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We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant

invasion and consider the relative importance and contribution of these predictor variables by considering two

spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for

three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a

regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from

topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030).

Local scale models were spatially nested within the regional area; these models incorporated physiographic and

anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values .

0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable

habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species

was driven by different climate and topographical variables. In contrast local models indicate that distance to right-

of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining

results from regional models, capturing long-term distribution, and local models, capturing near-term establishment

and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables

acting at different scales contribute to suitability predictions. The combinations also provides easy comparison,

highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-

term do not and vice versa.

Nomenclature: Canada thistle, Cirsium arvense (L.) Scop.; reed canarygrass, Phalaris arundinacea L; white

sweetclover, Melilotus albus Medik.

Key words: Alaska, bioclimatic modeling, Centaurea stoebe, Cirsium arvense, climate change, Fallopia japonica

(Polygonum cuspidatum) complex, invasive species, Melilotus albus, Phalaris arundinacea.

Species’ distributions are well accepted to be controlled
by diverse factors at different spatial scales (Grinnell, 1917;
Luoto et al., 2007; Peterson et al., 2011). Climate variables
are often viewed as important at broad spatial scales for
most plants, while species interactions, disturbance, fine-
scale edaphic variables and land-use are believed to drive
most plant distributions at the local level (Franklin, 1995;
Pearson et al., 2004). The establishment of species outside
their historic ranges and the subsequent ecological and
economic impacts due to their establishment have fueled
interest in forecasting current and future distributions
of nonnative species in particular. Species distribution
modeling efforts, however, rarely address the potential
differences in variable contribution and model performance
at different scales and resolution (see Guisan and Thuiller,
2005; Wiens, 2002) and processes involved with invasion.
The need to resolve differential variable contribution and
model performance at multiple scales is particularly critical
for understanding and predicting expansion of invasive
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species in the context of rapidly changing climates and
alterations of land-use patterns.

General circulation models predict that climate warming
effects will be highest in northern high latitudes (Moritz
et al., 2002; Serreze et al., 2000; Serreze, 2010). Significant
annual and seasonal mean temperature increases have been
recorded for Alaska in the past 50 yr, with highest increases
in the winter (Stafford et al., 2000). Despite a cooling
trend in much of Alaska in the first decade of this century
attributed to the Pacific Decadal Oscillation, the north-
ernmost regions experienced increased temperatures, and
overall warming trends continued in predictions (Wendler
et al., 2012). In addition, the interior Alaska growing
season has nearly doubled in length in the last 100 yr, from
90 to 170 d (Wendler and Shulski, 2009) and is projected
to continue to increase (SNAP 2012). Additionally,
changes in climate are increasing the frequency and scale
of habitat disturbances, such as wildfires and herbivorous
insect outbreaks, in northern North America (ACIA, 2005;
Berg and Anderson, 2006; Chapin III et al., 2008; Soja
et al., 2007). These direct and indirect components of
changes in climate are expected to increase the probability
of establishment and spread of nonnative plant species in
Alaska, which typically originate from more temperate

climates (Carlson and Cortes-Burns, 2012; Carlson and
Shepherd, 2007; Sanderson et al., 2012). The spread of
invasive plants in the region is of particular concern as it is
currently one of few remaining intact ecosystems and this
type of modeling may result in the opportunity to plan for
change by incorporating these methods into an adaptive
management framework (see Chapin et al., 2006;
Sanderson et al., 2012).

Alaska in general is in the early stages of nonnative plant
establishment (Bella, 2011; Carlson and Shepherd, 2007;
Conn et al., 2003), but the frequency of introductions and
establishment in natural areas is accelerating and is
increasingly regarded as a potential threat to native species
and ecosystems in the state (Carlson and Shephard 2007).
Areas of greatest abundance and diversity of nonnative
plants are concentrated in southern Alaska (AKEPIC 2012)
and this region is expected to continue to have the greatest
increase in future establishment of nonnative plants (Bella,
2009). Additionally, areas with large human populations
and high visitation rates by tourists, such as the Kenai
Peninsula, or areas with high road density and habitat
disturbance (e.g., logging), such as Prince of Wales Island,
are potential hot-spots for invasion and make ideal regional
landscapes for exploring potential distributions of species
considered ecologically threatening or damaging.

