Score	2	
		2	
	Documentation:		
	Describe effect on adjacent plants:		
	In experiments by Elakovich and Wooten (1989) extracts of hydrilla exhibit high allelopathy potential and inhibited the growth of lettuce seedling and duckweed frond.		
	Rational:		
	Sources of information:		
	Elakovich, S.D. and J.W. Wooten. 1989. Allelopathic potential of sixteen aquatic and		
	wetland plants. Journal of Aquatic Plant Management 27: 78-84.		
2.5. Co	mpetitive ability		
А.	Poor competitor for limiting factors		0
В.	Moderately competitive for limiting factors		1
C.	Highly competitive for limiting factors and/or nitrogen fixing ability		3
U.	Unknown		
0.	Score	3	
	Documentation:	5	
	Evidence of competitive ability:		
	Hydrilla is highly adaptive to the environment and competitive with most other aquatic		
	plants (Haller and Sutton 1975). It is able to outcompete native submerged plants for		
	light and nutrient.		
	Rational:		
	The growth habit of hydrilla enables it to compete effectively for sunlight. It can		
	elongate up to one inch per day, and produces the majority of the stems in the upper 2-		
	3 feet of water (Haller and Sutton 1975). This mat of vegetation intercepts sunlight and		
	leads to exclusion of other aquatic plants. Hydrilla is also adapted to use low light		
	levels for photosynthesis (Barko and Smart 1981, Van et al. 1976). Hydrilla efficiently		
	uses a limited supply of nutrients such as carbon, nitrogen and phosphorus. Sources of information:		
	Barko, J.W. and R.M. Smart. 1981. Comparative influences of light and temperature		
	on the growth and metabolism of selected submersed freshwater		
	macrophytes. Ecological Monographs 51(2): 219-235.		
	Haller, W.T. and D.L. Sutton. 1975. Community structure and competition between		
	Hydrilla and Vallisneria. Hyacinth Control Journal 13: 48-50.		
	Van, T.K., W.T. Haller and G. Bowes. 1976. Comparison of the photosynthetic		
	characteristics of three submersed aquatic plants. Plant Physiology 58: 761-		
	768.		

2.6. Forms dense thickets, climbing or smothering growth habit, or otherwise taller than the surrounding vegetation

A. B. C. U.	No Forms dense thickets Has climbing or smothering growth habit, or otherwise taller than the surroundin vegetation Unknown	g	0 1 2
		Score	2
	Documentation: Describe grow form: Hydrilla can form a dense mat near the water surface (Bossard et al. 2000). Rational:		
	Sources of information: Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of Calif- wildlands. Pp. 218-221.	ornia's	
2.7. Gei	mination requirements		
Α.	Requires open soil and disturbance to germinate		0
В. С.	Can germinate in vegetated areas but in a narrow range or in special conditions Can germinate in existing vegetation in a wide range of conditions		2 3
U.	Unknown	Score	NT/A
	Documentation:	Score	N/A
	Describe germination requirements: Germination of seeds is not a significant factor in reproduction. (Bossard et al. 20 Rational:)00).	
	Sources of information: Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221.		
2.8. Oth	er species in the genus invasive in Alaska or elsewhere		
А.	No		0
В.	Yes		3
U.	Unknown	~	
		Score	0
	Documentation:		
	Species: None		
	Sources of information:		
20 4 ~	votio watland or ringrian anazias		
2.9. Aq A.	uatic, wetland, or riparian species Not invasive in wetland communities		0
В.	Invasive in riparian communities		1
C.	Invasive in wetland communities		3
U.	Unknown		
		Score	3
	Documentation: Describe type of habitat: Hydrilla is a submerged aquatic perennial. Typical habitats of hydrilla include dir canals, ponds, reservoirs. It can be found in fresh and brackish, flowing and still (Bossard et al. 2000, Thorne 1993). Rational:		
	 Sources of information: Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221. Thorne, R.F. Hydrocharitaceae Waterweed family. In: Hickman, J.C., editor. The Jepson manual higher plants of California. Berkeley, Los Angeles, London 10, 2000. 		

