PLANT INVASIVENESS ASSESSMENT FORM

Botanical name: *Hieracium aurantiacum* L. and *H. caespitosum* Dumort.
Common name: orange and meadow hawkweed

Assessors:
- Irina Lapina
 Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501
tel: (907) 257-2710; fax (907) 257-2789

- Matthew L. Carlson, Ph.D.
 Assistant Professor, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska 99501
tel: (907) 257-2790; fax (907) 257-2789

Reviewers:
- Michael Shephard
 Vegetation Ecologist Forest Health Protection State & Private Forestry
 3301 C Street, Suite 202, Anchorage, AK 99503
 tel: (907) 743-9454; fax 907 743-9479

- Jeff Conn, Ph.D.
 Weed Scientist, USDA Agricultural Research Service
 PO Box 757200 Fairbanks, Alaska 99775
tel: (907) 474-7652; fax (907) 474-6184

- Julie Riley
 Horticulture Agent, UAF Cooperative Extension Service
 2221 E. Northern Lights Blvd. #118
 Anchorage, AK 99508-4143
tel: (907) 786-6306

- Jamie M. Snyder
 UAF Cooperative Extension Service
 2221 E. Northern Lights Blvd. #118
 Anchorage, AK 99508-4143
tel: (907) 786-6310 alt. tel: (907) 743-9448

- Page Spencer, Ph.D.
 Ecologist, National Park Service, Alaska Region - Biological Resources Team, 240 W. 5th Ave, #114, Anchorage, AK 99501
tel: (907) 644-3448

Outcome score:

A. Climatic Comparison:

This species is present or may potentially establish in the following eco-geographic regions:

<table>
<thead>
<tr>
<th>Region</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Coastal</td>
<td>Yes</td>
</tr>
<tr>
<td>Interior-Boreal</td>
<td>Yes</td>
</tr>
<tr>
<td>Arctic-Alpine</td>
<td>Yes</td>
</tr>
</tbody>
</table>

This species is unlikely to establish in any region in Alaska

B. Invasiveness Ranking

<table>
<thead>
<tr>
<th>Category</th>
<th>Total (Total Answered*)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological impact</td>
<td>40 (40)</td>
<td>29</td>
</tr>
<tr>
<td>Biological characteristic and dispersal ability</td>
<td>25 (25)</td>
<td>23</td>
</tr>
<tr>
<td>Ecological amplitude and distribution</td>
<td>25 (25)</td>
<td>19</td>
</tr>
<tr>
<td>Feasibility of control</td>
<td>10 (10)</td>
<td>8</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (100)†</td>
<td>79 a</td>
</tr>
</tbody>
</table>

* For questions answered “unknown” do not include point value for the question in parentheses for “Total Answered Points Possible.”
† Calculated as a/b.

A. CLIMATIC COMPARISON:

1.1 Has this species ever been collected or documented in Alaska?

- Yes
- No

1.2. Which eco-geographic region has it been collected or documented (see inset map)?

Proceed to Section B. Invasiveness Ranking.

- Yes: South Coastal
- Yes: Interior-Boreal
- Yes: Arctic-Alpine

Documentation: *Hieracium caespitosum* has been collected in Juneau and Valdez (AK Weeds Database 2005, M. Shephard – pers. com.).

Sources of information:

Lapina, I., Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 – Pers. obs.

2.1. Is there a 40% or higher similarity (based on CLIMEX climate matching) between climates any where the species currently occurs and
 a. Juneau (South Coastal Region)?
 Yes – record locations and similarity; proceed to Section B.
 No

 b. Fairbanks (Interior-Boreal)?
 Yes – record locations and similarity; proceed to Section B.
 No

 c. Nome (Arctic-Alpine)?
 Yes – record locations and similarity; proceed to Section B.
 No

 – If “No” is answered for all regions, reject species from consideration

Documentation: Using CLIMEX matching program, climatic similarity between Nome and areas where *Hieracium aurantiacum* is documented is moderately high. Range of the species includes Anchorage (Alaska), Vaasa (Finland), and Saint-Petersburg (Russia) (Hultén 1968), which has a 61%, 54%, and 53% climatic match with Nome, respectively. These suggest that establishment of orange hawkweed in Arctic-Alpine eco-geographic region may be possible.

Range of *Hieracium caespitosum* includes Kirov and Kazan, Russia (Gubanov et al. 1995), which has a 66%, and 58% climatic match with Nome, and 60% and 59% climatic match with Fairbanks respectively. Thus establishment of meadow hawkweed in Interior-Boreal and Arctic-Alpine ecogeographic regions may be possible.