While a broad-scale prediction of potential distribution
is valuable for establishing a baseline understanding of
invasion patterns, smaller extent or local-scale suitability
maps provide potential habitat information at a scale more
applicable to day-to-day management decisions. Combin-
ing spatially explicit features as predictors at a fine scale,
along with environmental predictors, may provide a better
projection of the potential geographic distribution of each
species than traditional niche-based modeling (Araujo and
Guisan, 2006). Identifying improved methods of predictor
inclusion and significance is a pressing need in bioclimatic
modeling (Araujo and Guisan, 2006). Assessing predictor
variable importance, distributional data quality, and
modeling technique accuracy is essential to successfully
apply predictive modeling (Ashcroft et al., 2011; Beaumont
et al., 2008; Jimenez-Valverde et al., 2008).

Although distribution models that forecast range shifts as
a consequence of climate change are inherently uncertain,
careful consideration of variable inclusion in bioclimatic
models specifically intended for climate change improves
predictive ability ( Jeschke and Strayer, 2008). A geographic
model of invasive species vulnerabilities incorporating
climate at the regional scale, environmental, physiographic,
and anthropogenic variables at local scales, and an integrated
prediction of the two provides a hybrid predictive base from
which to formulate preventative policies in light of a
changing climate. It also allows inclusion of potentially
important local predictors that are not available at or are not
as detailed for the broader spatial extent.

Management Implications
Effective and proactive management of invasive species requires

information on both current and potential future distributions.
Alaska, similar to other high latitude areas, is relatively invasion
free (Lassuy and Lewis, 2013). The rapidly changing climate in
this region, however, is expected to increase the area suitable for
establishment for a larger number of invasive species. Here, we
present results for habitat suitability models of highly invasive
plants in the southern coastal region of Alaska, creating climate
driven models at a regional scale and physiographic and
anthropogenic models for two local regions. Using these types of
models for targeted sampling of invasive plants detected more
locations with less effort than nontargeted sampling (Crall et al.,
2013). Our local scale models can be thought of as predicting near
term establishment and distribution (potential early detection
locations for management), while longer term trends in
distribution may be driven by climate, especially related to the
future climate scenarios at the coastal scale (potential
distributions). Locations where models at both scales indicate
high habitat suitability values are more appropriate targets for
current control and monitoring efforts than locations identified by
a model that considers factors operating at a single scale.
Additionally, evaluating the areas of future suitable habitat
among early invaders can help prioritize which species should be
targeted for control first. If two species have similar initial
distributions and similar ecological impacts, management efforts
should be directed to the species with the largest possible future
distribution. These models, when incorporated into an iterative
sampling approach, can guide future sampling efforts. The new
sampling is then used to generate future model iterations, which
then provide evolving distribution models that help prioritize
locations for control and restoration efforts
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Here we describe habitat suitability models of five
invasive plants at regional and local scales in Alaska.
Models at the two different scales are tied to different stages
in the invasion process. Regional scale models include
factors that may control species’ distributions in the long
term, representing the potential distribution of the species
(late stage of invasion). The local scale models include
factors that may contribute to near-term establishment as
well as distribution, incorporating anthropogenic factors
that can be pathways of introduction and act as a proxy for
propagule pressure and disturbance. Propagule pressure
and disturbance are important factors at earlier stages of
invasion. Specifically, we predict that (1) at the coarse scale
all the invasive species’ potential habitat will show a
strong positive relationship between increasing suitability
and increasing temperature as we hypothesize that cool
temperatures are limiting factors for these species’
distributions so increasing temperature with climate change
will result in more suitable habitat; (2) a greater proportion
of area, particularly to the north and higher elevations, will
be identified as suitable in the future, again as a result of
changing temperature with climate change; and (3) suitable
habitat defined by local scale models will represent a
smaller, more refined proportion of the landscape than
suitable habitat defined by the coarse scale model as we
expect climate to define distribution at a broad scale and
land use/ land cover factors to be able to offer a more
detailed distribution at a fine scale.