	ISTRIBUTION		
3.1. Is t	he species highly domesticated or a weed of agriculture		
А.	No		0
B.	Is occasionally an agricultural pest		2
C.	Has been grown deliberately, bred, or is known as a significant agricultural pest		4
U.	Unknown		-
0.	Score	0	
		U	
	Documentation:		
	Identify reason for selection, or evidence of weedy history:		
	Hydrilla is not an agricultural weed.		
	Rational:		
	Sources of information:		
	Sources of miorination.		
32 Kn	own level of ecological impact in natural areas		
A.	Not known to cause impact in any other natural area		0
В.	Known to cause impacts in natural areas, but in dissimilar habitats and climate zones than exist in regions of Alaska		1
C.	Known to cause low impact in natural areas in similar habitats and climate zones to		3
C.	those present in Alaska		5
D.	Known to cause moderate impact in natural areas in similar habitat and climate zones		4
E.	Known to cause high impact in natural areas in similar habitat and climate zones		6
	Unknown		0
U.			
	Score	1	
	Documentation:		
	Identify type of habitat and states or provinces where it occurs:		
	Hydrilla causes severe alterations of plant community composition, community		
	structure and ecosystem processes in water bodies in California (Bossard et al. 2000).		
	This aquatic weed displaces native plants and adversely impacts freshwater habitats in		
	Florida (Langeland 1996). Hydrilla is reported from one lake system in Washington.		
	This is the only known occurrence of hydrilla in the Pacific Northwest and impact on		
	native aquatic ecosystem has not been recorded (Washington State Department of		
	Ecology 2004). Sources of information:		
	Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of		
	California's wildlands. Pp. 218-221.		
	Langeland, K.A. 1996. <i>Hydrilla verticillata</i> (L.F.) Royle (Hydrocharitaceae), "The		
	perfect aquatic weed". Castanea 61: 293-304.		
	Washington State Department of Ecology: Water Quality Home. 2004. Non-Native		
	Freshwater Plants. Hydrilla (Hydrilla verticillata). Available:		
	http://www.ecy.wa.gov/programs/wq/plants/weeds.		
3.3. Ro	le of anthropogenic and natural disturbance in establishment		
А.	Requires anthropogenic disturbances to establish		0
B.	May occasionally establish in undisturbed areas but can readily establish in areas with		3
	natural disturbances		
C.	Can establish independent of any known natural or anthropogenic disturbances		5
U.	Unknown		
	Score	5	
	Documentation:	_	
	Identify type of disturbance:		
	Hydrilla can be readily established in undisturbed aquatic ecosystem (Bossard et al.		
	2000).		

	Rational:			
	Sources of information:			
	Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of			
24 0	California's wildlands. Pp. 218-221.			
	rrent global distribution Occurs in one or two continents or regions (e.g., Mediterranean region)			Δ
A. B.	Extends over three or more continents			0 3
Б. С.	Extends over three or more continents, including successful introductions in arctic or			5
	subarctic regions			5
U.	Unknown	F	2	
	Scol	re	3	
	Documentation: Describe distribution:			
	Hydrilla is probably native to the warmer regions of Asia (Cook and Lüönd 1982). It	is		
	a cosmopolitan species that occurs in Europe, Asia, Australia, New Zealand, the			
	Pacific Islands, Africa, North and South America.			
	Rational:			
	Sources of information:			
	Cook, C.D.K. and R. Lüönd. 1982. A revision of the genus Hydrilla			
25 Ev	(Hydrocharitaceae). Aquatic Botany 13: 485-504. tent of the species U.S. range and/or occurrence of formal state or			
	tial listing			
A.	0-5% of the states			0
В.	6-20% of the states			2
C.	21-50%, and/or state listed as a problem weed (e.g., "Noxious," or "Invasive") in 1			4
-	state or Canadian province			_
D.	Greater than 50%, and/or identified as "Noxious" in 2 or more states or Canadian provinces			5
U.	Unknown			
0.	Sco	re	5	
	Documentation:			
	Identify states invaded:			
	In the United States hydrilla populations occur in all southeastern states and in Arizon	ıa,		
	California and Washington (USDA, NRCS 2006). <i>Hydrilla verticillata</i> is declared a Federal Noxious Weed in US. It is also listed noxious in 17 American states (Rice 200	06.		
	USDA, NRCS 2006).	,		
	Rational:			
	Sources of information:			
	Rice, P.M. INVADERS Database System (http://invader.dbs.umt.edu). Division of			
	Biological Sciences, University of Montana, Missoula, MT 59812-4824.			
	USDA, NRCS. 2006. <i>The PLANTS Database</i> , Version 3.5 (http://plants.usda.gov). Da compiled from various sources by Mark W. Skinner. National Plant Data	ata		
	Center, Baton Rouge, LA 70874-4490 USA.			
	Total Possib	le		25
	Tot	al		14
4 11	EASIBILITY OF CONTROL			

- 4.1. Seed banks
 - A. Seeds remain viable in the soil for less than 3 years
 - B. Seeds remain viable in the soil for between 3 and 5 years
 - C. Seeds remain viable in the soil for 5 years and more
 - U. Unknown