Sources of information:

B. INVASIVENESS RANKING

1. ECOLOGICAL IMPACT

1.1. Impact on Natural Ecosystem Processes

A. No perceivable impact on ecosystem processes 0
B. Influences ecosystem processes to a minor degree (e.g., has a perceivable but mild influence on soil nutrient availability) 3
C. Significant alteration of ecosystem processes (e.g., increases sedimentation rates along streams or coastlines, reduces open water that are important to waterfowl) 7
D. Major, possibly irreversible, alteration or disruption of ecosystem processes (e.g., the species alters geomorphology; hydrology; or affects fire frequency, altering community composition; species fixes substantial levels of nitrogen in the soil making soil unlikely to support certain native plants or more likely to favor non-native species) 10

U. Unknown

Score 7

Documentation:

Identify ecosystem processes impacted:
Orange and meadow hawkweed likely reduce soil moisture and nutrient availability (J. Snyder – pers.com.).

Rational:

Sources of information:

1.2. Impact on Natural Community Structure

A. No perceived impact; establishes in an existing layer without influencing its structure 0
B. Influences structure in one layer (e.g., changes the density of one layer) 3
C. Significant impact in at least one layer (e.g., creation of a new layer or elimination of an existing layer) 7
D. Major alteration of structure (e.g., covers canopy, eradicating most or all layers below) 10

U. Unknown

Score 7

Documentation:

Identify type of impact or alteration:
Extensive stolons form dense mats of hawkweed plants creating a new layer, and excluding other forbs and grasses (Callihan and Miller 1999, Prather et al. 2003, Rinella and Sheley 2002).

Rational:

Sources of information:

1.3. Impact on Natural Community Composition

A. No perceived impact; causes no apparent change in native populations 0
B. Influences community composition (e.g., reduces the number of individuals in one or more native species in the community) 3
C. Significantly alters community composition (e.g., produces a significant reduction in
D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)

U. Unknown

Score 10

Documentation:
Identify type of impact or alteration:
Orange and meadow hawkweed eliminate other vegetation by forming dense, monospecific stands (Callihan and Miller 1999, Prather et al. 2003, Rinella and Sheley 2002). Effects of this taxon are likely restricted to low herbaceous species (M. Carlson). Orange hawkweed reduces the population of native species in forbs-fern meadows in Kodiak (P. Spencer – pers. comm.).

Rational:

Sources of information:

Carlson M.L., Ph.D., Assistant Research Professor - Botany, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.

1.4. Impact on higher trophic levels (cumulative impact of this species on the animals, fungi, microbes, and other organisms in the community it invades)

A. Negligible perceived impact 0
B. Minor alteration 3
C. Moderate alteration (minor reduction in nesting/foraging sites, reduction in habitat connectivity, interference with native pollinators, injurious components such as spines, toxins) 7
D. Severe alteration of higher trophic populations (extirpation or endangerment of an existing native species/population, or significant reduction in nesting or foraging sites) 10
U. Unknown

Score 7

Documentation:
Identify type of impact or alteration:
Orange and meadow hawkweed are unpalatable and reduces the forage value of grasslands for grazing animals. It hybridizes freely with native and non-native hawkweeds (Callihan and Miller 1999, Noxious Weed Control Program 2004, Prather et al. 2003. Rinella and Sheley 2002). Orange hawkweed is also a host for nematode species (Townshend and Davidson 1962).

Rational:

Sources of information:

Noxious Weed Control Program. 2004. King County Noxious Weed List. Best management practices Hawkweeds – Hieracium spp. Asteraceae. Department of
2. BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY

2.1. Mode of reproduction

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A. Not aggressive reproduction (few [0-10] seeds per plant and no vegetative reproduction)</td>
</tr>
<tr>
<td>1</td>
<td>B. Somewhat aggressive (reproduces only by seeds (11-1,000/m²))</td>
</tr>
<tr>
<td>2</td>
<td>C. Moderately aggressive (reproduces vegetatively and/or by a moderate amount of seed, <1,000/m²)</td>
</tr>
<tr>
<td>3</td>
<td>D. Highly aggressive reproduction (extensive vegetative spread and/or many seeded, >1,000/m²)</td>
</tr>
<tr>
<td></td>
<td>U. Unknown</td>
</tr>
</tbody>
</table>

Documentation:
Describe key reproductive characteristics (including seeds per plant):
Each rosette of hawkweed is capable of producing between 600 and 45,000 tiny black seeds. In addition to reproducing by seeds, hawkweeds are capable of spreading by rhizomes, stolons and adventitious root buds (Callihan and Miller 1999, Prather et al. 2003, Rinella and Sheley 2002).

Rational:

Sources of information:
http://www.oneplan.org/
http://www.montana.edu/wwwpb/pubs/.