Materials and Methods

Study Regions and Species Sampling. We focused on the
267,795 km2 coastal ecoregions (Figure 1; Nowacki and
Brock, 1995) for our regional scale models based on
climate and topography at a 2 km resolution. Because this
region of Alaska had the greatest establishment of
nonnative plants early in the 20th century (Carlson and
Shepherd, 2007) and therefore these species have had time
to spread to available suitable habitat (e.g., are not new
introductions), effects of violating the equilibrium assump-
tion of species distributions made by statistical species
distribution modeling techniques (Gallien et al. 2012) are
less than if these models were based on novel introductions.

We chose the Kenai Peninsula and Prince of Wales
Island areas within the coastal ecoregions as focal areas.
Here, we created local models at a 30-m resolution,
incorporating anthropogenic factors, land cover, hydrolo-
gy, and topography specific to each location. Criteria for
focal area selection considered areas with contrasting but
representative population density, infrastructure, and
climate in two geographically distinct locations with
sufficient GIS layer availability. The Kenai Peninsula in
south-central Alaska is approximately 24,338 km2, with a
population of 55,400 in 2010. The area is one of the most

densely populated in the state, with a well-developed
infrastructure and strong tourism industry. Additionally,
partially climate-driven spruce bark beetle outbreaks on
the Kenai over the past 20 yr (ACIA, 2005; Berg and
Anderson, 2006) have increased opportunities for nonna-
tive species establishment by decreasing forest cover by over
60%. Prince of Wales Island in southeastern Alaska, at
approximately 6674 km2, the majority of which is National
Forest land, contains the highest road density in the state
due to historic and active logging within it. Approximately
13.4% of the island’s forests have been harvested (U.S.
Forest Service Tongass National Forest, 2007); the human
population is approximately 6,000.

We obtained location data from the Alaska Exotic Plant
Information Clearinghouse (AKEPIC, 2010), a database
that aggregates spatial nonnative plant species data in Alaska.
We extracted presence locations for five problematic invasive
species (Canada thistle [Cirsium arvense (L.) Scop.], white
sweetclover [Melilotus albus Medik.], reed canarygrass
[Phalaris arundinacea L.], spotted knapweed [Centaurea
stoebe L. ssp. micranthos (Gugler) Hayek], and a knotweed
complex [Japanese knotweed, Polygonum cuspidatum Sieb. &
Zucc; Sakhalin knotweed, Polygonum sachalinense F.
Schmidt ex Maxim.; & Bohemian knotweed, Polygonum
3bohemicum (Chrtek & Chrtková) Zika & Jacobson) in
southern Alaska (Carlson et al., 2008). Absence data were
extracted from the AKEPIC database to use as background
locations in Maxent, using a Negative Database Tool
(developed by the USDA Forest Service, Alaska Region, and
HDR Alaska, Inc.) in which sites were thoroughly surveyed
but the focal species were not observed. We were originally
interested in modeling these five species, nested in two local
areas within two regions: coastal and interior. However, only
one of the five species had data for the interior region and
only three species for both local areas within the coastal
region. Thus, we limit our discussion to these three species in
two areas within the coastal region to allow for comparisons
and to minimize confusion. The other models (coastal
models for spotted knapweed and the knotweed complex
and an interior model for white sweetclover) are included
and described in the Supplemental Material.

Environmental Layers. For climate data we used products
created specifically for Alaska by the Scenarios Network
for Alaska Planning (SNAP, 2010) as 2 km grid cells
(Supplemental Material 1). SNAP contains historical
climate downscaled from Climate Research Unit data,
and we calculated average precipitation and temperature for
the most recent 20-year period available, 1987 to 2006, to
match the climate conditions during the sampling. The
future climate projections are a five-model composite,
derived from the top five International Panel on Climate
Change’s GCMs tested for Alaska climate space (Walsh
et al., 2008) for 2030 with two different emission scenarios
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representing the two extremes in the range of possibilities
(B1 representing an integrated and environmentally and
socially conscious world and A2 representing a divided, less
ecologically-minded world; Table 2). For all climate data,
we derived bioclimatic variables following Hijmans (2006)
using average monthly temperature rather than minimum
and maximum temperature because minimum and maxi-
mum were not available.

