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The competitive impact of an invasive weed
on native plant communities can vary dramati -
cally across sites (e.g., Rinella and Sheley 2005b:
fig. 2; Thiele et al. 2010). This site-to-site varia-
tion in invader impacts is largely driven by dif-
ferences in invader yield (i.e., invader biomass
[g ⋅ m–2year–1]) because competitive impacts
in tensify with invader yield (Watkinson 1981;
but see Parker et al. 1999, Vila et al. 2004, Mef-
fin et al. 2010, Thiele et al. 2010) and invader
yields vary widely across sites (e.g., Jacobs and
Sheley 1999; Rinella and Sheley 2005a: fig. 1;
Endress et al. 2007).

Since yield is so highly correlated with com-
petitive impact, competition models typically
use yield or related variables as predictors of
competitive effect (Watkinson 1981, Cousens
1985, Freckleton and Watkinson 2001). When
these models are used to estimate invasive weed
impacts, they possess parameters quantifying

how native plant performance (e.g., yield, cover)
declines with increasing invader yield or mea-
sures related to yield (e.g., Parker et al. 1999,
Rinella and Luschei 2007, Yokomizo et al. 2009,
Thiele et al. 2010). The ultimate usefulness of
these yield-impact models for estimating inva-
sive weed impacts depends on the consistency of
yield-impact relationships across invader popu-
lations and sites. Specifically, the usefulness of
the models hinges on the assumption that a given
invader yield causes the same impact on native
plant performance across sites and in vader popu -
lations. It is this assumption that allows yield-
impact models developed from data from one
site to be used for estimating invader impacts
at other sites (e.g., Rinella and Luschei 2007).

However, the assumption that different popu -
lations of an invader can be treated as uniform
entities for purposes of estimating invader im -
pacts has been brought into question (Lee 2002).
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DO POPULATIONS OF AN INVASIVE WEED DIFFER GREATLY 
IN THEIR PER-GRAM COMPETITIVE EFFECTS?

James E. Sowerwine1, Matthew J. Rinella2, and Matthew L. Carlson3

ABSTRACT.—Quantifying an invasive species’ negative impacts across its introduced range will be quite challenging if the
impacts vary unpredictably from site to site or from population to population. Little emphasis, however, has been placed on
quantifying such interpopulation variation in the impacts of individual invasive species. We studied the response of a native
grass (Festuca rubra) to competition from 4 geographically dispersed invasive plant (Melilotus albus) populations in order
to determine if some populations of this invader have greater competitive impacts than others. Despite the relatively large
number of experimental units in our greenhouse study, we did not obtain evidence that competitive effects per gram of bio -
mass varied by invader population. Therefore, in some cases it should be possible to estimate the effects of invasive weeds
with simple competition models that ignore some forms of phenotypic variation, as long as the models control for invader
biomass per unit area (i.e., invader yield).

RESUMEN.—Cuantificar los impactos negativos de una especie invasora a lo largo del rango en el que se ha intro-
ducido es bastante difícil si tales impactos varían impredeciblemente de un sitio a otro o de una población a otra. Sin
embargo, poco ha sido el énfasis que se le ha dado a cuantificar tales variaciones interpoblacionales en los impactos de
especies invasoras individuales. Estudiamos la forma en la que respondió una gramínea nativa (Festuca rubra) a la com-
petencia generada por 4 poblaciones geográficamente dispersas de una planta invasora (Melilotus albus) con la finalidad
de determinar si ciertas poblaciones de esta invasora tienen un impacto competitivo mayor que otras. A pesar del relati-
vamente gran número de unidades experimentales en nuestro estudio de invernadero, no obtuvimos evidencia de que
los efectos competitivos por gramo de biomasa variaran de acuerdo a cada población invasora. Por lo tanto, en algunos
casos debe ser posible estimar los efectos de las malezas invasoras con modelos sencillos de competencia que ignoren
algunas formas de variación fenotípica, siempre y cuando los modelos tomen en cuenta la biomasa del invasor por unidad
de área (i.e., la productividad del invasor).