2.2. Innate potential for long-distance dispersal (bird dispersal, sticks to animal hair, buoyant fruits, wind-dispersal)

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A. Does not occur (no long-distance dispersal mechanisms)</td>
</tr>
<tr>
<td>2</td>
<td>B. Infrequent or inefficient long-distance dispersal (occurs occasionally despite lack of adaptations)</td>
</tr>
<tr>
<td>3</td>
<td>C. Numerous opportunities for long-distance dispersal (species has adaptations such as pappus, hooked fruit-coats, etc.)</td>
</tr>
<tr>
<td></td>
<td>U. Unknown</td>
</tr>
</tbody>
</table>

Documentation:
Identify dispersal mechanisms:
Seeds are spread by wind and animals (Callihan and Miller 1999, Rinella and Sheley 2002).

Rational:
Seeds are tiny and plumed.
2.3. Potential to be spread by human activities (both directly and indirectly – possible mechanisms include: commercial sales, use as forage/revegetation, spread along highways, transport on boats, contamination, etc.)

A.	Does not occur	0
B.	Low (human dispersal is infrequent or inefficient)	1
C.	Moderate (human dispersal occurs)	2
D.	High (there are numerous opportunities for dispersal to new areas)	3
U.	Unknown	

Score: 3

Documentation:
Identify dispersal mechanisms:
Seeds are easily carried by vehicles, animals and clothing. Orange hawkweed has escaped from flower gardens (Noxious Weed Control Program 2004, Rinella and Sheley 2002).

Rational:

Sources of information:

2.4. Allelopathic

A.	No	0
B.	Yes	2
U.	Unknown	

Score: 2

Documentation:
Describe effect on adjacent plants:
Described as allelopathic (Murphy and Aarssen 1995, Noxious Weed Control Program 2003).

Rational:

Sources of information:

2.5. Competitive ability

A.	Poor competitor for limiting factors	0
B.	Moderately competitive for limiting factors	1
C.	Highly competitive for limiting factors and/or nitrogen fixing ability	3
U.	Unknown	

Score: 3
Documentation:

Evidence of competitive ability:
Orange and meadow hawkweed outcompete many native species by forming dense, monospecific stands (Prather et al. 2003, Rinella and Sheley 2002).

Rational:

Sources of information:

2.6. **Forms dense thickets, climbing or smothering growth habit, or otherwise taller than the surrounding vegetation**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No</td>
<td>0</td>
</tr>
<tr>
<td>B. Forms dense thickets</td>
<td>1</td>
</tr>
<tr>
<td>C. Has climbing or smothering growth habit, or otherwise taller than the surrounding vegetation</td>
<td>2</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Score 2

Documentation:

Describe grow form:
Orange and meadow hawkweeds form dense, monospecific stands. However, leaves are primarily basal and do not shade grasses and most other forbs (Callihan and Miller 1999, Rinella and Sheley 2002).

Rational:

Sources of information:

2.7. **Germination requirements**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requires open soil and disturbance to germinate</td>
<td>0</td>
</tr>
<tr>
<td>B. Can germinate in vegetated areas but in a narrow range or in special conditions</td>
<td>2</td>
</tr>
<tr>
<td>C. Can germinate in existing vegetation in a wide range of conditions</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Score 2

Documentation:

Describe germination requirements:
Can germinate in vegetated areas, but germination is best in full sun (Rinella and Sheley 2002).

Rational:

Sources of information:

2.8. **Other species in the genus invasive in Alaska or elsewhere**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No</td>
<td>0</td>
</tr>
<tr>
<td>B. Yes</td>
<td>3</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Score 3
2.9. Aquatic, wetland, or riparian species

A. Not invasive in wetland communities 0
B. Invasive in riparian communities 1
C. Invasive in wetland communities 3
U. Unknown

Score 2

Documentation:
Describe type of habitat:
Orange and meadow hawkweeds generally inhabit roadsides, gravel pits and pastures, occurs in moist grasslands (Callihan and Miller 1999, Prather et al. 2003). In Alaska orange hawkweed has been observed invading wetland (M. Shephard – pers. obs.).

Rational:

Sources of information:

Total Possible 25
Total 23

3. DISTRIBUTION

3.1. Is the species highly domesticated or a weed of agriculture

A. No 0
B. Is occasionally an agricultural pest 2
C. Has been grown deliberately, bred, or is known as a significant agricultural pest 4
U. Unknown

Score 4

Documentation:
Identify reason for selection, or evidence of weedy history:
Orange hawkweed was first introduced into United States for use as an herbal remedy and garden ornamental. It is currently being planted as an ornamental in Girdwood and the Susitna Valley (I. Lapina pers. obs.).