For the fine scale models we were interested in
anthropogenic effects and fine scale environmental features.

Predictors included distance from anthropogenic features
(roads and trails for Kenai and Prince of Wales; urban areas
and utilities for Kenai only; and recreation areas for Prince
of Wales only), distance from water and wetlands, land
cover type, and elevation (see Supplemental Material 1).
Anthropogenic features chosen were based on characteris-
tics of and data availability for the specific locality.

Modeling. We used the maximum entropy modeling
program Maxent (Phillips et al., 2006; Phillips and Dudik,

Figure 1. Within Alaska (a) the regional and local scale study areas and (b) the point locations for the three focal species.
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2008) to develop our species distribution models within
the Software for Assisted Habitat Modeling (SAHM)
framework, which is a software application to facilitate
modeling (Morisette et al., 2013). This technique is
suitable when true absence data are not available, works
well with both small and large numbers of locations (Wisz
et al., 2008), and has performed well when compared with
other techniques (Elith et al., 2006). Maxent requires both
presence locations for a species and background locations
to characterize the available environment. For background
locations we followed the targeted background approach
(Phillips et al., 2009), using records from AKEPIC that
reported other exotic species, but not the species of interest,
by collectors who were familiar with the target species and
had recorded those species at other locations. We used the
auto setting for features, allowing Maxent to choose the
feature types to use. For four of the species, we withheld
30% of the data for testing and ran 25 replicates using the
subsample method (Table 1; Supplemental Material 3).
With these options, a different random 30% was withheld
25 times. For species with less than 25 presence records (see

Table 1, Supplemental Material 3), we used the jackknife
approach following Pearson et al. (2007).

We ran each model 25 times, varying the regularization
value from 1 to 10. To control for over-fitting as our
location data suffered from clustering, we then used the
ENMTools software program to select the optimum
regularization value for each iteration (Warren and Seifert,
2011), and took the average optimum value to use in our
model runs (see Table 1).

We used the SAHM CovariateCorrelationAndSelection
module to examine correlations among the climate
predictors. This tool uses the Pearson, Spearman, and
Kendall coefficients to examine correlations, and we
removed any with a value greater than 60.7. We selected
variables based on knowledge of the species’ ecology.

Analyses. To assess model performance we examined
receiver operating characteristic area under the curve
(AUC) values as calculated by Maxent (Fielding and Bell,
1997). AUC values range between 0.5 and 1, with values
between 0.5 to 0.7 being relatively poor, those between 0.7

Table 1. Input and model performance for three invasive species at three locations in coastal, Alaska, the average AUC values for the
test data (and the training data (if the jackknife approach was used) and the independent (Indep.) test data AUC), and the threshold
value using the 10 percentile training presence rule (and the minimum training presence (MTP) rule when indicated).

Model Region Sample size
Background

points
Regularization

value
Test AUC

(Train)
Threshold

values

Canada thistle Coastal 88 1060 2 0.72 (0.79) 0.276 (0.126 MTP)
Reed canarygrass Coastal 1024 1617 2 0.57 (0.60) 0.39929 (0.212 MTP)
White sweetclover Coastal 236 1308 5 0.755 (0.778) 0.201 (0.077 MTP)
Canada thistle Kenai 10 434 1 0.71 (0.88) (Jackknife) 0.332 (MTP)
Reed canarygrass Kenai 657 1173 1 0.74 (0.76) 0.282
White sweetclover Kenai 54 991 2 0.85 (0.94) 0.30
Canada thistle

(with roads) Prince of Wales 22 2950 1 0.86 (0.94) (Jackknife) 0.081 (MTP)
Canada thistle

(without roads) Prince of Wales 22 2950 1 0.77 (0.88) (Jackknife) 0.067 (MTP)
Reed canarygrass Prince of Wales 549 (reduced) 2577 1 0.55 (0.64) Indep. 0.53 0.407
White sweetclover Prince of Wales 7 1015 1 0.63 (0.80) 0.294 (MTP)

Table 2. The percent of the coastal Alaska region classified as suitable using the 10 percentile training presence threshold rule (10P)
and the minimum training presence threshold rule (MTP) for each species under current climate conditions and predicted future
conditions for 2030 using the B1 emissions scenario and the A2 emissions scenario, with the percentage ignoring any locations with
novel environments. The percent of the coastal region classified as having novel environmental conditions for each scenario is
also included.