Score 2

0

2

3

	Documentation: Identify longevity of seed bank: Seed production and seed viability is probably low. However, propagules of hydrilla, tubers survived in undisturbed sediment for a period of over four years. Axillary turions usually do not remain viable for more than one year (Van and Steward 1990). Rational:	
	Sources of information: Van, T.K. and K.K. Steward. 1990. Longevity of monoecious hydrilla propagules. Journal of Aquatic Plant Management 28: 74-76.	
	egetative regeneration	
A.		0
B.		1
C.		2 3
D.		3
U.		
	Score 3	
	Documentation:	
	Describe vegetative response: Hydrilla can regenerate from stem fragments, tubers, and turions (Basiouny et al.	
	1978, Spencer and Rejmanek 1989, Steward 1992, Sutton et al. 1992). Rational:	
	About 50% of the fragments with a single whorl can sprout and form new plant. More	
	than 50% of the fragments with three whorls can sprout (Langeland and Sutton 1980).	
	Sources of information:	
	Basiouny, F.M., W.T. Haller and L.A. Garrard. 1978. Survival of hydrilla (<i>Hyrdilla</i>	
	<i>verticillata</i>) plants and propagules after removal from the aquatic habitat. Weed Science 26: 502-504.	
	Langeland, K.A. and D.L. Sutton. 1980. Regrowth of hydrilla from axillary buds.	
	Journal of Aquatic Plant Management 18: 27-29.	
	Spencer, D.F. and M. Rejmanek. 1989. Propagule type influences competition between	
	two submersed aquatic macrophytes. Oecologia 81: 132-137.	
	Steward, K.K. 1992. Survival and growth of stem fragments from various hydrilla races. Florida Scientist 55: 129-135.	
	Sutton, D.L., T.K. Van and K.M. Portier. 1992. Growth of dioecious and monoecious	
	hydrilla from single tubers. Journal of Aquatic Plant Management 30: 15-20.	
4.3. L	evel of effort required	
A.		0
п	anthropogenic disturbance) Management is relatively easy and inexpensive; requires a minor investment in human	2
B.	and financial resources	
C.	or a moderate long-term investment	3
D. U.		4
0.	Score 4	
	Documentation:	
	Identify types of control methods and time-term required:	
	Cost of hydrilla management is extremely high. Management methods currently include	
	mechanical removal, herbicides applications, and biological control. Hydrilla is	
	fragmented easily and damaged plants that are not removed by mechanical control methods can act as a source of reestablishment. Several species of weevils, leaf-mining	
	flies, and moth have been introduced to control hydrilla (Bossard et al. 2000, Langeland	
	1996).	
	Rational:	
	Sources of information:	
	Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of	
	· 1	

California's wildlands. Pp. 218-221.	
Langeland, K.A. 1996. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), "The	
perfect aquatic weed". Castanea 61: 293-304.	
Total Possible	10
Total	9

Total for 4 sections Possible	97
Total for 4 sections	78

References:

- Barko, J.W. and R.M. Smart. 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51(2): 219-235.
- Basiouny, F.M., W.T. Haller and L.A. Garrard. 1978. Survival of hydrilla (*Hyrdilla verticillata*) plants and propagules after removal from the aquatic habitat. Weed Science 26: 502-504.
- Bole, J.B. and J.R. Allan. 1978. Uptake of phosphorus from sediment by aquatic plants, *Myriophyllum spicatum* and *Hydrilla verticillata*. Water research 12: 353-358.
- Bossard, C.C., J.M. Randall and M.C. Hoshovsky. 2000. Invasive plants of California's wildlands. Pp. 218-221.
- Canfield, D.E.Jr., J.V. Shireman, D.E. Colle, W.T. Haller, E.E. Watkins and M.J. Maceina. 1984. Prediction of chlorophyll a concentration in Florida Lakes: importance of aquatic macrophytes. Can. J. Fish. Aquatic. Sci. 41: 497-501.
- CLIMEX for Windows, Version 1.1a. 1999. CISRO Publishing, Australia.
- Colle, D.E. and J.V. Shireman. 1980. Coefficients of condition for largemouth bass, bluegill, and redear sunfish in Hydrilla-infested lakes. Transactions of the American Fisheries Society 109: 521-531.
- Cook, C.D.K. and R. Lüönd. 1982. A revision of the genus *Hydrilla* (Hydrocharitaceae). Aquatic Botany 13: 485-504.
- de Winton, M.D. and J.S. Clayton. 1996. The impact of invasive submerged weed species on seed banks in lake sediments. Aquatic Botany 53: 31-45.
- Elakovich, S.D. and J.W. Wooten. 1989. Allelopathic potential of sixteen aquatic and wetland plants. Journal of Aquatic Plant Management 27: 78-84.
- Estes, J.R., W.A. Sheaffer and E.P. Hall. 1990. Study I. Fisheries studies of the Orange Lake chain of Lakes. Florida Game and Fresh Water Fish Commission, Completion Report as Required by Federal Aid in Sport Fish Restoration Wallop-Breaux Project F-55-R Lower Ocklawaha Basin Fisheries Investigations, Tallahassee, Florida. 86 pp.
- Joyce, J.C., W.T. Haller and D.E. Colle. 1980. Investigation of the presence and survivability of hydrilla propagules in waterfowl. Aquatics 2: 10-14.
- Joyce, J.C., K.A. Langeland, T.K. Van and V.V. Vandiver, Jr. 1992. Organic sedimentation associated with hydrilla management. Journal of Aquatic Plant Management 30: 20-23.
- Rice, P.M. INVADERS Database System (<u>http://invader.dbs.umt.edu</u>). Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824.
- Haller, W.T., D.L. Sutton and W.C. Barlowe. 1974. Effect of salinity on growth of several aquatic macrophytes. Ecology 55: 891-894.
- Haller, W.T. and D.L. Sutton. 1975. Community structure and competition between *Hydrilla* and *Vallisneria*. Hyacinth Control Journal 13: 48-50.
- Hearnden, M.N. and B.H. Kay. 1997. Importance of *Hydrilla verticillata* (Hydrocharitaceae) as habitat for immature mosquitoes at the Ross River Reservoir, Australia. Journal of the American Mosquito Control Association 13: 164-170.

- Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA. 1008 p.
- Kar, R.K. and M.A. Choudhuri. 1982. Effect of desiccation on internal changes with respect of survival of *Hydrilla verticillata*. Hidrobiological bulletin 16(2): 213-221.
- Langeland, K.A. 1996. *Hydrilla verticillata* (L.F.) Royle (Hydrocharitaceae), "The perfect aquatic weed". Castanea 61: 293-304.
- Langeland, K.A. and D.L. Sutton. 1980. Regrowth of hydrilla from axillary buds. Journal of Aquatic Plant Management 18; 27-29.
- Pfauth, M. and M. Sytsma. 2005. Alaska aquatic plant survey report 2005. US Fish and Wildlife Service Contract number: 7012050114, Center of Lakes and Reservoirs, Portland State University, Portland, OR. Available online http://www.clr.pdx.edu [March 13, 2006].
- Sinha, S., R. Saxena and S. Singh. 2000. Fluoride removal from water by *Hydrilla verticillata* (l.f.) Royle and its toxic effects. Bulletin of Environmental Contamination and Toxicology 65: 683-690.
- Spencer, D.F. and M. Rejmanek. 1989. Propagule type influences competition between two submersed aquatic macrophytes. Oecologia 81: 132-137.
- Steward, K.K. 1992. Survival and growth of stem fragments from various hydrilla races. Florida Scientist 55: 129-135.
- Sutton, D.L., T.K. Van and K.M. Portier. 1992. Growth of dioecious and monoecious hydrilla from single tubers. Journal of Aquatic Plant Management 30: 15-20.
- Thorne, R.F. Hydrocharitaceae Waterweed family. *In*: Hickman, J.C., editor. The Jepson manual higher plants of California. Berkeley, Los Angeles, London: University of California Press; 1993. Pp. 1150-1151.
- Thullen, J.S. 1990. Production of axillary turions by the dioecious *Hydrilla verticillata*. Journal of Aquatic Plant Management 28: 11-15.
- University of Alaska Museum. University of Alaska Fairbanks. 2003. http://hispida.museum.uaf.edu:8080/home.cfm
- USDA, NRCS. 2006. *The PLANTS Database*, Version 3.5 (<u>http://plants.usda.gov</u>). Data compiled from various sources by Mark W. Skinner. <u>National Plant Data Center</u>, Baton Rouge, LA 70874-4490 USA.
- Van, T.K. and K.K. Steward. 1990. Longevity of monoecious hydrilla propagules. Journal of Aquatic Plant Management 28: 74-76.
- Van, T.K., W.T. Haller and G. Bowes. 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761-768.
- Washington State Department of Ecology: Water Quality Home. 2004. Non-Native Freshwater Plants. Hydrilla (*Hydrilla verticillata*). Available:

http://www.ecy.wa.gov/programs/wq/plants/weeds