Rational:

Sources of information:
3.2. Known level of impact in natural areas

<table>
<thead>
<tr>
<th>Level</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Not known to cause impact in any other natural area</td>
<td>0</td>
</tr>
<tr>
<td>B. Known to cause impacts in natural areas, but in dissimilar habitats and climate zones than exist in regions of Alaska</td>
<td>1</td>
</tr>
<tr>
<td>C. Known to cause low impact in natural areas in similar habitats and climate zones to those present in Alaska</td>
<td>3</td>
</tr>
<tr>
<td>D. Known to cause moderate impact in natural areas in similar habitat and climate zones</td>
<td>4</td>
</tr>
<tr>
<td>E. Known to cause high impact in natural areas in similar habitat and climate zones</td>
<td>6</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Identify type of habitat and states or provinces where it occurs:

Orange and meadow hawkweed invade permanent meadows, grasslands, rangelands, and pastures in Montana and Washington. It is a major environmental weed in montane areas in Canada and New Zealand (Noxious Weed Control Board 2004, Prather 2003, Rinella and Sheley 2002). Orange hawkweed invades forbs-fern meadows in Kodiak (P. Spencer – pers. comm.).

Sources of information:

3.3. Role of anthropogenic and natural disturbance in establishment

<table>
<thead>
<tr>
<th>Role</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requires anthropogenic disturbances to establish</td>
<td>0</td>
</tr>
<tr>
<td>B. May occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances</td>
<td>3</td>
</tr>
<tr>
<td>C. Can establish independent of any known natural or anthropogenic disturbances</td>
<td>5</td>
</tr>
<tr>
<td>U. Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Identify type of disturbance:

Hawkweeds readily grow in cleared areas in forests. Mowing promotes flowering and spreading of stolons. However, populations often establish in remote mountain meadows and forested habitats with moderate levels of natural disturbance. Orange and meadow hawkweeds have been established in native communities with natural disturbances in Kodiak, Juneau, and Valdez in Alaska (P. Spencer – pers. comm., M. Shephard – pers. com.).

Rationale:

Sources of information:

3.4. Current global distribution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Occurs in one or two continents or regions (e.g., Mediterranean region)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B.</td>
<td>Extends over three or more continents</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>C.</td>
<td>Extends over three or more continents, including successful introductions in arctic or subarctic regions</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Describe distribution:

Orange hawkweed originates from British Isles, South Scandinavia, west to Russia, and south to Mediterranean. Meadow hawkweed is indigenous to northern, central and eastern Europe. Hawkweeds now are also established in East Asia, United States, Canada, and New Zealand (Hultén 1968, Rinella and Sheley 2002).

Rational:

Sources of information:

http://www.montana.edu/wwwpb/pubs/

3.5. Extent of the species U.S. range and/or occurrence of formal state or provincial listing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>0-5% of the states</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B.</td>
<td>6-20% of the states</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C.</td>
<td>21-50%, and/or state listed as a problem weed (e.g., “Noxious,” or “Invasive”) in 1 state or Canadian province</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>D.</td>
<td>Greater than 50%, and/or identified as “Noxious” in 2 or more states or Canadian provinces</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Documentation:

Identify states invaded:

Rational:

Sources of information:

4. FEASIBILITY OF CONTROL

4.1. Seed banks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Seeds remain viable in the soil for less than 3 years</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B.</td>
<td>Seeds remain viable in the soil for between 3 and 5 years</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C.</td>
<td>Seeds remain viable in the soil for 5 years and more</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2. Vegetative regeneration
A. No resprouting following removal of aboveground growth 0
B. Resprouting from ground-level meristems 1
C. Resprouting from extensive underground system 2
D. Any plant part is a viable propagule 3
U. Unknown 3

4.3. Level of effort required
A. Management is not required (e.g., species does not persist without repeated anthropogenic disturbance) 0
B. Management is relatively easy and inexpensive; requires a minor investment in human and financial resources 2
C. Management requires a major short-term investment of human and financial resources, or a moderate long-term investment 3
D. Management requires a major, long-term investment of human and financial resources 4
U. Unknown 3

Documentation:
Identify longevity of seed bank:
Seeds of hawkweeds are viable up to 7 years (Rinella and Sheley 2002).

Documentation:
Describe vegetative respond:
The hawkweeds are capable of spreading by rhizomes and stolons and adventitious root buds (Rinella and Sheley 2002).

Documentation:
Identify types of control methods and time-term required:
Mechanical control procedures are generally not successful; digging, grazing or tillage can stimulate the growth of new plants from fragmented roots, stolons and rhizomes. Orange hawkweed can be controlled with herbicides. The site should be monitored for several years for plants growing from root fragments and from seed bank. Small, isolated populations are more easily controlled (Rinella and Sheley 2002).
References:

Carlson M.L., Ph.D., Assistant Research Professor – Botany, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2790 – Pers. obs.

Lapina, I., Botanist, Alaska Natural Heritage Program, University of Alaska Anchorage, 707 A Street, Anchorage, Alaska. Tel: (907) 257-2710 – Pers. obs.