Scenario

Canada thistle White sweetclover Reed canarygrass

10 P MTP % novel 10 P MTP % novel 10 P MTP % novel

Current 44.6 (51) 64.7 (73.6) 20.3 52 (53.7) 92.1 (92.9) 8.7 25 (30.3) 72.3 (83.9) 17.8
2030 B1 51.4 (57.6) 65.5 (72.7) 22.5 31 (31.7) 87 (89.1) 12.3 25.5 (31.9) 72 (83.7) 23.8
2030 A2 60.3 (65) 77.2 (86.1) 38 50.4 (50.3) 93.4 (93.8) 11.8 28.3 (32.1) 74.1 (84) 19.2
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and 0.9 being useful, and those above 0.9 indicating
relative high accuracy when assessed with a completely
independent data set (Swets, 1988). The AUC values from
Maxent are different from the traditional AUC in that we
have background locations to compare presence locations
to rather than actual absence.

We used the multivariate environmental similarity
surface (MESS) analysis within Maxent to identify
locations outside the range of the environments used to
generate the model (i.e., locations of extrapolation; Elith
et al., 2010). These values are determined by comparing
the minimum and maximum value from the presence and
background points for each environmental predictor to
each location the model is being projected to. If the value
for any predictor used in the model falls outside the range,
that location has a novel environment and thus we have less
certainty about predictions there.

We compared changes in suitability with predicted
climate change both visually and by calculating the percent
of the coastal region classified as suitable under two different
threshold rules. The rules included the 10 percentile training
presence and the minimum training presence thresholds.
The 10 percentile training presence threshold assigns
probabilities to each presence location and then selects the
value that will misclassify the 10% of the presence points
with the lowest predicted values. In contrast, the minimum
training presence threshold value classifies all presence
locations used to develop the model correctly. By allowing
some locations to be misclassified one has more conservative
predictions of suitable habitat, acknowledging that some
presence locations may be in marginal habitat on the edge of
the range, as we included no information about abundance
or population trends at presence locations.

To examine differences in predictions spatially at the
regional and local scale we also discretized the predictions to
define locations as either suitable or unsuitable. For species’
models with more than 25 presence locations we used the 10
percentile training presence threshold. For species’ models
with less than 25 presence locations, however, we used the
minimum training presence threshold (Table 1) because we
did not want to misclassify any locations when we had a very
small number of them (e.g., for white sweetclover on Prince
of Wales Island one of only seven locations would be
misclassified using the 10 percentile method). The two
discretized models for each locality (regional and local) were
then added together to highlight locations predicted as
suitable by both, only suitable regionally, only suitable
locally, or unsuitable by both.

Results and Discussion

Regional Models. At the regional scale, the model for
Canada thistle performed marginally well (AUC 5 0.72),
as did the white sweetclover model (AUC 5 0.76). The

reed canarygrass model performed poorly for the region
(AUC 5 0.57). Poor performance of all reed canarygrass
models indicates that we may be missing an important
variable controlling its distribution, that we were missing
important environmental gradients in the sampling, or that
the species is a generalist which lacks specific habitat
characteristics. These regional models predict an increase in
area of suitable habitat for most species through 2030,
particularly under the more extreme A2 emissions scenario
(Table 2; Figure 2). The A2 scenario always had the
greatest percentage of suitable habitat, both when areas
with novel environments were excluded or included in the
analysis and with both threshold rules. The B1 scenario
results indicate an increase in percentage of suitable habitat,
with the exception of white sweetclover for the 2030 B1
scenario where habitat noticeably decreased (Table 2).
Additionally, there was an increase in mean elevation of
suitable habitat with the future climate scenarios (Table 3).
A substantial portion of the coastal region was classified as
having novel environments (.20% for Canada thistle,
.17% for reed canarygrass, and .8% for white sweet-
clover), and this proportion increased under future climate
scenarios. This result underscores the uncertainty inherent
in climate change research. Also, while climate change
projections can highlight locations that in the future will
have environments similar to where species exist today and
may be useful as early detection sites, areas of decreasing
suitability do not necessarily indicate that established
populations would no longer persist as these models only
estimate empirical relationships rather than mechanistic
ones between species locations and current climate (Araújo
and Peterson, 2012).