Many factors suggest that different invader
populations may differ in their yield-impact
relationships. First, invader populations have
been shown to differ phenotypically (e.g.,
Brodersen et al. 2008). Additionally, invaders
commonly evolve new resource allocation
strategies in their introduced ranges (Bossdorf
et al. 2005), and the new strategies can vary
across the intro duced range (Xu et al. 2010).
Increased allocation to vegetative growth and
decreased allocation to defense appear to be
somewhat common adaptations in genetically
isolated populations (Bossdorf et al. 2005).
Similarly, different populations of the same
species can differ in factors like growth form
(e.g., Barrett 1983, Ran som et al. 1998) and
water-use efficiency (Hes chel et al. 2002), and
these differences may cause variation in yield-
impact relationships in cases where there is
competition for light or water. Finally, a few
studies have already illustrated among-species
differences in yield-impact relationships (Gold-
berg and Fleetwood 1987, How ard 2001, Hager
2004), which provides additional evidence that
genetically or phenotypically dissimilar popu-
lations of a given spe cies may also differ ap -
preciably in their yield-impact relationships.
At the same time, a larger number of studies
failed to show differences among the yield-
impact relationships of noninvasive plant spe -
cies (Goldberg and Werner 1983, Gold berg
1987, Gaudet and Keddy 1988). These studies
certainly cast doubt on the idea that different
populations of the same invader differ sub-
stantially in their yield-impact relationships.
In sum mary, it remains unclear whether or not
a given biomass of an invasive plant has a uni-
form competitive impact across sites, regard-
less of the invader’s evolutionary and intro-
duction history.

Our goal was to determine if 4 geographi-
cally dispersed invasive plant populations vary
appreciably in their yield-impact relationships.
In a greenhouse, we varied the seed density of
the invasive populations and the seed density
of a native target species. The invader was the
short-lived perennial Melilotus albus gathered
from 4 seed source populations across its Alas -
kan range. Multiple M. albus cultivars that were
developed in the U.S. and Canada escaped
from 4 Alaskan agricultural experiment sta-
tions be tween 1913 and 1944; thus, the Alaskan
populations likely derive from several differ-
ent sources (Irwin 1945, Klebesadel 1992).

Additionally, the populations had experienced
greatly dissimilar climatic conditions since intro -
duction, and there is evidence that M. albus
rapidly adapts to local conditions (Klebesadel
1992), further raising the potential that the
populations have evolved different competi-
tive abilities.

METHODS

Melilotus albus seeds were collected from a
number of parent plants along rivers: 81 plants
in southeast Alaska (Stikine River: 58.02°N,
133.31°W), 25 in south central Alaska (Mata -
nuska River: 61.30°N, 149.05°W), 30 in southern
interior Alaska (Healy River: 63.51°N, 148.55°W),
and 8 in northern interior Alaska (Ray River:
65.56°N, 150.06°W). The populations were
separated by a minimum of 250 km. These
areas range in mean annual temperature from
approxi mately –5 °C to +5 °C and in precipi-
tation from approximately 700 mm to 2500 mm
per year. In 2007, seeds from each of these
4 populations were evenly sown on the soil
surface of pots after being scarified with 100-grit
sandpaper for 5 minutes. Seeds of a native
grass (Festuca rubra) that commonly establishes
with M. albus on recently exposed Alaskan flood -
plains were also evenly sown in the pots. The
species were planted in a replacement series
at 4 densities to produce a range of inter- and
intraspecific competition. Seed density com -
binations (M. albus :F. rubra) were 1:3, 2:2, 3:1,
4:12, 6:18, 8:8, 9:27, 12:4, 12:12, 18:6, 18:18, and
27:9. These combinations and densities were
similar to those in a native legume–Melilotus
albus experiment published by Spellman (2008).
Each density combination was replicated 10
times, as was a 0:1 density combination (4 popu -
lations × 12 density combinations × 10 replica-
tions + ten 0:1 pots = 490 pots). The square
pots (8.5 cm per side, 10 cm tall) contained
50% Sunshine #1 potting mix and 50% coarse
sand. The pots were ar ranged in a completely
randomized design in a greenhouse maintained
at 20 °C with an 18-hour daylight period. Pots
were watered as needed throughout the experi -
mental period. Sixty days after seeding, plants
were harvested, sorted by spe cies, and weighed
after drying to constant weight at 45 °C.

