

snow in summer

Cerastium tomentosum L.

Synonyms: None

Other common names: Dusty Miller

Family: Caryophyllaceae

Invasiveness Rank: Not Ranked - The invasiveness rank is calculated based on a species' ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems.

Description

Snow in summer is a densely matted low-growing perennial that is greyish-white and hairy throughout. The flowering stems are ascending and branched while the nonflowering stems grow prostrate, rooting readily. Leaves are sessile and do not persist in a withered condition. Leaf blades are linear to linear-lanceolate with entire, revolute margins. Leaves are covered with dense, whitish-tomentose hairs on upper and lower surface. Inflorescence is a lax 3 to 13-flowered cyme. Flower head bracts are hairy and lanceolate in shape with margins thin, dry and membranous in texture. Pedicels have white-tomentose hairs, ascending, straight and grow 10 to 40 mm long – generally 2 to 7 times the sepal length. Flowers of snow in summer are 12 to 20 mm in diameter, with white-tomentose sepals narrowly lanceolate to elliptic in shape, 5 to 7 mm long with narrow margins and acute apices. Sepals are occasionally thin, dry and membranous in texture. The petals are deeply notched in the apex, making each petal 2-lobed. Each flower has 10 stamen and 5 styles. Fruit is a cylindric, slightly curved capsule that grows 10 to 15 mm long – generally 1.5 to 2 times the length of the sepals. The seeds are brown with shallowly rugose surfaces and 1.5 mm wide, and with round tubercles on margins (Morton 2020, Blamey and Grey-Wilson 1989).

© 2011 AKNHP

Figure 1 Vegetative snow in summer (*Cerastium tomentosum*). Photo by the Alaska Center for Conservation Science.

Similar Species: Snow in summer resembles both big chickweed (*Cerastium fontanum* subsp. *vulgare*) and sticky chickweed (*Cerastium glomeratum*) but can be distinguished from these species easily by its densely white, soft hairy to wooly leaves which obscure the leaf surface. Annual roots of sticky chickweed can also be used to distinguish it from snow in summer, which is a perennial with rhizomes (Morton 2020) No native chickweeds (*Cerastium* spp.) have densely white, soft-hairy to wooly leaves which obscure the leaf surface (Morton 2020, Hultén 1968).

Figure 2 Snow in summer (*Cerastium tomentosum*) patch.
Photo by Dow Gardens.

Ecological Impact

Impact on community composition, structure, and interactions: Snow in summer is a garden plant known to rarely spread outside its area of planting (Hill et al. 2002, Garnock-Jones 1981). It's unlikely this species will be a strong competitor capable of influencing native community composition, structure, or interactions, but with the increases in population and gardening in Alaska, the continual increase of frequency in opportunities for plants such as snow in summer to establish calls for heightened efforts to keep all non-native species contained (Carlson and Shephard 2007).

Impact on ecosystem processes: The mat-forming habit of snow in summer and large, underground network of rhizomatous roots are resource intensive and may, on a small scale, limit availability of water and nutrients to co-occurring plants.

Biology and Invasive Potential

Reproductive potential: Snow in summer is capable of both sexual and vegetative reproduction (Morton 2020).

Role of disturbance in establishment: In North America, snow in summer is most commonly found in disturbed habitats (Morton 2020).

Potential for long-distance dispersal: A study in the UK showed a spatial association between *Cerastium* spp. and redpoll bird populations (Fry and Slater 2011).

Potential to be spread by human activity: Snow in summer is a horticultural plant used in gardens throughout the US (Klett et al. 1998). Anthropogenic facilitation is the most likely means of transportation for snow in summer.

Germination requirement: No specific information was discovered in the available literature on snow in summer germination.

Growth requirements: Snow in summer grows well in dry, sandy, well-drained soils, and cool environments with full sun exposure. It is not tolerant of high heat or humidity (Missouri Botanical Garden 2017).

Legal Listings

- Has not been declared noxious in AK, Canada or other states.