The distribution of each species was driven by different
variables, although some common patterns emerged
(Supplemental Material 2a). Precipitation variables were
commonly more important in our models than tempera-
ture-driven variables. The most important precipitation
variables included a temperature component (warm season
or cold season precipitation) for the three regional models,
but temperature-only related variables were not the most
important. However, annual mean temperature was the
second greatest contribution for the knotweed complex
(Supplemental Material 2) and maximum temperature of
the warmest month was the second greatest contribution
for Canada thistle. Canada thistle distribution was driven
by precipitation of the warmest quarter (general negative
trend) followed by maximum temperature of the warmest
month (general positive trend) and precipitation seasonal-
ity (sharp decrease with leveling off when interactions
considered). The regional model for white sweetclover had
precipitation seasonality (initial positive trend followed by
leveling off) as most important, followed by precipitation
of the warmest quarter (general negative trend) and
topographic slope (general positive trend).
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Increased habitat suitability for Canada thistle was
associated with higher temperatures and timing of
precipitation, while precipitation variables were most
important in white sweetclover and reed canarygrass.
Species response to differing temperature is likely associ-
ated with unknown or unrecorded biotic or abiotic factors
correlated with temperature, or with differences in
ecophysiology. For example Canada thistle seed germina-
tion is substantially greater at 25–30uC, with bolting and
reproduction largely a function of summer temperatures
(Amor and Harris, 1974; Bakker, 1960; Moore, 1975).
Alaska is at the northern limit of Canada thistle’s known
distribution and tends to be associated with warmer
microsites. While our results for Canada thistle suggest
that summer precipitation and maximum temperatures are
most important in this region of Alaska, winter temper-
atures may control the northern distribution of high
density populations in Canada (Moore, 1975), and
different aspects of temperature likely control the northern
distribution of this species in coastal and continental
locations.

The lack of importance of temperature variables in white
sweetclover models may be related to the lack of presence
or background locations at high elevation, and the species’
distribution extending northward of the coastal region. By
extending the model scope northward we anticipate that
temperature variables would be more important predictors
for this species. In fact, preliminary models of white
sweetclover in the interior of the state suggested that
temperature during the warmest month was an important
variable in the model (Supplemental Material 2a).

Growth of reed canarygrass is related to tiller develop-
ment that can occur during warm periods in winter or early
spring (Hoveland et al., 1974) and growth may relate to
higher temperatures when not accompanied by reduced soil
moisture (Ge et al., 2012). Additionally this cool-season
grass is preferentially associated with wetland and riparian
habitats, in locations with high annual or seasonal
precipitation, which may explain why precipitation
variables are important in our models. The poor
performance of the coastal region model, which only
included climate factors, indicates that climate may not be
an important driver within the coastal spatial extent for
reed canarygrass. Due to the paucity of locations of reed
canarygrass northward of the coastal region, expansion of
the model northward might identify a suspected bottleneck
in temperature for establishment of reed canarygrass.

Despite the lack of temperature drivers identified for some
species, our hypothesis of increase in suitable habitat under
future climate was supported for all species for at least one
future emissions scenario. However increases were minor and
Canada thistle was the only species with an increase greater
than two percent. Also, the mean elevation of suitable habitat
did increase, indicating that within the coastal region these

Figure 2. Habitat suitability under (a) current climate
conditions, (b) predicted climate for 2030 with an A2 emissions
scenario, and (c) predicted climate for 2030 with a B1 emissions
scenario for Canada thistle, white sweetclover, and reed
canarygrass. In all maps the grey transparent overlay indicates
locations with novel environments according to the multivariate
environmental similarity surface.
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species may be able to survive across a wider elevation
range with changing climate. Additionally, using the target
background approach here, we did not cover the full range of
temperature and precipitation gradients in the coastal region as
illustrated by the high percent of novel areas. Increasing the
sample gradient might improve model performance and
realism by detecting potential temperature thresholds.