The following fixed-effects linear regression
model was used to describe the data:

ln yi = N(μ + α ⋅ ln Zi + βj (i) ⋅ Xi, σ),
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where yi is F. rubra biomass in pot i, N (μ, σ) is
the normal distribution with mean μ and stan-
dard deviation σ; μ is the intercept; Zi is F. rubra
seeding density in pot i; α controls for the effect
of F. rubra density; and Xi is M. albus biomass
in pot i. The β vector contains one element for
each M. albus population, and the j (i) indicator
function maps data points to populations. For
example, j (22) = Stikine River. Finally, σ is
the random error standard deviation. Statistical
analysis was performed in Microsoft Excel 2007
Analysis Pack. Modeling assumptions of linear-
ity, homoscedasticity of errors, and normality of
the error distribution were assessed graphi-
cally (predicted vs. observed values).

RESULTS

Least-squares parameter estimates and 95%
confidence intervals describing competitive ef -
fects of M. albus on F. rubra were confined to
negative ranges for all M. albus populations,
indicating that all 4 populations of the invader
negatively impacted F. rubra growth (Fig. 1). The
least-squares parameter estimates also suggested
that each 1-g increase in M. albus caused a

16%–23% decrease in F. rubra weight per pot.
The high degree of overlap among confidence
intervals indicated that competitive effects of
M. albus on F. rubra did not vary greatly among
the 4 M. albus populations (Fig. 1).

DISCUSSION

Despite its large number of replications and
density treatments, our study did not provide
evidence that per-gram competitive effects of
M. albus vary appreciably across populations
(Fig. 1). Confidence intervals for the 4 study
populations overlap substantially.

It is not completely surprising that we did
not detect differences in per-unit-biomass com-
petitive effects within a species, even though
the populations were genetically isolated and
likely experienced different selection pressures.
Attempts to detect differences in per-unit-bio-
mass competitive effects among species have
given mixed results, and most differences appear
to be among species of different growth forms
(e.g., grasses vs. forbs; Goldberg and Fleetwood
1987). Among plants of the same growth form,
differences in competitive ability resulting from
differences in per-unit-biomass competition are
hypothesized to be relatively unimportant com-
pared to differences in competitive ability result-
ing from plant size asymmetries (Goldberg and
Werner 1983).

Our data suggest that, after controlling for
M. albus yield, M. albus populations do not
differ greatly in their competitive impacts on
native species. Therefore, variation among popu-
lations of an invader may not greatly reduce
the accuracy of models used for estimating inva-
sive weed impacts, provided the models control
for invader yield.

However, a few caveats need to be consid-
ered. First, despite our large number of experi -
mental units, the confidence intervals are still
fairly wide, spanning roughly 0.3 units. Larger
studies could reveal potentially important dif-
ferences in yield-impact relationships. Next, we
measured competitive responses of only one tar-
get species, and these responses may vary by
target species (Goldberg and Landa 1991). Also,
competitive responses can vary with environ-
mental conditions (Wang et al. 2010), so the
effect of M. albus competition on any one native
species may vary with nutrient concentrations or
other environmental variables. Moreover, geno-
types of some species produce different amounts
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Fig. 1. Least-squares parameter estimates (dots) and
95% confidence intervals (bars) estimating decreases in
biomass per pot of a native grass (Festuca rubra) caused by
increases of 1 g per pot in the biomass of an invasive weed
(Melilotis albus).



and kinds of allelochemicals (Wu et al. 1999,
Han and Ju 2005), which may lead to apprecia-
ble variation in per-unit-biomass competitive
effects within some species. Finally, resource-
use effi ciencies (i.e., resource uptake per unit
biomass) do vary among populations of some
species (e.g., Heschel et al. 2002), and this varia-
tion could translate into interpopulation variation
in per-unit-biomass competitive effects of some
spe cies. Our study may have masked differences
in water-use efficiencies because we watered
on an “as needed” basis, thereby ensuring that
water did not limit plant growth.

These caveats aside, the result that geneti cally
isolated invader populations occurring across an
expansive geographic range have roughly uni-
form per-gram competitive effects on a native
spe cies supports the idea that yield-impact rela-
tionships are fairly consistent across sites and
populations. Therefore, at least for these species,
measures of an invader’s competitive impacts at
one site may accurately predict its competitive
impacts at other sites throughout the invaded
range, provided that differences in invader yield
among the sites are controlled.
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