Distribution and Abundance

Native and current distribution: Snow in summer is native to the central and southern portions of the Apennine mountain range in Italy and has been naturalized Britain, France, Belgium, and Holland (Blemey and Grey-Wilson 1989). In North America, it is grown in gardens and as a wall plant, but also grows weedy on roadsides, riverbanks, and fields (Morton 2020). Snow in summer is present from Oregon and Washington east to Nebraska, and from Wisconsin east to northeastern US (USDA, NRCS 2017). It is present in all Canadian provinces (Brouillet et al. 2010+, Ascher and Pickering 2025). This species has not been observed in undisturbed areas in Alaska (Densmore et al. 2001, AKEPIC 2025, CPNWH 2025). For the most up to date distribution information for Alaska visit [the AKEPIC database](#).

Management

Snow in summer can be controlled with selective herbicides (Leuthold 1969). Due to its perennial and rhizomatous habit, it may be difficult to effectively conduct mechanical means of control.

References:

AKEPIC database. Alaska Exotic Plant Information Clearinghouse Database. 2025. Available: <http://accs.uaa.alaska.edu/>

Ascher J.S. and J. Pickering. (2025). *Cerastium tomentosum* L. Discover Life (Dictotyledoneae: Caryophyllaceae: *Cerastium*). <https://www.discoverlife.org/>

Blamey, M., Grey-Wilson, C. (1989). The Illustrated Flora of Britain and Northern Europe. Hodder & Stoughton Ltd p. 88

Brouillet et al. 2010+. *Cerastium tomentosum* in VASCAN, the Database of Vascular Plants of Canada. <http://data.canadensys.net/vascan/taxon/9214> (consulted on 2017-11-07) <http://nhm2.uio.no/paf/>

Carlson, M. L., & Shephard, M. (2007). Is the spread of non-native plants in Alaska accelerating?. United States Department of Agriculture Forest Service General Technical Report PNW, 694, 117.

CPNWH. (2025). Consortium of Pacific Northwest Herbaria Specimen Database. University of Washington Herbarium, Seattle, WA. <http://www.pnwherbaria.org> [accessed November 20, 2025]

Densmore, R. V., McKee, P. C., and Roland, C., 2001, Exotic plants in Alaskan National Park units: USGS, Alaska Biological Science Center.: Anchorage, AK., v. Published Report-564195.

Dow Gardens, Bugwood.org

Germplasm Resources Information Network. Beltsville (MD): United States Department of Agriculture, Agricultural Research Service. [Accessed 11 Nov 2017]. Available from: <http://www.ars-grin.gov/>.

Fry, D. A., & Slater, F. M. (2011). Early rotation short rotation willow coppice as a winter food resource for birds. *Biomass and bioenergy*, 35(7), 2545-2553.

Garnock-Jones, P. J. (1981). Checklist of dicotyledons naturalised in New Zealand 8. Aizoaceae, Caryophyllaceae, and Portulacaceae. *New Zealand journal of botany*, 19(1), 59-65.

Harris, J. G. (2001). Plant identification terminology: an illustrated glossary. 2nd ed. Spring Lake, Utah: Spring Lake Pub.

Hill, M. O., Roy, D. B. and Thompson, K. (2002), Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. *Journal of Applied Ecology*, 39: 708–720. doi:10.1046/j.1365-2664.2002.00746.x

Hollis, S. and Brummitt, R.K., 1992. World geographical scheme for recording plant distributions. Hunt Institute for Botanical Documentation, Pittsburgh.

Hultén, E. 1968. Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, CA. 1008 pp.

ITIS. 2025. Integrated Taxonomic Information System (ITIS) on-line database, www.itis.gov, CC0 <https://doi.org/10.5066/F7KH0KBK> [Accessed November 20, 2025]

Klett, J. E., Cox, R. A., & Feucht, J. R. (1998). Rock garden plants. Service in action; no. 7.401.

Leuthold, L. D. (1969). Some effects of pre- and post-emergent herbicide application to garden flowers.

Morton, J. *Cerastium tomentosum* In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America north of Mexico [Online]. 25+ vols. New York and Oxford. Vol. 5. https://floranorthamerica.org/Cerastium_tomentosum [Accessed January 13, 2026]

UAM (University of Alaska, Museum of the North). Arctos database (<http://arctos.database.museum/SpecimenSearch.cfm>) [Accessed 11 Nov 2017].

USDA, NRCS. 2017. The PLANTS Database (<http://plants.usda.gov>). National Plant Data Team, Greensboro, NC 27401-4901 USA. Motheral, S., & Orrock, J. (2010). [Accessed November 7, 2017]