Local Models. At the local scale, the models for Canada
thistle performed marginally well (Kenai AUC 5 0.71,
Prince of Wales AUC 5 0.86; Table 1). The white
sweetclover model had mixed results at the local scale (Kenai
AUC 5 0.85; Prince of Wales AUC 5 0.63). The reed
canarygrass models performed poorly for Prince of Wales
(AUC 5 0.55) and marginally better for Kenai (AUC 5
0.74). We subsampled the presence points for Prince of
Wales as the number of presence locations exceeded that of
background and the locations were heavily clustered. Again,
poor performance of models (white sweetclover for Kenai
and reed canarygrass for Prince of Wales) indicates that we
may be missing an important variable controlling distribu-
tion, that we missed important environmental gradients in
the sampling, or that the species is a generalist at these
locations. At the local level, reed canarygrass is generally

considered to be a habitat specialist associated with wetland
and riparian areas (see Lavergne and Molofsky, 2004);
however, in this region it commonly occurs across a broader
range of habitats, including mesic roadsides and forest edges,
encompassing a diverse spectrum of land cover classes,
reducing its predictability (Evangelista et al., 2008). The
influence of roadside occurrences and off-road data is
exemplified in the difference in local model performance
between Kenai (moderate) and Prince of Wales (poor).
Prince of Wales has the highest density of roads in Alaska,
with a single comprehensive road survey for nonnative
species conducted by the Forest Service and contracted
consultants between 2005 and 2007. The Kenai Peninsula
has far fewer roads, with an extensive set of trail, river, and
road surveys to detect this species conducted by the Forest
Service, the Park Service, the US Fish and Wildlife Service,
the Kenai Watershed Forum, and contracted consultants
starting in 2003 and continuing to the present (Bella, 2011).
Studies indicate that past location data for invasive species
may result in poor projections of future scenarios because
invasive species are not in equilibrium with their environ-
ment (Jones, 2012), therefore an iterative modeling
approach incorporating new location data is important
(Crall et al., 2013).

Table 4. Percent of the specified location (Kenai Peninsula or Prince of Wales Island) classified as suitable after applying either the 10
percentile training threshold or minimum training presence threshold (see Table 1) to the regional and local models for each of the
three species. Regional and local includes locations suitable according to both models, regional only means the regional model was
suitable and the local was not, and local only means the local model was suitable and the regional was not.

Canada thistle White sweetclover Reed canarygrass

Kenai
Prince of Wales

(with roads)
Prince of Wales
(without roads) Kenai

Prince
of Wales Kenai

Prince
of Wales

Climate & local 17.1 10.9 42.0 29.9 34.5 15.6 5.1
Climate only 51.1 58.3 27.1 50.7 64.3 58.7 1.9
Local only 6.9 2.9 16.9 9.4 0.2 5.5 87.4
Unsuitable 25.0 27.9 13.9 10.0 1.1 20.1 5.6
Total climate 68.2 69.2 69.2 80.6 98.7 74.3 7.0
Total local 23.9 13.8 58.9 39.3 34.7 21.2 92.5

Table 3. Mean elevation in meters of areas of coastal Alaska classified as suitable using the 10 percentile (10P) training presence and
the minimum training presence (MTP) for each species under current climate conditions and predicted future conditions for 2030
using the B1 emissions scenario and the A2 emissions scenario.

Canada thistle White sweetclover Reed canarygrass

10P MTP 10P MTP 10P MTP

With novel Current 219 303 524 524 254 293
2030 B1 244 329 707 534 268 334
2030 A2 287 353 567 525 266 301

Without novel Current 182 253 470 447 252 281
2030 B1 219 286 631 459 271 298
2030 A2 260 316 538 474 274 299
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Figure 3. Habitat suitability at the local scale including Kenai and Prince of Wales for each of the three species, with suitable and
unsuitable defined using the threshold values in Table 1.
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Similarly, clustering samples in one year may result in
diminished model performance as the location data from
those years may poorly predict recorded locations in other
years. Thus sustained, moderate and expanding survey
efforts like those on the Kenai Peninsula may play an
important role in model performance as it may better
record data of an invasive species reaching equilibrium in a
locale. Expansion of survey effort from roads to other
habitats may play an important role in model performance
within Prince of Wales, as climate and temperature lacks
strong variability within this region of Alaska.

Some common patterns emerged again for the local
scales models (Supplemental Material 2a). Distance to
anthropogenic features was associated with habitat suit-
ability for all three species at the local scale for both areas,
but the type of anthropogenic feature differed among
species and between locations (Supplemental Material 2b
and 2c). Other predictors also varied by species and
location. Differences were apparent in primary explanatory
variables between Kenai Peninsula and Prince of Wales
local models for some species. For example, distance to
wetland, land cover, and utility line distance drove the
Kenai Peninsula model for Canada thistle; however roads,
recreation areas, and elevation were the contributing
predictors for Prince of Wales. Similarly, the white
sweetclover Kenai Peninsula model was driven by elevation,
distance to water, and distance to utilities with trail
distance barely contributing, while the Prince of Wales
Island model had distance to trails as most important,
followed more distantly by elevation and then land cover
with distance to water not contributing to the model.

Cross-scale Examination. As predicted, most of the local
models refined the predictions within the area defined as
suitable in the regional models rather than included suitable
habitat beyond the area defined as suitable in the regional
model. This held true with six of seven models having a
greater percent of suitable habitat defined by a regional
model compared to a local model (Table 4 and Figure 3).
The exception is reed canarygrass (Figure 3c) where almost
all of Prince of Wales was suitable locally (92%) and only
5% was suitable climatically. However, neither of these two
reed canarygrass models performed well. For Canada thistle
on the Kenai Peninsula excluding roads (Figure 3a), percent
area of climate suitability was only slightly greater than local
model suitability (69.2% compared to 58.9%), although the
more restrictive model including roads followed a more
divergent pattern (local 13.8%).

The Prince of Wales models differed between which
model, local or regional, was limiting based on the
inclusion or exclusion of the distance from roads predictor
variable for Canada thistle. This suggests that factors at
both scales are important, and highlights the importance of
identifying factors that may be more restrictive such as road

corridors, river corridors or trails. All three species have
cosmopolitan distributions when considered at a global
scale, but are restricted to a limited subset of habitats
within their ranges. This suggests that while the modeled
species have broad climatic tolerances, local scale models
may have greater capacity to identify suitable and
unsuitable habitat.

Locations with consistent predictions across scales (i.e.,
coastal and local model predictions for a location are both
suitable or both unsuitable) are areas with greatest certainty
about the potential for species establishment. The ensemble
model approach has often been used to produce a more
robust model than individual ones across different initial
conditions, model classes, model parameters and boundary
conditions (Araújo and New, 2007; Roura-Pascual et al.,
2009), whereas in this case we are creating an ensemble of
two different scales. Locations where models at both scales
indicate high-risk of potential establishment based on high
suitability values across scales are more appropriate targets
for current control and monitoring efforts than locations
identified by a model that considers factors operating at a
single scale. Confidence in models could be improved by
sampling in locations of novel environment (i.e. high
uncertainty; Crall et al., 2013; Scheffer et al., 2001),
especially where models indicate novelty. These cross-scale
predictions could also provide information about timing of
establishment. The local scale models can be thought of as
predicting near term establishment and distribution, while
longer term trends in distribution may be driven by
climate, especially related to the future climate scenarios at
the coastal scale.

Future work could examine the impact of the two
thresholds, minimum training presence and 10 percentile,
used for generating binary maps of the results for comparison.
Additionally, studies coupling plant performance and
population dynamics with climate and habitat variables in
natural populations or in newly established populations
subjected to current and predicted future climates (e.g.,
Reshetnikov and Ficetola, 2011) would be invaluable in
understanding critical predictors of distribution.
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